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Summary of previous lecture



Summary of Lecture 1

■ We have highlighted DiD’s popularity and its practical appeal;

■ We have discussed Potential Outcomes;

■ We have also talked about causal parameters of interest.
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The canonical 2 × 2 Difference-in-Differences estimator

■ The canonical 2 × 2 DiD estimator is given by

θ̂DiDn =
(
Yg=treated,t=post − Yg=treated,t=pre

)
−

(
Yg=untreated,t=post − Yg=untreated,t=pre

)
,

where Yg=d,t=j is the sample mean of the outcome Y for units in group d in time
period j,

Yg=d,t=j =
1

Ng=d,t=j

Nall
∑
i=1
Yi1{Gi = d}1{Ti = j},

with

Ng=d,t=j =
Nall
∑
i=1
1{Gi = d}1{Ti = j},

Gi and Ti are group and time dummy, respectively, and Yi is the “pooled” outcome
data.
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Difference-in-Differences via graphs
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Difference-in-Differences via graphs
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Difference-in-Differences via graphs
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Difference-in-Differences via graphs
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But what kind of treatment effect

parameter θ̂DiDn is actually recovering?
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We need to talk about:

1. Potential outcomes
We’ve talked about this in Lecture 1

2. Assumptions
We will now zoom into this!
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We will focus into the 2 × 2 DiD setup
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SUTVA and No-Anticipation Assumption



Stable Unit Treatment Value Assumption (SUTVA)

Assumption (SUTVA)
Observed outcomes at time t are realized as

Yi,t = ∑
g∈G

1{Gi = g}Yi,t(g).

■ In the 2x2 DiD case, observed outcomes at time t are realized as

Yi,t = 1{Gi = 2}Yi,t(2) + 1{Gi = ∞}Yi,t(∞).
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Stable Unit Treatment Value Assumption (SUTVA)

Assumption (SUTVA)
Observed outcomes at time t are realized as

Yi,t = ∑
g∈G

1{Gi = g}Yi,t(g).

■ Implicitly implies that potential outcomes for unit i are not affected by the treatment
of unit j.

▶ Rules out interference across units

▶ Rules out spillover effects

▶ Rules out general equilibrium effects
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Stable Unit Treatment Value Assumption (SUTVA)

Assumption (SUTVA)
Observed outcomes at time t are realized as

Yi,t = ∑
g∈G

1{Gi = g}Yi,t(g).

■ This assumption may be problematic in some applications

■ We should choose the units of analysis to minimize interference across units.
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Are there “causal effects” before
treatment takes place?
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No-Anticipation Assumption

Assumption (No-Anticipation)
For all units i, Yi,t(g) = Yi,t(∞) for all groups in their pre-treatment periods, i.e., for all
t < g.

■ Common assumption in duration analysis (Abbring and van den Berg, 2003; Sianesi, 2004).

■ This assumption says that unit-specific treatment effects are zero in all
pre-treatment periods.

■ It does not restrict treatment effect heterogeneity in post-treatment periods.

■ This is plausible in many setups, especially if treatment is not announced in
advance.

■ But it is not innocuous (Malani and Reif, 2015).
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No-Anticipation Assumption

Assumption (No-Anticipation)
For all units i, Yi,t(g) = Yi,t(∞) for all groups in their pre-treatment periods, i.e., for all
t < g.

■ This assumption also allows us to “simplify” notation.

■ Replace all “untreated” (or ”not-yet-treated”) potential outcomes by Yi,t(∞)

■ Many times, this assumption is already ”baked” into the potential outcome notation
(replace Yi,t(∞) with Yi,t(0) in all pre-treatment periods).

■ I prefer to be explicit about assumptions to enforce transparency.
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Fundamental problem of causal inference in the 2× 2 DiD setup

Data
Unit Yi,t=1(2) Yi,t=2(2) Yi,t=1(∞) Yi,t=2(∞) Gi
1 ? ? ✓ ✓ ∞
2 ✓ ✓ ? ? 2
3 ? ? ✓ ✓ ∞
4 ✓ ✓ ? ? 2
...

...
...

...
...

...
n ✓ ✓ ? ? 2

✓: Observed data
?: Missing data (unobserved counterfactuals)
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Missing Data + SUTVA + No-Anticipation (1)

Data
Unit Yi,t=1(2) Yi,t=2(2) Yi,t=1(∞) Yi,t=2(∞) Gi
1 ✓ ? ✓ ✓ ∞
2 ✓ ✓ ✓ ? 2
3 ✓ ? ✓ ✓ ∞
4 ✓ ✓ ✓ ? 2
...

...
...

...
...

...
n ✓ ✓ ✓ ? 2

✓: Observed data
?: Missing data (unobserved counterfactuals)
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Missing Data + SUTVA + No-Anticipation (2)

Data
Unit Yi,t=1(∞) Yi,t=2(2) Yi,t=1(∞) Yi,t=2(∞) Gi
1 ✓ ? ✓ ✓ ∞
2 ✓ ✓ ✓ ? 2
3 ✓ ? ✓ ✓ ∞
4 ✓ ✓ ✓ ? 2
...

...
...

...
...

...
n ✓ ✓ ✓ ? 2

✓: Observed data
?: Missing data (unobserved counterfactuals)
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Missing Data + SUTVA + No-Anticipation (3)

Data
Unit Yi,t=1(∞) Yi,t=2(2) Yi,t=2(∞) Gi
1 ✓ ? ✓ ∞
2 ✓ ✓ ? 2
3 ✓ ? ✓ ∞
4 ✓ ✓ ? 2
...

...
...

