Causal Inference using Difference-in-Differences

Lecture 5: How covariates can make your DiD more plausible

Pedro H. C. Sant'’Anna
Emory University

January 2025



Summary of previous lectures

) EMORY



Canonical DiD setup

So far, we have considered the canonical DiD setup.

2 time periods: t = 1 (before treatment) and t = 2 (after treatment).

2 groups: G = 2 (treated at period 2) and G = oo (untreated by period 2).

Main parameter of interest: Average Treatment Effect among Treated units

ATT= E[Vi(2)|6=2] — E[Vis ()]G = 2]

estimable from the data counterfactual component
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Canonical DiD setup

Identification of the ATT is achieved via two main assumptions:

Assumption (No-Anticipation)
For all units i, Y;(g) = Vi (o) for all groups in their pre-treatment periods, i.e., for all
t<g.

Assumption (Parallel Trends Assumption)

E [V =2(0)[Gj = 2] = E[Y;=1(00)|G; = 2] = E[Y] =5(0)|G; = 00] — E [V =1(00)|G; = 0]

PS: We are taking SUTVA for granted from now onwards (NOT without loss of generality,
though)
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“Brute force” DiD estimator

Canonical DiD Estimator:

50 = (Yg=2,t=2 — Yg=2.t=1) — (Yg=co,t=2 — Yg=co,t=1) ,

where Y,_,_; is the sample mean of the outcome Y for units in group d in time
period j,

Yg:d,t:j

ZY1{G = d}{T; =/},

Q dt=j j=
with

Ng—d,t=j = 21{6 = d}Ti =},

Gj and T; are group and time dummy, respec’uvely, and Y;j is the “poolled” outcome
data.
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“TWFE"” DiD estimator

In practice, most of us would rely on the following TWFE regression specification to
estimate the ATT:

Yii = ao+701{G = 2} + AoT{T; = 2} + B¢ (1{G; = 2} - 1{T: = 2}) + &;.,
~—~—

=ATT

where E[e;|Gj, Ti] = 0 almost surely.
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What if the Parallel Trends

Assumption is not plausible?



Conditional Parallel Trends
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Unconditional parallel trends assumption

So far, covariates have played no role in our analysis

But what if units with different observed characteristics were to evolve differently in
the absence of treatment?

Effect of Minimum wage on employment: is it sensible to assume that, in the absence of
treatment, employment in states in the NE of the US would have evolved similarly as in
states in the South of the US?

Effect of training on earnings: is it reasonable to assume that earnings among young
workers would have evolved similarly to older workers in the absence of treatment?

In general, the PTA may be implausible if pre-treatment characteristics that are
thought to be associated with the dynamics of the outcome variable are
“unbalanced” between the treated and the untreated group. (Abadie, 2005).
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How can we “relax” the PTA and

allow for “covariate-specific” trends?



Conditional Parallel Trends Assumption

In order to “relax” the PTA, we can assume that it holds only after conditioning on a
vector of observed pre-treatment covariates

Assumption (Conditional Parallel Trends Assumption)

E [Yi—2(00)|G = 2,X] — E [Y1—1(0)|G = 2, X] = E [V;—2(00)|G = 00, X] — E [Y1—1(c0)|G = o0, X] a.s.

The conditional PT assumption states that, in the absence of treatment, conditional
on X, the evolution of the outcome among the treated units is, on average, the same
as the evolution of the outcome among the untreated units.

It allows for covariate-specific trends!

8
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Strong overlap

When covariates are available, we will introduce an additional assumption stating
that every unit has a strictly positive probability of being in the untreated group.
Assumption (Strong Overlap Assumption)

The conditional probability of belonging to the treatment group, given observed
characteristics X, is uniformly bounded away from 1.

That is, for some € > 0, P[G = 2|X] < 1 — € almost surely.

The covariates X here are the same as those used to justify the conditional PT
assumption!

For identification purposes, we can take e = 0. For (standard) inference, though, we

would have problems without relying on “extrapolation®; see, e.g., Khan and Tamer
(2010).

) EMORY



How do the conditional PTA and

and strong overlap help us, DiDistas?



Identification of ATT under conditional parallel trends and overlap

1) First, recall the conditional PT assumption:

E [Y—5(00)|G = 2,X] — E [Y=1(00)|G = 2,X] = E [Y1—3(0)|G = 00,X] — E [Yi—1(c0)|G = o0, X] .

