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Summary of previous lecture



Summary of Lecture 2

■ We have talked about the underlying assumptions in 2x2 DiD:

▶ SUTVA;

▶ No-Anticipation;

▶ Parallel Trends.

■ We have talked about identifying the ATT.

■ We discussed estimating the ATT “by hand” and using TWFE regressions.

■ We have talked about the importance of clustering.
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Doing inference with a small number of clusters



Doing inference with a small number of clusters is hard

This discussion is based on Section 5 of Roth, Sant’Anna, Bilinski and Poe (2023).

■ In some applications, the number of independent clusters may be small:
CLT based on a growing number of clusters may provide a poor approximation

■ The CLT may provide a poor approximation with few clusters, even if the number of
units within each cluster is large.

▶ Reasoning: the standard sampling-based view of clustering allows for arbitrary
correlations of the outcome within each cluster

▶ But there may be common components at the cluster level (a.k.a. cluster-level “shocks”)
that do not wash out when averaging over many units within the same cluster.

▶ Since we only observe a few observations of the cluster-specific shocks, the average of
these shocks will generally not be approximately normally distributed.
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Ignoring the problem is not a way forward

■ If we ignore this issue and pretend we have many clustered, we may have issues!

■ MacKinnon and Webb (2018) have demonstrated using simulations that the cluster
wild bootstrap may perform poorly in DiD settings with a small number of treated
clusters.

■ Canay, Santos and Shaikh (2021) provided a formal analysis of the conditions under
which the cluster wild bootstrap procedure would be asymptotically valid in settings
with a few large clusters.

■ Canay et al. (2021): The reliability of these bootstrap procedures depends on
imposing certain homogeneity conditions on treatment effects and the type of
estimator used.
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Doing inference with a small number of clusters
Model-based approaches



Model-based approaches

■ Several papers have made progress on the difficult problem of conducting inference
with a small number of clusters by modeling the dependence within clusters.

■ These papers typically place some restrictions on the common cluster-level shocks,
although the exact restrictions differ across papers.

■ Typical starting point is

Yi,j,t = αj + ϕt + Dj,tβ + (νj,t + ϵi,j,t), (1)

▶ Yi,j,t is the (realized) outcome of unit i, in cluster j, at time t;
▶ αj and ϕt are cluster and time fixed effects;
▶ Dj,t is an indicator for whether cluster j is treated in period t;
▶ νj,t is a common cluster-by-time error term, and ϵi,j,t is an idiosyncratic unit-level error
term.
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Model-based approaches: TWFE approach

Yi,j,t = αj + ϕt + Dj,tβ + (νj,t + ϵi,j,t).

■ “Cluster-level” error term, νj,t, induces correlation among units within the same
cluster.

■ It is often assumed that ϵi,j,t are iid mean-zero across i and j (and sometimes t); see,
e.g., Donald and Lang (2007), Conley and Taber (2011), and Ferman and Pinto (2019).

■ Letting Yj,t = n−1j ∑i:j(i)=j Yi,j,t be the average outcome among units in cluster j, where
nj is the number of units in cluster j, we can take averages to obtain

Yj,t = αj + ϕt + Dj,tβ + ηj,t, (2)

where ηj,t = νj,t + n−1j ∑
nj
i=1 ϵi,j,t.
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Model-based approaches: TWFE approach in 2x2 DiD setup

■ In the 2x2 setup, we know that the DiD-by-hand-estimator (at the cluster level) is
equivalent to the OLS estimated coefficient β̂ from (2).

■ We can also show that

β̂ = β +
1
N1 ∑

j:Dj=1
∆ηj −

1
N0 ∑

j:Dj=0
∆ηj

= β +
1

Ncluster,1 ∑
j:Dj=1

(
∆νj + n−1j

nj

∑
i=1

∆ϵij

)
− 1
Ncluster,0 ∑

j:Dj=0

(
∆νj + n−1j

nj

∑
i=1

∆ϵij

)
, (3)

where now Ncluster,d corresponds with the number of clusters with treatment d, and
∆ηj = ηj2 − ηj1 (and likewise for the other variables).
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Model-based approaches: TWFE approach in 2x2 DiD setup

β̂ = β +
1

Ncluster,1 ∑
j:Dj=1

(
∆νj + n−1j

nj

∑
i=1

∆ϵij

)
− 1
Ncluster,0 ∑

j:Dj=0

(
∆νj + n−1j

nj

∑
i=1

∆ϵij

)
,

■ With few clusters, the averages of the ∆νj among treated and untreated clusters will
tend not to be approximately normally distributed, and their variance may be
difficult to estimate.