...
...

n ✓ ✓ ? 2

✓: Observed data
?: Missing data (unobserved counterfactuals)
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Missing Data + SUTVA + No-Anticipation (alternative, more classical notation)

Data
Unit Yi,t=1(0) Yi,t=2(1) Yi,t=2(0) Di
1 ✓ ? ✓ 0
2 ✓ ✓ ? 1
3 ✓ ? ✓ 0
4 ✓ ✓ ? 1
...

...
...

...
...

n ✓ ✓ ? 1

✓: Observed data
?: Missing data (unobserved counterfactuals)
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Selection bias



Selection bias

Problem:
Comparison of outcomes at t = 2 between the treated and the untreated units do not
usually give the right answer.

E [Yi,t=2|Gi = 2]− E [Yi,t=2|Gi = ∞] = E [Yi,t=2(2)|Gi = 2]− E [Yi,t=2(∞)|Gi = ∞]

= E [Yi,t=2(2)− Yi,t=2(∞)|Gi = 2]
+ (E [Yi,t=2(∞)|Gi = 2]− E [Yi,t=2(∞)|Gi = ∞])

= ATT+ Selection bias

■ Selection bias term unlikely to be zero in most applications.

■ Selection into treatment is often associated with the potential outcomes.
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Selection bias

Example: A job training program for disadvantaged

■ Participants are self-selected from a subpopulation of individuals in difficult labor
situations

■ Post-training period earnings for participants would be lower than those for
nonparticipants in the absence of the program:

E [Yi,t=2(∞)|Gi = 2]− E [Yi,t=2(∞)|Gi = ∞] < 0
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Selection bias in the stylized example

Unit Yi,t=1(∞) Yi,t=2(2) Yi,t=2(∞) Yi,t=2 Gi Yi,t=2(2)− Yi,t=2(∞)

1 3 3 4 4 ∞ -1
2 4 6 6 6 2 0
3 1 5 3 3 ∞ 2
4 1 7 2 7 2 5

E [Yi,t=2|Gi = 2] 6.5
E [Yi,t=2|Gi = ∞] 3.5
E [Yi,t=2(∞)|Gi = 2] 4
E [Yi,t=2(∞)|Gi = ∞] 3.5
E [Yi,t=2|Gi = 2]− E [Yi,t=2|Gi = ∞] 3
E [Yi,t=2(∞)|Gi = 2]− E [Yi,t=2(∞)|Gi = ∞] 0.5
E [Yi,t=2(2)− Yi,t=2(∞)|Gi = 2] 2.5

✓: Observed data
?: Missing data (unobserved counterfactuals) 23



Can we exploit the time dimension

to tackle “selection bias”?
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Parallel Trends Assumption



Parallel Trends Assumption - 2x2 setup

Since a simple comparison of means at time t = 2 does not recover a parameter of
interest (ATT), we can take a different route.

Assumption (Parallel Trends Assumption)

E [Yi,t=2(∞)|Gi = 2]− E [Yi,t=1(∞)|Gi = 2] = E [Yi,t=2(∞)|Gi = ∞]− E [Yi,t=1(∞)|Gi = ∞]

The parallel trends (PT) assumption states that, in the absence of treatment, the
evolution of the outcome among the treated units is, on average, the same as the
evolution among the untreated units.
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But how can the parallel trends
assumption help us?
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Parallel Trends and the ATT

■ We will start from the perspective that the ATT at time t = 2 is the target parameter.

■ From the definition of the ATT and SUTVA, we have

ATT ≡ E [Yi,t=2 (2) |Gi = 2]− E [Yi,t=2 (∞) |Gi = 2]
= E [Yi,t=2|Gi = 2]︸ ︷︷ ︸

by SUTVA

− E [Yi,t=2 (∞) |Gi = 2]

■ Green object is estimable from data (under SUTVA).

■ Red object still depends on potential outcomes, and we aim to find ways to “impute”
it.

■ This is where PT comes into play!
27



Parallel Trends and the ATT

1) First, recall the PT assumption:

E [Yi,t=2(∞)|Gi = 2]− E [Yi,t=1(∞)|Gi = 2] = E [Yi,t=2(∞)|Gi = ∞]− E [Yi,t=1(∞)|Gi = ∞] .

2) By simple manipulation, we can write it as

E
[
Yi,t=2(∞)|Gi = 2

]
= E

[
Yi,t=1 (∞) |Gi = 2

]
+

(
E
[
Yi,t=2 (∞) |Gi = ∞

]
− E

[
Yi,t=1 (∞) |Gi = ∞

])
3) Now, exploiting No-Anticipation and SUTVA:

E
[
Yi,t=2(∞)|Gi = 2

]
= E

[
Yi,t=1 (2) |Gi = 2

]︸ ︷︷ ︸
by No−Anticipation

+
(
E
[
Yi,t=2 (∞) |Gi = ∞

]
− E

[
Yi,t=1 (∞) |Gi = ∞

])
E
[
Yi,t=2(∞)|Gi = 2

]
= E

[
Yi,t=1|Gi = 2

]
+

(
E
[
Yi,t=2|Gi = ∞

]
− E

[
Yi,t=1|Gi = ∞

])︸ ︷︷ ︸
by SUTVA
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Parallel Trends and the ATT

■ Combining these results, we have that, under SUTVA + No-Anticipation + PT
assumptions, it follows that

ATT = E [Yi,t=2|Gi = 2]− (E [Yi,t=1|Gi = 2] + (E [Yi,t=2|Gi = ∞]− E [Yi,t=1|Gi = ∞]))