2) By simple manipulation, we can write it as
E[Yie () |G =2,X] = E[Yiz1(c0)|G = 2,X] + (E[Yi=2 (00) |G = 00, X] — E [Vt (0) |G = 0, X])

3) Now, exploiting No-Anticipation, SUTVA, and strong overlap:

E[Vies (00) [6=2,X] = TE[Yiz1(2) |G =2,X] + (E [Yi=2 (0) |G=00,X] — E [Yi=1 (00) |G = 0, X])
by No—Anticipation
E V=2 (00) |6 =2,X] = E[Yz1|G = 2,X] + (E[Yi=2|G = 00,X] — E [V;=1|G = 00,X])

by SUTVA+overlap

il
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Conditional Parallel Trends and the conditional ATT
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Let's define the Conditional ATT: ATT(X) = E [Yi=2(2) — Yi=2(c0)|G = 2, X].

Now, combining the results of previous slides, we have that, under SUTVA +

No-Anticipation + Conditional PT assumptions, it follows that:

ATT(X) = E[Yi=[6 = 2,X] = (E[Yt=1]G = 2, X] + (E [Y1=2|G = 0, X] = E [Y1=|C = o0, X]))
= (E[Yi=2|G = 2,X] = E[Yt=1|G = 2,X]) — (E [Yi=2|G = 00, X] — E [Y;=1|G = 0, X])

We can identify the conditional ATT function - a very rich object!

This also implies that the unconditional ATT is identified - all we have to do is to
integrate X among treated units:

ATT = E [ATT(X)|G = 2]
12



Conditional Parallel Trends and the unconditional ATT

In terms of estimable pieces, we get that

ATT = E[(E[Yi=|G =2.X] —E [Yi—1|G = 2,X]) — (E [Yi—|G = o0, X] — E [Y;—1|G = 00, X])|G = 2]

= (E[Yi=2|G =2] —E[Vz1|G = 2]) —E[(E [Yi—1|G = 00,X] — E [Y;—1]G = 0, X])|G = 2]

where the second equality follows from the Law of Iterated Expectations and covariates
and group indicators being stationary (which hold by construction on a balanced panel;
we will come back to this in a bit).

13
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Can we use a simple regression here?



Usage of simple TWFE linear regressions with covariates
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Usage of simple TWFE linear regressions with covariates
The temptation
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TWEFE DiD estimator
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Under unconditional PTA, we have shown that we can use the TWFE regression to
recover the ATT:

Yit = a0 +701{G; =2} + Ao1{T; —2}+ﬁtwfe(1{6i =2}-1{T; =2}) +¢s,
e

where E[e;|G;, T;] = 0 almost surely.
It is very tempting to “extrapolate” and use the “more general” TWFE regression
specification:

¥ie =801+ 301 {G; = 2) + 301 {Ti = 2} + B (16 = 2) 1Ty = 2)) +Xffoa + £

77')’)
where E[£;4|G;, T;, X;] = 0 almost surely.
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s B€ “similar” to the ATT?



Usage of simple TWFE linear regressions with covariates

Simulation exercise
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Monte Carlo simulation exercise

This is a great point to illustrate the power of simulations to assess if “intuitive”
extensions are sensible.

Here, knowing the “truth” help us to hold our methods accountable.

In this particular exercise, we will use a Data generating process similar to those of
Kang and Schafer (2007)

Samples sizes n = 1,000
For each design, we consider 10, 000 Monte Carlo experiments
Available data are {Yi=y, Yi=1, D,X}L, where D; = 1{G; = 2}.

; 17
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Monte Carlo simulation exercise

Covariates are generated as X; ~ N (0,1),j =1,2,3, 4.

Let X = (X1, X2, X3, X4), and
freg(X) = 210427.4-X14+13.7- (X2 + X3+ X4)
fos (X) = 0.75-(—=X1+0.5-X, —0.25-X3 —0.1-X,)
Also, let
v(XD) LN (D fieg (X),1)
e A N(0,7)
e (2) LN (0,7)
er_s (c0) L N (0,7)

ul (o)
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How we generate potential outcomes and group indicators

Yite1 (00) = freq (Xi) + Vi (Xi, Dj) + € 1=

Yit=a (00) = 2-freq (Xi) + Vi (Xi, D) + €= (o)

Yitea (2) = 2-freq (Xi) + Vi (Xi, D) + €112 (2)

v exp(fps (X))
PO = T exp (s (%)
D = H{p(X)=U}
Inghis setup, ATT(X) = 0 a.s. 19



Simulation results

We estimate 2% from the following specification:

Yii =01+ 701 {G = 2} + A1 {T; = 2} + B (1{G; = 2} - 1{T; = 2}) + X@wo, + &,

~twfe . . .
Average of the B, in the simulations: -16.36 (very biased!)