■ Essentially, we can’t rely on the consistency and asymptotically normality results we
usually do!

■ Common solutions in the literature: impose assumptions on these “structural error
terms” to make inferences.
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Model-based approaches: TWFE approach in 2x2 DiD setup

■ I am personally not a big fan of these solutions because, implicitly, the assumptions
on the errors in the structural model (1) impose (non-transparent) restrictions on the
potential outcomes.

■ In the Appendix of Roth et al. (2023), we have shown that, in this 2x2 setup, under
SUTVA + No anticipation + PT, we have actually shown that this is indeed the case.

■ So we need to be careful with all these approaches.

■ But, at the same time, recognize that this is a hard problem!!
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Model-based approaches: TWFE approach in 2x2 DiD setup

■ To be more precise, in the Appendix of Roth et al. (2023), we have shown that, in this
2x2 setup, under SUTVA + No anticipation + PT, we have that that

▶ β = τ2 is the ATT at the cluster level (no surprise),

▶ νj,t = νj,t,0 + Djνj,t,1 (no surprise),

▶ ϵi,j,t = ϵi,j,t,0 + Djϵi,j,t,1 (no surprise),

▶ ϵi,j,t,0 = Yi,j,t(∞)− E
[
Yi,j,t(∞)|j(i) = j

]
,

▶ ϵi,j,t,1 = Yi,j,t(2)− Yi,j,t(∞)− E
[
Yi,j,t(2)− Yi,j,t(∞)|j(i) = j

]
▶ νj,t,0 = E

[
Yi,j,t(∞)|j(i) = j

]
− E

[
Yi,j,t(∞)|Dj

]
▶ νj,t,1 = E

[
Yi,j,t(2)− Yi,j,t(∞)|j(i) = j

]
− τt

■ Here, expectations are across units.
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Let’s cover some examples
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Donald and Lang(2007)

■ Donald and Lang (2007): Directly assume that the “cluster-specific” shocks νj,t are
mean-zero Gaussian, homoskedastic with respect to cluster and treatment status,
and independent of other unit-and-time specific shocks.

▶ Under these assumptions, if the cluster size is large, you can do inference using critical
values from a t-distribution with J− 2 degrees of freedom, where J is the total number
of clusters.

■ The key restriction is the assumption that the cluster-specific shocks νj,t are iid
normal.

■ The homoskedasticity assumption also rules out many forms of treatment effect
heterogeneity.

▶ For example, suppose the cluster-level means of Yit(∞) have the same distribution
among treated and untreated clusters. Then, if the average treatment effect at the
cluster level is heterogeneous, this will tend to lead νj,t to have higher variance among
treated clusters, thus violating the homoskedasticity assumption. 11



Conley and Taber (2011)

■ Conley and Taber (2011): consider the setup where the number of treated clusters, J1,
is fixed and potentially equal to one, but there are a large number of untreated
clusters, J0, available.

■ The main insight: if the cluster-specific error terms ηj,t from the untreated group are
informative about the cluster-specific error terms for the treated group, one can
conduct inference about β using the estimated distribution of the untreated errors.

■ To satisfy “informativeness”, they impose:
▶ ϵi,j,t are iid across i and independent of clusters and treatment status,

▶ the cluster-specific shocks νj,t are iid across j, independent of treatment status, and
have mean zero for all t,

▶ all clusters grow at the same rate as J0.
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Conley and Taber (2011) and its variants

■ Conley and Taber (2011) assumptions still rule out heterogeneity

■ For instance, if average treatment effects differ across clusters, then this will tend to
violate the assumption that νj,t is iid across j.