= (E [Yi,t=2|Gi = 2]− E [Yi,t=1|Gi = 2])− (E [Yi,t=2|Gi = ∞]− E [Yi,t=1|Gi = ∞])

■ This is “the birth” of the DiD estimand!
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Parallel Trends via graphs
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Parallel Trends via graphs

20

50

10

20

Y(2) | G = 2Y(2) | G = 2Y(2) | G = 2Y(2) | G = 2

Y(Inf) | G = InfY(Inf) | G = InfY(Inf) | G = InfY(Inf) | G = Inf
0

20

40

60

Pre Post

O
ut

co
m

e

Comparison Treated

Raw Data

31



Parallel Trends via graphs
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Parallel Trends via graphs
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But how can we actually estimate and
make inference about the ATT?
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Estimating the ATT in the 2x2 DiD Setup



Estimating the ATT in 2x2 DiD setups

■ Up to now, we have only shown that the ATT is identified under SUTVA +
No-anticipation + PT assumptions.

■ But our estimand involves population expectations, and, in practice, we do not really
know the true DGP such that we can compute them.

■ However, we can estimate them using the “analogy principle”: replace population
expectations by their sample analogs
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“Brute-force” DiD estimator in 2x2 setups

■ By using the analogy (or plug-in) principle, we have that our canonical DiD estimator
for the ATT is given by

θ̂DiDn =
(
Yg=2,t=2 − Yg=2,t=1

)
−

(
Yg=∞,t=2 − Yg=∞,t=1

)
,

where Yg=d,t=j is the sample mean of the outcome Y for units in group d in time
period j,

Yg=d,t=j =
1

Ng=d,t=j

N·T
∑
i=1
Yi1{Gi = d}1{Ti = j},

with

Ng=d,t=j =
N·T
∑
i=1
1{Gi = d}1{Ti = j},

Gi and Ti are group and time dummy, respectively, and Yi is the “poolled” outcome
data.
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TWFE DiD regression estimator in the 2x2 Setup

■ I usually refer to θ̂DiDn as the “brute-force” DiD estimator (or “DiD by hand”)/

■ The explicit starting point is the estimand (population parameter), and all we do is
follow the “plug-in” principle.

■ In practice, however, many researchers choose to estimate the ATT in DiD using the
following two-way fixed-effects (TWFE) regression specification

Yi,t = α0 + γ01 {Gi = 2}+ λ01 {Ti = 2}+ βtwfe0 (1 {Gi = 2} · 1 {Ti = 2}) + εi,t,

where E[εi,t|Gi, Ti] = 0 almost surely.

■ We can show that βtwfe0 is equal to the DiD estimand in the canonical 2x2 setup.
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TWFE DiD regression estimator in the 2x2 Setup

■ The TWFE specification is given by

Yi,t = α0 + γ01 {Gi = 2}+ λ01 {Ti = 2}+ βtwfe0 (1 {Gi = 2} · 1 {Ti = 2}) + εi,t,

where E[εi,t|G, T] = 0 almost surely.

■ Now, let’s play with its terms:

E[Yi,t|Gi = ∞, Ti = 1] = α0

E[Yi,t|Gi = ∞, Ti = 2] = α0 + λ0

E[Yi,t|Gi = 2, Ti = 1] = α0 + γ0

E[Yi,t|Gi = 2, Ti = 2] = α0 + γ0 + λ0 + βtwfe0
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TWFE DiD regression estimator in the 2x2 Setup

■ Set of moment restrictions:

E[Yi,t|Gi = ∞, Ti = 1] = α0

E[Yi,t|Gi = ∞, Ti = 2] = α0 + λ0

E[Yi,t|Gi = 2, Ti = 1] = α0 + γ0

E[Yi,t|Gi = 2, Ti = 2] = α0 + γ0 + λ0 + βtwfe0

■ These imply that

E[Yi,t|Gi = 2, Ti = 2]− E[Yi,t|Gi = 2, Ti = 1] = λ0 + βtwfe0

and that
E[Yi,t|Gi = ∞, Ti = 2]− E[Yi,t|Gi = ∞, Ti = 1] = λ0.

■ Thus, we can clearly see that βtwfe0 is equal to the DiD estimand.
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TWFE DiD regression estimator in the 2x2 Setup

We can then estimate βtwfe0 (or the ATT) via ordinary least squares:

(α̂, γ̂, λ̂, β̂twfe) = argmin
α,γ,λ,βtwfe

Nall
∑
j=1

(
Yj − α − γ1

{
Gj = 2

}
− λ1

{
Tj = 2

}
− βtwfe

(
1
{
Gj = 2

}
· 1

{
Tj = 2

}))2

■ We must stress that we use this regression procedure as a way to get what we are
after - the ATT.

■ Regression is the estimation tool - it does not fix the target parameter!

■ We like this because we have a good understanding of regressions!

■ We can leverage it to conduct asymptotically valid inference.
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Should we cluster?

41



Yes, but why?
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Importance of clustering

■ We should cluster at least at the cross-sectional level.

■ We do this because we want to allow for arbitrary auto-correlation for the outcomes
for the same units across periods.

■ Of course, standard inference procedures (without additional strong distributional
assumptions) will only be reliable when we have a large number of clusters

▶ Without normality assumptions, we need to apply a Central Limit Theorem (CLT) to
justify inference.

▶ Reliability of CLT depends on the effective sample size (number of clusters) to be large.
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Importance of clustering: TWFE regression vs DiD-by-hand

■ I also have a more “mechanical” explanation (or anecdote) about why we should
cluster at least at the unit level

■ We have discussed that the DiD-by-hand estimator, θ̂DiDn , is numerically the same as
the TWFE estimator, β̂twfe in the 2x2 setup.