Coverage probability of 95% Confidence Interval: 0 (does not control size!)

20
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Simulation results

Figure 1: Monte Carlo for TWFE-based estimators
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Why there is so much bias here?

22



Usage of simple TWFE linear regressions with covariates

The problems of the simple TWFE specification with covariates
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Simple TWFE DiD regression estimator with covariates

The TWFE specification is given by

Yie =01+ 901{G = 2} + Ao {T; = 2} + B¢ (1{G; = 2} - 1{T; = 2}) + X0 + &

where Elg; ;|G;, T;, X;] = 0 almost surely.

Now, let's play with its terms:

[It’G = 00, T —1 X
[It’G = 00, T —2X
E[Y;:|Gi=2,T; =1.X
]E[Y,‘IIG;:2,T,‘:2 Xi

= &o1+X&o2
= &1+ Ao+ Xi&o.
= &1+ o+ Xido2

= 0<o1+70+)\o+,8twfe

i
i
i
i

+ X 2

, 23
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Simple TWFE regression estimator with covariates

Set of moment restrictions:
| = &o1+Xop
E[Yj|Gj =00, T} =2,X] = &1+ Ao+ X&op2
| = @&+ o+ Xoo
| = &1+ Fo+ Ao+ BUTC 4+ Xiag

Let's analyze the implications of these moment restrictions, one by one.

, 24
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Simple TWFE regression estimator with covariates

Set of moment restrictions:

] = &1+ Xido,
E[Y; (|G = o0, T; = 2, X] = @1+ Ao+ X2
E[Yi|G=2,T; =1,X]
E[Yi|G = 2,T; = 2, X

= &o1+ Yo+ X&o>
= 0601+’Yo+7\o+,8twf + Xi@&o 2

First, notice that
E[Y; |G = o0, T; = 2,X] = E[Y;|G; = 00, T; = 1,X]] = Ao
Evolution of the outcome among untreated units does not depend on X!

) 25
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Simple TWFE regression estimator with covariates

Set of moment restrictions:

] = &1+ Xido,
Hn#w:mT—zx]: o1+ Ao + Xio
E[Yi|G=2,T; =1,X]
E[Yi|G = 2,T; = 2, X

= &o1+ Yo+ X&o>
= 0601+’Yo+7\o+,8twf + Xi@&o 2

Second, notice that
E[Y |G = 2. T = 2,X] = B[Y; (|G = 2, T; = 1,X;] = Ao + pL"¢
Evolution of the outcome among treated units does not depend on X!

, 26
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Simple TWFE regression estimator with covariates

Set of moment restrictions:
E[Y; (|G =00, Ti =1,X] = &1+ Xi&op
E[Yi|Gi =00, Tj =2,X] = &1+ Ao+ Xifo,>
E[Y;¢|Gi=2,Ti =1,X] = &1+ Yo+ X&o>
| = &o1+ Fo+ Ao+ B + X,
Lastly, notice that, under conditional PT, No-Anticipation, and SUTVA,

ATT(X) = (E[Yi(|G; =2,Ti=2,X] —E[Yi|Gi=2,T; =1,X])
— (IE[Y,‘I‘G,- =00, ;i = 2,X,‘] — ]E[Y,‘Yt’G,‘ =00, T = 1,X/])
_ ptwfe
= Py

Average Treatment effects are homogeneous between covariate subpopulations!

) 27
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TWFE with covariates
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Key to success:

Separate identification from
estimation/inference!

29



How can we do it?
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Alternative Estimands
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Semi and nonparametric DiD procedures

Once you separate identification from estimation procedures, we realize that DiD with
covariates has many faces!

/ 31
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Alternative Estimands

Regression adjustment
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Regression adjustment procedure

The “first face” of DID procedure is already familiar.

Originally proposed by Heckman, Ichimura and Todd (1997); Heckman, Ichimura,
Smith and Todd (1998)

Idea is to work directly from the identifying assumptions.

We have already seen that, under conditional PT, No-anticipation, and SUTVA,

ATT = E

(IE [Yi—2|G = 2,X] — E [Y;—1|G = 2,x}) - (IE [Yies|G = 00, X] — E [Vi1|G = oo,X])

=mg= (X) =m=2(X) =mg=°(X) =mg=(X)

-

; 32
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Regression adjustment procedure

Our life is a bit easier once we have that
ATT = E[(mEZ 00 -mEZ 00) = (mE52 00 - mE5® ()] 6 = 2] .