■ Another limitation of the Conley and Taber (2011) procedure is that it does not
accommodate settings with heterogeneous cluster sizes, a situation that often arises
in practice.

▶ Ferman and Pinto (2019) build on Conley and Taber (2011) and show how one can use
bootstrap-based inference procedures to allow for some types of heteroskedasticity,
paying particular attention to the case where heteroskedasticity arises due to variation
in cluster sizes.

▶ Requires you to estimate the source of heteroskedasticity (so you need to have a good
model for it).
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Hagemann (2020)

■ Hagemann (2020): considers a rearrangement/permutation-based method that is
applicable to DiD setups with a single large treated cluster and a fixed number of
large untreated clusters.

■ The main assumption: the average evolution of the untreated outcomes is the same
across all untreated clusters.

▶ This is strength parallel trends to the cluster level instead of the treatment level

■ Like other proposals, Hagemann (2020) restricts heterogeneity.

▶ essentially requires that, as cluster size grows large, any single untreated cluster could
be used to infer the counterfactual trend for the treated group

▶ This essentially rules out cluster-specific heterogeneity in trends in untreated potential
outcomes (and this is testable).
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Doing inference with a small number of clusters
Alternative approaches



Alternative approach I: condition on shocks

■ All of the “model-based” papers above treat νj,t as random.

■ An alternative perspective would be to condition on the values of νj,t and view the
remaining uncertainty as coming from sampling individual units within clusters,
constructing standard errors by clustering only at the unit level.

■ The problem here is that this can violate parallel trends.

■ However, the violation may be relatively small if the cluster-specific shocks are small
relative to the idiosyncratic variation.
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Alternative approach I: condition on cluster-level shocks

■ Let’s make this concrete and consider the setting of Card and Krueger (1994) that
compares employment in NJ and PA after NJ raised its minimum wage.

■ The model-based papers would consider NJ and PA as drawn from a
super-population of treated and untreated states, where the state-level shocks are
mean-zero.

■ The alternative approach we are mentioning here would treat the two states as fixed
and view any state-level shocks between NJ and PA as a violation of the parallel
trends assumption.

■ With two clusters only, this is essentially the only thing you can do.
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Alternative approach II: Randomization-based inference

■ A large literature in statistics and a growing literature in econometrics has
considered Fisher Randomization Tests (FRTs), otherwise known as permutation
tests.

■ The basic idea is to calculate some statistic of the data (e.g. the t-statistic of the DiD
estimator), then recompute this statistic under many permutations of the treatment
assignment (at the cluster level).

■ We then reject the null hypothesis of no effect if the test statistic using the original
data is larger than 95% of the draws of the test statistics under the permuted
treatment assignment

■ If treatment is randomly assigned, then FRTs have exact finite-sample validity under
the sharp null of no treatment effects for all units.
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Alternative approach II: Randomization-based inference

■ The advantage of these FRTs is that they place no restrictions on the values of Y(∞),
and thus allow arbitrary heterogeneity in Y(∞) across clusters.

■ On the other hand, the assumption of random treatment assignment may often be
questionable in DiD settings, as it is substantially stronger than parallel trends.

■ Moreover, the “sharp” null of no effects for all units may not be as economically
interesting as the “weak” null of no average effects.

■ Roth and Sant’Anna (2023) extend the idea of FRTs to settings where there is
staggered adoption and (quasi-)random timing of treatment, and show that an FRT
with a studentized statistic is both finite-sample valid for the sharp null and
asymptotically valid (as the number of clusters grows) for the weak null.
(We will talk more about this in a later lecture).
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At the end, at which level should you
cluster?
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At what level should you cluster?



What level to cluster

■ As we have discussed, choosing the level of clustering depends on different things
(and what we can do about it).

■ From the sampling perspective, it comes down to how the sample is drawn from the
super-populations. You cluster at that level!

■ From the model-based perspective, you may need to make some additional
assumptions if considering ”cluster-level” random shocks and observing few
(treated) clusters.

■ You can condition on shocks and cluster at unit-level, but that may generate
violations of PT.

■ Adopt a design-based approach and cluster at the level of treatment assignment.
▶ This is justified in DiD (without random assignment) by Rambachan and Roth (2022).
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