■ If we were to derive the large sample properties of both estimators (under the same
assumptions), they should be the same. (this is obvious, right?!)

■ But if we do not cluster, this does not happen:
▶ DiD-by-hand is explicit about effective sample size being number of units
(or number of cluster)

▶ TWFE effective sample size pooled data - 2× number of units in (balanced panel).

44



It all comes down from sampling!
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Panel data sampling schemes

■ There are two main leading sampling schemes in the 2x2 DiD setup.

Assumption (Panel Data Sampling Scheme)
The data {Yi,t=1, Yi,t=2,Gi}ni=i is a random sample of the population of interest.

■ We observe data at periods t = 1 and t = 2 for the same units.

■ This, in general, leads to more precise estimators.
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Repeated cross-section data sampling schemes

Assumption (Repeated Cross-Section Data Sampling Scheme)
The pooled repeated cross-section data {Yi,Gi, Ti}ni=1 consist of iid draws from the mixture
distribution

P (Y ≤ y,G = g, T = t) = 1{t = 2} · λ · P (Yt=2 ≤ y,G = g|T = 2)
+1{t = 1} · (1− λ) P (Yt=1 ≤ y,G = g|T = 1) ,

where (y,g, t) ∈ R × {2,∞} × {1, 2}, λ = P (T = 2) ∈ (0, 1).

47



Repeated cross-section data sampling schemes

■ It accommodates the binomial sampling scheme where an observation i is randomly
drawn from either (Yt=2,G) or (Yt=1,G) with fixed probability λ (here, T is a
non-degenerated random variable).

■ It also accommodates the “conditional” sampling scheme where nt=2 observations
are sampled from (Yt=2,G), nt=1 observations are sampled from (Yt=1,G) and
λ = nt=2/(nt=1 + nt=2) (here, T is treated as fixed).

■ In the repeated cross-section setup, we will write n = nt=1 + nt=2
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We can talk with great detail about estimation and inference
(details are on the slides).

I will skip details, but we will use them below.

Large Sample Derivations
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How can we concretely conduct
inference?
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How to make inference?



Inference for the ATT based on the DiD estimator in 2x2 setups with panel data

■ We will only cover the Panel data case: repeated cross-sections case is similar.

■ We want to conduct inference about the ATT based on our DiD estimator θ̂DiDn .

▶ We want to do hypothesis testing.

▶ We want to construct confidence intervals.

■ We know (from the calculations we skipped above) that under our assumptions, as
the number of units n grows,

√
n
(

θ̂DiDn − θDiD0

)
→ N(0, Vp), with Vp = E

[
ξ2G=2

]
+ E

[
ξ2G=∞

]
,

where, for g ∈ {2,∞},

ξG=g =
1{G = g}

E [1{G = g}]

(
∆Y− E [∆Y · 1{G = g}]

E [1{G = g}]

)
.
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Inference for the ATT in 2x2 DiD setups with panel data

■ How can we estimate Vp?

■ The analogy principle strikes again!

▶ Replace population expectations with sample analogs!

■ Estimator for asymptotic variance is

V̂n,p = En
[
ξ̂2G=2

]
+ En

[
ξ̂2G=∞

]
,

where, for g ∈ {2,∞},

ξ̂i,G=g =
1{Gi = g}

En [1{G = g}]

(
∆Yi −

En [∆Y · 1{G = g}]
En [1{Gi = g}]

)
.

■ It is easy to show that, as n→ ∞, V̂n
p→ V.
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Inference for the ATT in 2x2 DiD setups with panel data

■ Estimated standard error is

ŝen,p(θ̂DiDn ) =

√
V̂n,p
n .

■ Std error is clustered at the unit level: it allows for arbitrary time dependence across
periods (because T = 2).

■ 95% confidence interval for ATT based on asymptotic normality:

θ̂DiDn ± 1.96 · ŝen,p(θ̂DiDn ).

■ Hypotheses tests for the null H0 : ATT = c for a known c ∈ R can also be conducted
using the t-statistics:

t-stat = θ̂DiDn − c
ŝen,p(θ̂DiDn )

.
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What if we want to cluster at different
level?
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How to make inference?
Clustering at a more aggregated level



Clustering at a more aggregate level

■ Many times, researchers (or referees) argue that you should cluster standard errors at a
more aggregated level than the unit level.

■ Sometimes, they recommend clustering at the treatment assignment level, see, e.g., Bertrand,
Duflo and Mullainathan (2004); Donald and Lang (2007); Conley and Taber (2010); Ferman and
Pinto (2019), among many others.

■ These “general” recommendations are tricky, as the choice of the cluster level should
depend on the sampling/counterfactual/parameter of interest you are using/considering,
see, e.g., Wooldridge (2003), Imbens and Wooldridge (2007), Abadie, Athey, Imbens and
Wooldridge (2022) and Rambachan and Roth (2022).

■ If we have a large number of clusters (of finite size), (standard) valid inference is feasible;
see, e.g., Sherman and Le Cessie (2007); Kline and Santos (2012); Cheng, Yu and Huang (2013);
Callaway and Sant’Anna (2021). 55



Why?
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DiD estimator in 2x2 setups with panel data

■ Recall that our DiD estimator is

θ̂DiDn =
(
Yg=2,t=2 − Yg=2,t=1

)
−

(
Yg=∞,t=2 − Yg=∞,t=1

)
,

■ In the panel data case, we can simplify this a bit further:

θ̂DiDn = ∆Yg=2 − ∆Yg=∞,

where ∆Yg=d is the sample mean of ∆Yi ≡ Yi,t=2 − Yi,t=1 for units in group d,

∆Yg=d =
∑i:Gi=d ∆Yi
nG=d

=
n−1 ∑n

i=1 ∆Yi1{Gi = d}
n−1 ∑n

i=1 1{Gi = d} =
En [∆Y · 1{G = d}]

En [1{G = d}] ,

and nG=d = ∑n
i=1 1{G = d} is the sample size of group G = d.