Now, it is a matter of estimating the unknown regression functions m¢(X) with your
favorite estimation method - it can be parametric, semiparametric, or nonparametric!

33
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Regression adjustment procedure

Our life is a bit easier once we have that
ATT = E[(mEF (X) - mEZ (X)) — (mE° (x) - mE5 (%)) | 6 = 2] .

For example, let ug=2 (X) = X'Bg 2, be a working model for m¢=2(X).

We can then estimate the betas in each subsample using OLS, compute the fitted

values using all covariates values among treated units, and then average the

combination of these fitted values:

~G=00

AT = B [ (5 (0 — e 00) = (A7 00— e () [ 6 =2

n

34
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Regression adjustment with panel data

Our life can be even easier if we have access to panel data:

Assumption (Panel Data Sampling Scheme)

The data {Yj =1, Yit=2, G,,Xi}f':,» Is a random sample of the population of interest.

Observing Y:—; and Y;—, for the same units allows us to simplify the formulas a lot!
ATT = E[(E[Yi=|6=2X —E[Y;=1]|G = 2,X]) — (E[Vi=2|G = 00, X] = E[Y;=1]G = o0, X])|G = 2]
E[E [Yi=2 — Yt=1|G = 2,X] — E [Yi=2 — Yt=1|G = 00, X] |G = 2]
E [Yi—y — Yi=1|G = 2] —E[E [Yi=2 — Yi=1]|G = 0, X] |G = 2]
E [Yie — Vimt|G = 2] — B [m§™ (X) [ = 2]
Only have to model one conditional expectation:
m&=* (X) = E [Vi=s — Yi=1|G = 00, X]

35
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Regression adjustment with stationary repeated cross-section data

Sometimes, we only have access to (stationary) repeated cross-section data:

Assumption (Repeated Cross-Section Data Sampling Scheme)

The pooled repeated cross-section data {Y;, G;, T;, X;}1_, consist of iid draws from the
mixture distribution

PYS<YyX<x,G=g,T=t) = Ht=2}-A-P(Ym2 Sy, X<x,G=g|T=2)
+1{t=1}- (1= AP (Ve Sy, X<X,G=g|T=1),
where (y,x,g,t) € R x Rf x {2,00} x {1,2}, A =P (T=2) € (0,1).

Furthermore, (G, X) |T =1 4 (G,X) |T =2, i.e, there are no compositional changes over
time.

Question: Would it be possible to allow compositional changes? What would
e change? How would you proceed?

36



Regression adjustment with stationary repeated cross-section data

In this case, the formula can also be simplified (but not as much as in the case of
panel data):

ATT = B[ (m5 00~ mE= (0) — (m5 00— m5 09) [ 6~

= (E[Y|G=2T=2-E[Y|6=2T=1])-E [(m?j’(x) — mi=e (X))‘G - 2}
We have to model conditional expectations only for untreated units:

me=C X)) =E[V[G=00,T=5,X], s=1,2

) 37
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Regression-adjusted DiD estimators

rely on researchers ability to model

the outcome evolution.

38



Alternative Estimands

Inverse Probability Weighting procedure
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Inverse probability weighting procedures

The “second face” of semi/nonparametric DiD procedures avoids directly modeling

) EMORY

the outcome evolution.

Instead, it models the propensity score,

i.e., prob of belonging to the group G = 2:

p(X) =P (G =2|X) =P (D =1|X), where D = 1{G = 2}.

Originally proposed by Abadie (2005):

E
ATTIPW:P

ATT/[JW,VC

where A = E[1{T =2}].

39



Inverse probability weighting procedures

ATT[DW,D _ L 11— p(X)

ATT[DW,I’C —

where A = E[T].
These formulas suggest a simple two-step estimation procedure, too!
1. Choose your favorite method to estimate the unknown propensity score p(X).

2. Plugin the estimated fitted propensity score values into the ATT equation, and replace

the population expectations with their sample analogue.

) 40
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Inverse probability weighting procedures

!
For example, let r(X) = A(X) = exp(X'ro)

=_—"~ "~ _ beaworking model for the propensit
1+ exp(X'vo) g prop y

score
We can estimate 7 using the logit maximum likelihood estimator,

o exp(X'yo)
U = T ek (07)

Abadie’s proposed ATT estimator with panel data is
1—D)m (X
(0= T ) ()
E, [D] '

/‘\iDW,D
n

ATT,

; 41
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Hajek-based Inverse probability weighting procedures
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One potential drawback of Abadie’s IPW DiD estimator is that their weights are not
“normalized”, i.e., they do not sum up to one.

