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Introduction and DiD popularity



Importance of Empirical Research

■ The availability of richer datasets and
the advances in computational power
have changed Social Sciences during
the last 40 years.

■ Currie, Kleven and Zwiers (2020) show
that the fraction of empirical research
keeps rising.

■ A very common goal of empirical
research is to uncover/highlight the
casual effect of a given policy
intervention.
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The boom of experimental and quasi-experimental methods

Currie et al. (2020) documented this change well
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What about experiments (or A/B tests)?

Currie et al. (2020)

3



Popularity of Difference-in-Differences methods

Currie et al. (2020)
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Recent popularity of DiD methods in empirical work

Goldsmith-Pinkham (2024) built on Currie et al. (2020) and updated the analysis using
NBER working papers data that ends in May 2024.
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Popularity of Difference-in-Differences methods: by fields

Goldsmith-Pinkham (2024): the popularity of DiD by fields
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Popularity of Difference-in-Differences methods

Goldsmith-Pinkham (2024): Compare previous plot with IV
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Why DiD is so popular?



Causality with Observational Data: What can we do?

■ In many applications, we do not have access to experimental data.

■ Without an experiment, we will rely on observational data.

■ With observational data, we have no choice but rely on assumptions to conduct
causal inference.

■ Different methods rely on different assumptions.

■ Our job as researchers is to assess the pros and cons of each method in their ability
to answer the questions we (and the business/policy makers/stakeholders) care
about.
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Causality with Observational Data: What can we do?

■ DiD is very popular.

■ WHY?!

■ My guess: data requirements, availability of tools to assess the plausibility of
assumptions and easy-to-use software.

■ What are the main alternatives to DiD?

1. Rely on unconfoundedness and leverage regression, matching, re-weighting or double
machine learning.
Drawback: Rule out selection on unobservables.
We need to have data on everything that affects treatment timing and outcome of
interest (unconfoundedness assumption).
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Causality with Observational Data: What else?

■ What are the other main alternatives to DiD?

2. Rely on Pre-Post analysis

Drawback: Does not account for potential trends in outcomes.
This is more reasonable if we study very short-run effects, but that is not usually the
case.
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The appeal of Difference-in-Differences

■ DiD methods exploit variation in time (before vs. after) and across groups (treated vs.
untreated) to recover causal effects of interest.

■ DiD combines previous approaches to avoid their pitfalls.

■ Advantage: Allow for selection on unobservables and time-trends.
Not magic: We need to assume that, absent the treatment and conditional on
covariates (features), the outcome of interest would evolve similarly across
groups/cohorts - Parallel Trends assumption.

Parallel Trends needs to be discussed and its plausibility assessed!

■ Data Requirements: We need data from periods before and after treatment to use
DiD (and some periods where no unit is treated).
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Some DiD Examples



Some DiD Examples

■ Card and Krueger (1994): Effect of minimum wage on employment.

▶ Compared the changes in wages, employment, and prices at stores in New Jersey
(increased minimum wage) relative to stores in Pennsylvania (minimum wage remained
fixed).

■ Dube, Lester and Reich (2010); Dube, William Lester and Reich (2016), Callaway and
Sant’Anna (2021) and many others:
Effect of minimum wage on different measures of employment

▶ Callaway and Sant’Anna (2021) exploit variation in the timing of state minimum wage
changes to understand its effect on teen employment.
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Some DiD examples

■ Meyer, Viscusi and Durbin (1995): Effect of weekly benefit amount on time out of work
due to injury.

▶ They compared high-earnings (affected by the policy change) and low-earnings (not
affected by the policy change) individuals injured before and after increases in the
maximum weekly benefit amount. Estimated effects in Kentucky and Michigan.

■ Malesky, Nguyen and Tran (2014): Effect of government re-centralization in Vietnam
on public services.

▶ They compared provinces (and districts) that abolished elected councils in Vietnam to
other provinces that did not abolish them, before and after the re-centralization.
Analyzed 30 outcomes.
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Some DiD examples

■ Carey, Miller and Wherry (2020): Effect of Medicaid expansion on access to care and
utilization for those who are already insured.

▶ They compare different insurance coverage and health care utilization measures among
states that opted to expand Medicaid eligibility in 2014 or 2015 with those that did not
expand by 2015, before and after the expansion.

■ Assunção, Gandour, Rocha and Rocha (2020): Effect of rural credit on deforestation.

▶ Compared municipalities within the Amazon biome (concession of subsidized rural
credit for them are conditional on stricter requirements since 2008), with municipalities
outside the border of the Amazon biome (not affected by the policy change), before and
after the policy.
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Some DiD examples

■ Beck, Levine and Levkov (2010): Effect of bank branching deregulation on income
distribution in the US.

▶ Exploit staggered bank deregulation across states to understand its effect on the Gini
index (among other outcomes); see also Baker, Larcker and Wang (2022).

■ Venkataramani, Shah, O’Brien, Kawachi and Tsai (2017): Effect of US Deferred Action
for Childhood Arrivals (DACA) immigration program on health outcomes.