■ Henceforth, for a generic variable A,

En [A] ≡
∑n
i=1 Ai
n .
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DiD estimator in 2x2 setups with panel data

■ We then have that

θ̂DiDn = ∆Yg=2 − ∆Yg=∞ =
En [∆Y · 1{G = 2}]

En [1{G = 2}] − En [∆Y · 1{G = ∞}]
En [1{G = ∞}] .

■ The above notation emphasizes that the effective sample size is n, the number of
units.

■ If we are now sampling clusters (of finite size), it is arguably desirable to highlight
this in our notation.

■ In my view, notation should be used to help with these kinds of things!
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DiD estimator in 2x2 setups with panel data and cluster

The key is to rewrite some averages in terms of the number of clusters:

∆Yg=d =
n−1 ∑n

i=1 ∆Yi1{Gi = d}
n−1 ∑n

i=1 1{Gi = d} =

1
Ncluster

Ncluster

∑
c=1

∑n
i=1 ∆Yi1{Gi = d}1{Ci = c}

1
Ncluster

Ncluster

∑
c=1

∑n
i=1 1{Gi = d}1{Ci = c}

=

1
Ncluster

Ncluster

∑
c=1

n En [∆Y · 1{G = d}1{C = c}]

1
Ncluster

Ncluster

∑
c=1

n En [1{G = d}1{C = c}]

=

1
Ncluster

Ncluster

∑
c=1

En [∆Y · 1{G = d}1{C = c}]

1
Ncluster

Ncluster

∑
c=1

En [1{G = d}1{C = c}]

(This is good but potentially ambiguous)
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DiD estimator in 2x2 setups with panel data

We can continue with manipulations:

∆Yg=d =

1
Ncluster

Ncluster

∑
c=1

En [∆Y · 1{G = d}1{C = c}]

1
Ncluster

Ncluster

∑
c=1

En [1{G = d}1{C = c}]

=

1
Ncluster

Ncluster

∑
c=1

nc
n · Enc [∆Y · 1{G = d}|C = c]

1
Ncluster

Ncluster

∑
c=1

nc
n · Enc [1{G = d}|C = c]

=

1
Ncluster

Ncluster

∑
c=1

Pn(C = c) · Enc [∆Y · 1{G = d}|C = c]

1
Ncluster

Ncluster

∑
c=1

Pn(C = c)Enc [1{G = d}1{C = c}]

(This is what we want!)
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DiD estimator in 2x2 setups with panel data and clusters

We then have that

θ̂DiDn =

1
Ncluster

Ncluster

∑
c=1

Pn(C = c) · Enc [∆Y · 1{G = 2}|C = c]

1
Ncluster

Ncluster

∑
c=1

Pn(C = c)Enc [1{G = 2}1{C = c}]

−

1
Ncluster

Ncluster

∑
c=1

Pn(C = c) · Enc [∆Y · 1{G = ∞}|C = c]

1
Ncluster

Ncluster

∑
c=1

Pn(C = c)Enc [1{G = ∞}1{C = c}]

Now, it is only a matter of applying a law of large numbers + a central limit theorem +
continuous mapping theorem.
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How to make inference?
Cluster-robust inference via multiplier bootstrap



Bootstrap procedure for clustering

■ Let’s illustrate how we can leverage the influence functions to conduct
cluster-robust inference.

■ We will use a multiplier-bootstrap procedure, see, e.g., van der Vaart and Wellner
(1996); Kline and Santos (2012); Callaway and Sant’Anna (2021).

■ A big advantage of this bootstrap procedure is that we do not have to re-estimate all
parameters in every bootstrap draw.

▶ Much faster.

▶ No problem with “small-ish groups” in some bootstrap draws.

▶ Easy to prove its validity.
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Multiplier bootstrap procedure

■ Recall that the estimated influence function for the panel data case is

ξ̂i,p ≡ ξ̂i,G=2 − ξ̂i,G=∞,

where, for g ∈ {2,∞},

ξ̂i,G=g =
1{Gi = g}

En [1{G = g}]

(
∆Yi −

En [∆Y · 1{G = g}]
En [1{Gi = g}]

)
.

■ Let {Vi}ni=1 be a sequence of iid random variables with zero mean, unit variance, and
bounded third moment, independent of the original sample.

▶ Example: Rademacher Distribution, P(V = 1) = P(V = −1) = 0.5.

■ θ̂∗,DiDn , a bootstrap draw of θ̂DiDn , is given by

θ̂∗,DiDn = θ̂DiDn + En
[
V · ξ̂p

]
. (1)
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Multiplier bootstrap algorithm

1. Draw a realization of {Vi}ni=1.

2. Compute θ̂∗,DiDn as in (1), and form a bootstrap draw of its limiting distribution as

R̂∗ =
√
n
(

θ̂∗,DiDn − θ̂DiDn
)

3. Repeat steps 1-2 B times (say, 999).
4. Estimate V1/2p by

V̂1/2,bootn,p = (q0.75 − q0.25) / (z0.75 − z0.25) ,
where qτ is the τ-th sample quantile of R̂∗ , and zτ is the τ-th quantile of the standard normal
distribution.

5. For each bootstrap draw, compute t-test∗ =
∣∣R̂∗∣∣ /V̂1/2,bootn,p .

6. Construct ĉ1−α as the empirical (1− a)-quantile of the B bootstrap draws of t− test∗ .
7. Construct the bootstrapped confidence intervals for the ATT as

Ĉ = [θ̂DiDn ± ĉ1−α · V̂1/2,bootn,p /
√
n].
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How to cluster at a more “aggregated level”?

■ How can we cluster at a level more aggregated than the unit?

■ This is straightforward to implement with the multiplier bootstrap described above.

■ Example: allow for clustering at the state level

▶ draw a scalar Us S times – where S is the number of states

▶ set Vi = Us for all observations i in state s

■ This procedure is justified, provided that the number of clusters is “large”, and
cluster size is “fixed”.

■ This is the case when we sample (entire) clusters from a super-population.
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What if we have small number of
clusters?
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Empirical exercise



Empirical exercise

■ Let’s switch to R/Stata so we can see how to do all these things!
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Large sample properties of the 2x2 DiD estimator



Let’s derive the large sample
properties of the DiD estimator in the

panel data case
Skip all derivations to justify asymptotic normality
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Large sample properties of the 2x2 DiD estimator
Panel Data Case



DiD estimator in 2x2 setups with panel data

■ Recall that our DiD estimator is

θ̂DiDn =
(
Yg=2,t=2 − Yg=2,t=1

)
−

(
Yg=∞,t=2 − Yg=∞,t=1

)
,

■ In the panel data case, we can simplify this a bit further:

θ̂DiDn = ∆Yg=2 − ∆Yg=∞,

where ∆Yg=d is the sample mean of ∆Yi ≡ Yi,t=2 − Yi,t=1 for units in group d,

∆Yg=d =
∑i:Gi=d ∆Yi
nG=d

=
n−1 ∑n

i=1 ∆Yi1{Gi = d}
n−1 ∑n

i=1 1{Gi = d} =
En [∆Y · 1{G = d}]

En [1{G = d}] ,

and nG=d = ∑n
i=1 1{G = d} is the sample size of group G = d.

■ Henceforth, for a generic variable A,

En [A] ≡
∑n
i=1 Ai
n .
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DiD estimator in 2x2 setups with panel data

■ We then have that

θ̂DiDn = ∆Yg=2 − ∆Yg=∞ =
En [∆Y · 1{G = 2}]

En [1{G = 2}] − En [∆Y · 1{G = ∞}]
En [1{G = ∞}] .

■ We want to know if this estimator is “reliable”.

▶ As the number of units increases, does it converge in probability the true ATT, under our
assumptions?

▶ How can we conduct reliable ATT inferences without invoking distributional
assumptions?

■ We will rely on large sample approximation results.

■ All those stats classes you took (or teach), can be very handy now!

■ We will use law of large numbers (LLN) + continuous mapping theorem (CMT) + CLT.
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Consistency of the DiD estimator in 2x2 setups with panel data

■ Since
θ̂DiDn =

En [∆Y · 1{G = 2}]
En [1{G = 2}] − En [∆Y · 1{G = ∞}]

En [1{G = ∞}] ,

consistency follows directly from the law of large numbers and the continuous
mapping theorem.

■ LLN: with iid + bounded moments (which we implicitly assume), sample means
converge in probability to population means.

■ Continuous mapping theorem: continuous functionals preserve limits.

■ As a result, we have, as n→ ∞,

θ̂DiDn
p→ E [∆Y · 1{G = 2}]

E [1{G = 2}] − E [∆Y · 1{G = ∞}]
E [1{G = ∞}] = E [∆Y|G = 2]− E [∆Y|G = ∞] ≡ θDiD,

and θDiD = ATT under SUTVA + No-Anticipation + PT assumptions. 71



Asy. Normality of the DiD estimator in 2x2 setups with panel data

■ Now, we want to derive the asymptotic distribution of

√
n
(

θ̂DiDn − θDiD
)

=
√
n
(

En [∆Y · 1{G = 2}]
En [1{G = 2}] − E [∆Y · 1{G = 2}]

E [1{G = 2}]

)
−
√
n
(

En [∆Y · 1{G = ∞}]
En [1{G = ∞}] − E [∆Y · 1{G = ∞}]

E [1{G = ∞}]

)
.

■ To get there, we can use CLT and Delta Method (iid + finite asymptotic variance +
denominator bounded away from zero.)

■ We will do this slightly differently because I want to get the influence function.

■ Express
√
n
(

θ̂DiDn − θDiD
)
as as average of iid terms + negligible terms.
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Asy. Normality of the DiD estimator in 2x2 setups with panel data

■ Let’s first analyze
√
n
(

En [∆Y · 1{G = 2}]
En [1{G = 2}] − E [∆Y · 1{G = 2}]

E [1{G = 2}]

)
.

■ With some manipulation, we can rewrite this as
1

E [1{G = 2}]
√
n (En [∆Y · 1{G = 2}]− E [∆Y · 1{G = 2}])

−E [∆Y · 1{G = 2}]
E [1{G = 2}]2

√
n (En [1{G = 2}]− E [1{G = 2}])

+
E [∆Y · 1{G = 2}] · (En [1{G = 2}]− E [1{G = 2}])

E [1{G = 2}]2 · En [1{G = 2}]
√
n (En [1{G = 2}]− E [1{G = 2}])

− (En [1{G = 2}]− E [1{G = 2}])
E [1{G = 2}] · En [1{G = 2}]

√
n (En [∆Y · 1{G = 2}]− E [∆Y · 1{G = 2}]).
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Asy. Normality of the DiD estimator in 2x2 setups with panel data

■ Red terms converge in probability to zero by LLN

■ Blue terms converge in distribution to Normal with finite variance by CLT.