▶ Compared changes in health outcomes among individuals who met key DACA eligibility
criteria (based on age at immigration and at the time of policy implementation) before
and after program implementation versus changes in outcomes for individuals who did
not meet these criteria.
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Canonical DiD Estimator



The canonical Difference-in-Differences estimator

■ The canonical DiD estimator is given by

θ̂DiDn =
(
Yg=treated,t=post − Yg=treated,t=pre

)
−

(
Yg=untreated,t=post − Yg=untreated,t=pre

)
,

where Yg=d,t=j is the sample mean of the outcome Y for units in group d in time
period j,

Yg=d,t=j =
1

Ng=d,t=j

Nall
∑
i=1
Yi1{Gi = d}1{Ti = j},

with

Ng=d,t=j =
Nall
∑
i=1
1{Gi = d}1{Ti = j},

Gi and Ti are group and time dummy, respectively, and Yi is the “pooled” outcome
data.
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Difference-in-Differences via graphs
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Difference-in-Differences via graphs
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Difference-in-Differences via graphs
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Difference-in-Differences via graphs
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But what kind of treatment effect

parameter θ̂DiDn is actually recovering?
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We need to talk about:

1. Potential outcomes

2. Assumptions
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Potential Outcomes



Causality with potential outcomes

■ We will adopt the Rubin Causal Model and define potential outcomes.

■ Potential outcomes will reflect the time you are first treated (we can “play” with this
later).

■ Let Yi,t(g) be the potential outcome for unit i, at time t, if this unit is first treated at
time period g.

■ T periods: t = 1, ..., T.

■ Let Gi ∈ G ⊂ {1, ..., T} ∪ {∞} denote the time unit i is first-treated, with the notion
that if a unit is “never-treated”, Gi = ∞.

■ Observed outcome data in time period t for unit i is given by
Yi,t = ∑g∈G 1{Gi = g}Yi,t(g).
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Causality with potential outcomes - The “never treated” group

■ We call a group “never treated” if this set of units remains untreated in all periods in
our data.

■ With two time periods t = 1, 2, we call the group of units still not exposed to
treatment by time t = 2 the “never treated”.

▶ This is the case even if some of these units are eventually treated at time t = 3 (which
we do not have access to this data yet).

■ This is an abuse of notation but can help us with intuition.
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Causality with potential outcomes in the canonical 2x2 DiD setup

■ Let’s focus on the Canonical 2x2 setup.

■ There are n units available, i = 1, 2, . . . ,n.

■ There are two time periods available, t = 1 and t = 2.

■ A subset of all units are treated at time g = 2 (treated units), and a subset of units
remain untreated at time t = 2, so G = {2,∞}.

■ For units that are treated in time period g = 2, we observe Yi,t=1(2) and Yi,t=2(2).

■ For the “never treated” units g = ∞, we observe Yi,t=1(∞) and Yi,t=2(∞).

“Traditionally”, we call these potential outcomes Yi,t(1) and Yi,t(0), instead of Yi,t(2) and Yi,t(∞).
However, that notation is hard to extend to setups with variations in treatment timing.
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Causality with potential outcomes in the canonical 2x2 DiD setup

■ Treatment Effect

▶ The treatment effect or causal effect of the treatment on the outcome of unit i at time t
is the difference between its two potential outcomes:

Yi,t(2)− Yi,t(∞)

■ Observed outcomes

▶ Observed outcomes at time t are realized as

Yi,t = 1{Gi = 2}Yi,t(2) + 1{Gi = ∞}Yi,t(∞).

■ Fundamental problem of causal inference

▶ At time t we cannot observe both potential outcomes Yi,t(2) and Yi,t(∞).
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Fundamental problem of causal inference: Missing data problem

Data
Unit Yi,t=1(2) Yi,t=2(2) Yi,t=1(∞) Yi,t=2(∞) Gi
1 ? ? ✓ ✓ ∞
2 ✓ ✓ ? ? 2
3 ? ? ✓ ✓ ∞
4 ✓ ✓ ? ? 2
...

...
...

...
...

...
n ✓ ✓ ? ? 2

✓: Observed data
?: Missing data (unobserved counterfactuals)
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Causality with potential outcomes in the canonical 2x2 DiD setup

■ Problem:
▶ Causal inference is difficult because it involves missing data.

▶ At time t, how can we find Yi,t(2)− Yi,t(∞)?

■ “Cheap” solution - Rule out heterogeneity.
▶ Yi,t(2), Yi,t(∞) constant across units/time.

■ But Causal inference is all about heterogeneity.
▶ In these cases, the “cheap solution” doesn’t work, and we need to find other paths.

▶ We need to find more appealing assumptions.

▶ We will talk about these soon!
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Causal parameters of interest



Target parameters in the 2x2 DiD Setup

■ Once we embrace treatment effect heterogeneity, recovering unit-specific treatment
effects becomes hard, if not impossible.

■ We will focus on causal effects in an average sense.

■ Let’s first focus on the 2x2 DiD setup.