■ Then, by Slutsky’s Theorem
√
n
(

En [∆Y · 1{G = 2}]
En [1{G = 2}] − E [∆Y · 1{G = 2}]

E [1{G = 2}]

)
=

1
E [1{G = 2}]

√
n (En [∆Y · 1{G = 2}]− E [∆Y · 1{G = 2}])

−E [∆Y · 1{G = 2}]
E [1{G = 2}]2

√
n (En [1{G = 2}]− E [1{G = 2}])

+op(1).
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Asy. Normality of the DiD estimator in 2x2 setups with panel data

■ Rearranging some terms (and with some abuse of notation), we have
√
n
(

En [∆Y · 1{G = 2}]
En [1{G = 2}] − E [∆Y · 1{G = 2}]

E [1{G = 2}]

)
=

√
nEn

[
∆Y · 1{G = 2}
E [1{G = 2}]

]
−
√
nE

[
∆Y · 1{G = 2}
E [1{G = 2}]

]

−E [∆Y · 1{G = 2}]
E [1{G = 2}]

√
n
(

En

[
1{G = 2}

E [1{G = 2}]

]
− 1

)
+ op(1)

=
√
nEn

[
∆Y · 1{G = 2}
E [1{G = 2}]

]
−
√
nE

[
∆Y · 1{G = 2}
E [1{G = 2}]

]

−
√
nEn

[
E [∆Y · 1{G = 2}]

E [1{G = 2}]
1{G = 2}

E [1{G = 2}]

]
+
√
nE [∆Y · 1{G = 2}]

E [1{G = 2}] + op(1).
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Asy. Normality of the DiD estimator in 2x2 setups with panel data

■ Continuing the manipulations...

√
n
(

En [∆Y · 1{G = 2}]
En [1{G = 2}] − E [∆Y · 1{G = 2}]

E [1{G = 2}]

)
=

√
nEn

[
∆Y · 1{G = 2}
E [1{G = 2}]

]
−
√
nEn

[
E [∆Y · 1{G = 2}]

E [1{G = 2}]
1{G = 2}

E [1{G = 2}]

]
+ op(1)

=
√
nEn

[
∆Y · 1{G = 2}
E [1{G = 2}] − E [∆Y · 1{G = 2}]

E [1{G = 2}]
1{G = 2}

E [1{G = 2}]

]
+ op(1)

=
√
nEn

[
1{G = 2}

E [1{G = 2}]

(
∆Y− E [∆Y · 1{G = 2}]

E [1{G = 2}]

)]
+ op(1).
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Asy. Normality of the DiD estimator in 2x2 setups with panel data

■ Thus, we have that
√
n
(

En [∆Y · 1{G = 2}]
En [1{G = 2}] − E [∆Y · 1{G = 2}]

E [1{G = 2}]

)
=

√
nEn

[
1{G = 2}

E [1{G = 2}]

(
∆Y− E [∆Y · 1{G = 2}]

E [1{G = 2}]

)]
+ op(1)

=
√
n 1n

n

∑
i=1

(
1{Gi = 2}

E [1{G = 2}]

(
∆Y− E [∆Yi · 1{G = 2}]

E [1{G = 2}]

))
︸ ︷︷ ︸

=ξi,G=2 : influence function

+ op(1)

=
1√
n

n

∑
i=1

ξi,G=2 + op(1),

■ The ξi,G=2 is the influence function we were after: it is mean zero, has finite variance,
and is iid. 77



Asy. Normality of the DiD estimator in 2x2 setups with panel data

■ Now, following the same steps as we did, we have that

√
n
(

En [∆Y · 1{G = ∞}]
En [1{G = ∞}] − E [∆Y · 1{G = ∞}]

E [1{G = ∞}]

)
=

√
nEn

[
1{G = ∞}

E [1{G = ∞}]

(
∆Y− E [∆Y · 1{G = ∞}]

E [1{G = ∞}]

)]
+ op(1)

=
√
n 1n

n

∑
i=1

(
1{Gi = ∞}

E [1{G = ∞}]

(
∆Y− E [∆Yi · 1{G = ∞}]

E [1{G = ∞}]

))
︸ ︷︷ ︸

=ξi,G=∞ : influence function

+ op(1)

=
1√
n

n

∑
i=1

ξi,G=∞ + op(1),
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Asy. Normality of the DiD estimator in 2x2 setups with panel data

■ Putting these pieces together, it follows that
√
n
(

θ̂DiDn − θDiD
)

=
√
n
(

En [∆Y · 1{G = 2}]
En [1{G = 2}] − E [∆Y · 1{G = 2}]

E [1{G = 2}]

)
−
√
n
(

En [∆Y · 1{G = ∞}]
En [1{G = ∞}] − E [∆Y · 1{G = ∞}]

E [1{G = ∞}]

)

=
1√
n

n

∑
i=1

(ξi,G=2 − ξi,G=∞) + op(1)

■ Now, it follows from the CLT that
√
n
(

θ̂DiDn − θDiD
)

d→ N(0, Vp),

where
Vp = E

[
(ξG=2 − ξG=∞)

2] = E
[
ξ2G=2

]
+ E

[
ξ2G=∞

]
79



What about the repeated
cross-section data case?
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Large sample properties of the 2x2 DiD estimator
Repeated Cross-Section Data Case



DiD estimator in 2x2 setups with RCS data

■ Recall that our “general” DiD estimator is

θ̂DiDn =
(
Yg=2,t=2 − Yg=2,t=1

)
−

(
Yg=∞,t=2 − Yg=∞,t=1

)
,

■ In the RCS data case, we can’t use the first difference of the outcome as we do not
observe outcomes for the same units in both periods.

■ So, we will need to work with four sample means instead of two.

■ Not very different, though!

■ Data are in the ”long” structure (each row is a different cross-section unit)
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Consistency of the DiD estimator in 2x2 setups with RCS data

■ Note that we can write the DiD estimator as

θ̂DiDn =

(
En [Y · 1 {T = 2,G = 2}]

En [1 {T = 2,G = 2}] − En [Y · 1 {T = 1,G = 2}]
En [1 {T = 1,G = 2}]

)
−

(
En [Y · 1 {T = 2,G = ∞}]

En [1 {T = 2,G = ∞}] − En [Y · 1 {T = 1,G = ∞}]
En [1 {T = 1,G = ∞}]

)
.

■ Just like in the panel data case, consistency follows directly from the law of large
numbers and the continuous mapping theorem.

■ As a result, we have that as n = nt=1 + nt=2 → ∞, with nt=2/n→ λ ∈ (0, 1),

θ̂DiDn
p→

(
E [Y · 1 {T = 2,G = 2}]

E [1 {T = 2,G = 2}] − E [Y · 1 {T = 1,G = 2}]
E [1 {T = 1,G = 2}]

)
−

(
E [Y · 1 {T = 2,G = ∞}]

E [1 {T = 2,G = ∞}] − E [Y · 1 {T = 1,G = ∞}]
E [1 {T = 1,G = ∞}]

)
≡ θDiD
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Asy. Normality of the DiD estimator in 2x2 setups with RCS data

■ The asymptotic normality will follow from similar steps as in the panel data case, as
the problems have very similar structures.

√
n
(

θ̂DiDn − θDiD
)

=
√
n
(

En [Y · 1{T = 2,G = 2}]
En [1{T = 2,G = 2}] − E [Y · 1{T = 2,G = 2}]

E [1{T = 2,G = 2}]

)
−
√
n
(

En [Y · 1{T = 1,G = 2}]
En [1{T = 1,G = 2}] − E [Y · 1{T = 1,G = 2}]

E [1{T = 1,G = 2}]

)
−
√
n
(

En [Y · 1{T = 2,G = ∞}]
En [1{T = 2,G = ∞}] − E [Y · 1{T = 2,G = ∞}]

E [1{T = 2,G = ∞}]

)
+
√
n
(

En [Y · 1{T = 1,G = ∞}]
En [1{T = 1,G = ∞}] − E [Y · 1{T = 1,G = ∞}]

E [1{T = 1,G = ∞}]

)
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Asy. Normality of the DiD estimator in 2x2 setups with RCS data

■ Analyzing each of these terms separately, we get that
√
n
(

θ̂DiDn − θDiD
)

=
1√
n

n

∑
i=1

(ξi,T=2,G=2 − ξi,T=1,G=2 − ξi,T=2,G=∞ + ξi,T=1,G=∞) + op(1),

where, for g ∈ {2,∞}, t ∈ {1, 2},

ξT=t,G=g =
1{T = t,G = g}

E [1{T = t,G = g}]

(
Y− E [Y · 1{T = t,G = g}]

E [1{T = t,G = g}]

)
.

■ Now, it follows from the CLT that
√
n
(

θ̂DiDn − θDiD
)

d→ N(0, Vrcs),

where

Vrcs = E
[
ξ2T=2,G=2

]
+ E

[
ξ2T=1,G=2

]
+ E

[
ξ2T=2,G=∞

]
+ E

[
ξ2T=1,G=∞

]
.
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How can we use these results to
conduct inference?
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Large sample properties of the 2x2 DiD estimator
How to do inference?



Inference for the ATT based on the DiD estimator in 2x2 setups with panel data

■ We will cover the Panel data only: RCS is very similar.

■ We want to conduct inference about the ATT based on our DiD estimator θ̂DiDn .

▶ We want to do hypothesis testing

▶ We want to construct confidence intervals

■ We then need to find a way to estimate the asymptotic variance

Vp = E
[
ξ2G=2

]
+ E

[
ξ2G=∞

]
,

where, for g ∈ {2,∞},

ξG=g =
1{G = g}

E [1{G = g}]

(
∆Y− E [∆Y · 1{G = g}]

E [1{G = g}]

)
.

■ How can we do that?
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Inference for the ATT in 2x2 DiD setups with panel data

■ The analogy principle strikes again!

▶ Replace population expectations with sample analogs!

■ Estimator for asymptotic variance is

V̂n,p = En
[
ξ̂2G=2

]
+ En

[
ξ̂2G=∞

]
,

where, for g ∈ {2,∞},

ξ̂i,G=g =
1{Gi = g}

En [1{G = g}]

(
∆Yi −

En [∆Y · 1{G = g}]
En [1{Gi = g}]

)
.

■ It is easy to show that, as n→ ∞, V̂n
p→ V.
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Inference for the ATT in 2x2 DiD setups with panel data

■ Estimated standard error is

ŝen,p(θ̂DiDn ) =

√
V̂n,p
n .

■ Std error is clustered at the unit level: it allows for arbitrary time dependence across
periods.

■ 95% confidence interval for ATT based on asymptotic normality:

θ̂DiDn ± 1.96 · ŝen,p(θ̂DiDn ).

■ Hypotheses tests for the null H0 : ATT = c for a known c ∈ R can also be conducted
using the t-statistics:

t-stat = θ̂DiDn − c
ŝen,p(θ̂DiDn )

.
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