■ We will also focus on the effect in the post-treatment period. (Guess why?)
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Parameters of interest in the 2x2 DiD Setup

■ ATT
The Average Treatment Effect on the Treated at time period t = 2 is

ATT = E [Yi,t=2(2)− Yi,t=2(∞)|Gi = 2]

■ ATU
The Average Treatment Effect on the Untreated at time period t = 2 is

ATU = E [Yi,t=2(2)− Yi,t=2(∞)|Gi = ∞]

■ ATE
The (overall) Average Treatment Effect at time period t = 2 is

ATE = E [Yi,t=2(2)− Yi,t=2(∞)] 30



Parameters of interest in the 2x2 DiD Setup

These parameters answer different questions:

■ ATT: What is the average effect of the policy/treatment among units that actually
received the treatment by time t = 2?

■ ATU: What is the average effect of the policy/treatment among units that did not
receive the treatment by time t = 2 if they were to receive the treatment?

■ ATE: What is the overall average effect of the policy/treatment if everybody were to
be treated at time t = 2?

31



What if we have multiple groups?
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Potential parameters of interest in the multi-group DiD setups

■ ATT(g, t)
The average treatment effect of being first-treated in period g < ∞ (compared to
never-being treated), among units first-treated in period g, at time period t is

ATT(g, t) = E [Yi,t(g)− Yi,t(∞)|Gi = g]

■ ATU(g, t)
The average treatment effect of being first-treated in period g (compared to
never-being treated), among the never-treated units, at period t is

ATU(g, t) = E [Yi,t(g)− Yi,t(∞)|Gi = ∞]

■ ATE(g, t)
The (overall) average treatment effect of being first-treated in period g (compared to
never-being treated) at period t is

ATE(g, t) = E [Yi,t(g)− Yi,t(∞)] 33



But we do not need to fix the baseline!
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Parameters of interest in the multi-group DiD setups

■ ATT(g’, g, t|g∗)
The average treatment effect of switching first-treatment time from g′ to g, among
units first treated in period g′, at time t:

ATT(g′,g, t|g∗) = E
[
Yi,t(g)− Yi,t(g′)|Gi = g∗

]
■ ATU(g’, g, t|∞)
The average treatment effect of switching first-treatment time from g′ to g, among
never-treated units, at time t is

ATU(g′,g, t|∞) = E
[
Yi,t(g)− Yi,t(g′)|Gi = ∞

]
= ATU(g, t)− ATU(g′, t)

■ ATE(g’,g, t)
The (overall) a average treatment effect of switching first-treatment time from g′ to g,
at time period t is

ATE(g′,g, t) = E
[
Yi,t(g)− Yi,t(g′)

]
= ATE(g, t)− ATE(g′, t) 35



What if treatment can turn on and off?

What if treatment is
multi-valued/continuous?
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Exercise



Exercise with treatments turning on and off

■ Time to check how well we follow the principles of building causal parameters in
different setups.

■ Let’s consider a case with 3 time periods, t = 1, 2, 3.
▶ At t = 1, no unit is treated.
▶ At t = 2, some units are treated, and others remain untreated.
▶ At t = 3, some previously treated units remain treated, and some turn treatment off. In
addition, among not-yet-treated units, some remain untreated, but others become
treated.

■ Let d = (d1,d2,d3) be a sequence of treatments, where (d1,d2,d3) ∈ {0, 1}3.
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Exercise with treatments turning on and off

■ Question 1: Define potential outcomes depending on potential treatment sequences.

■ Question 2: Define the average treatment effect at time t of taking a specific
treatment sequence compared to never being treated, among units that take that
given specified treatment sequence.

■ Question 3: Define the average treatment effect at time t of taking a specific
treatment sequence compared to never being treated, among units that remained
untreated until t = 3.

■ Question 4: Define the overall average treatment effect at time t of taking a specific
treatment sequence compared to never being treated.

38



Exercise with continuous and multi-valued treatments

■ Now let’s consider the case where treatment is continuous or multi-valued.

■ For simplicity, let’s focus on the case with 2 time periods, t = 1, 2.
▶ At t = 1, no unit is treated (everybody with dose d = 0).
▶ At t = 2, some units are treated with dose d > 0, and others remain untreated (d = 0).
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Exercise with continuous and multi-valued treatments

■ Question 5: Define potential outcomes depending on treatment dosages.

■ Question 6: Define the overall average treatment effect at time t = 2 of receiving
dosage d versus not receiving any treatment.

■ Question 7: Define the overall average treatment effect at time t = 2 of receiving
dosage d versus receiving dosage d′.

■ Question 8: Define the average treatment effect at time t = 2 of receiving dosage d
versus not receiving any treatment, among units who received dosage d.

40



Exercise with continuous and multi-valued treatments

■ Question 9: Define the average treatment effect at time t = 2 of marginally
increasing treatment dosage d, among units who received dosage d. Discuss the
discrete and continuous cases separately.

■ Question 10: Define the overall average treatment effect at time t = 2 of marginally
increasing treatment dosage d. Discuss the discrete and continuous case separately.

■ Question 11: The above marginal average treatment effects are “local“ to a dosage d.
Can you think of a more aggregate treatment effect measure that may summarize the
above marginal average treatment effects across different dosages d?
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