More formally, Abadie’s IPW DiD estimator is of the Horvitz and Thompson (1952)
type.

We know from the survey literature that Hajek (1971)-type estimators can be more
stable, as they use “normalized” weights.

Building on this insight, Sant’/Anna and Zhao (2020) built on Abadie (2005) and
considered the Hajek (1971)-type IPW DiD estimands.
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Hajek-based Inverse probability weighting with panel

Sant’Anna and Zhao (2020) considered the following estimand when Panel data are

available:
ATng[’p = E [(We_, (D) = Wiy (D.X;P)) (Yiz2 — Yiz1)]
p(x)(1-D)
_ D 1-pX) 3
- ED P00t ) it
T—p(X)
where
_ D oy 9X¥)(1-=D) 9(xX) (1—D)
wi_, (D) = E[D] and  wi__(D,X;g) = 1—g(X)/]E ['I—Q(X)}

43
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Hajek-based Inverse probability weighting with repeated cross-section

Sant’Anna and Zhao (2020) considered the following estimand when stationary RCS data

are available: _
ATTENE = E [(WE_ (D, T) = Wiy (D, T, Xi P)) - V]
where
Wy (D.T) = Wg_1—p (D.T) = W5y (D.T),

Woeeo (D, T,X:9) = Weeotmz (D, T, X G) = Wi i=1 (D, T, X; 9),

and, fors =1, 2,
W s (0T = HT=SE
e E[D-1{T = s}]
Vmies (0T 5g) = SNO=D) 1r=s) /E {g(X) oo r=s)

44
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IPW-adjusted DID estimators

rely on researchers ability to model

the propensity score.

45
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Alternative Estimands

Doubly robust DiD estimators
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Doubly robust DiD procedures

Combine both outcome regression and IPW approaches to form more robust
estimators.

Originally proposed by Sant’/Anna and Zhao (2020)

Estimators are Doubly Robust consistent: they are
consistent for the ATT if either (but not necessarily both)

Regression working models for outcome dynamics are
correctly specified

Propensity score working model is correctly specified

47
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Doubly robust DiD procedure with panel

Sant’Anna and Zhao (2020) considered the following doubly robust estimand when panel

data are available:

G=c0

ATTIP — E [(Wgzz (D) —wi_ (D, X;p)) ((Ytzz —Yiz) — (mtzz (X) = m5 (X)>)}

p(X) (1-D)
_ D 1—p(X) N -
= E IE[D}_ {P(X)UD)} ((Yt:2—yt:1)—<m?_2 (X) th21 (X)))
T—p(X)
where
S oy 9 (1=D) /[9X)(1-D)
o (0 E[D] and W (0.%:9) = T—9g(X) /]E[ T—=9(X) }

48
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Doubly robust DiD procedure with panel

Sant’Anna and Zhao (2020) also shown that ATT"P is semiparametrically (locally)
efficient.

If all working models are correctly specified, the DR DiD estimator for the ATT"P is
“the most precise estimator” (minimum asymptotic variance) among all (regular)
estimators that does not rely on additional functional form restrictions.

Sant’Anna and Zhao (2020) also discuss how to get further improved DR DiD
estimators by “carefully” choosing first-step estimators for the regression adjustment
and propensity score working models.

For the sake of time, we will not go into detail on these.

) 49
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Doubly robust DiD procedure with repeated cross-section

Sant’Anna and Zhao (2020) considered two different doubly robust estimands when RCS
data are available.

ATTINC = E [(WEey (D, T) = Wi oo (D, T, X D)) - (Y — (Mg iy (X) — Mg 121 (X)))]
where
W=, (D, T) = Wreczz,tzz (D, T) - Wreczz,t:1 (D, T),
Wo—oo (D, TX:G) = Weeooima (D, T.X:G) = We—oo 11 (D, T, X1 9)

and, fors = 1,2, g = 2, 00, we have that mg_, ,_s (x) = E[Y[G =g, T =5 X=x],

rc D'1{T:S}
WGZZ,t:S (D' T) E [D 1 {T: S}]'
re v gx)(1=D)-1{T =5} g(X)(1=D) - 1{T=s}
g g "omois (D1:%8) = Al s



Doubly robust DiD procedure with repeated cross-section

Sant’Anna and Zhao (2020) second DR DiD estimand also relies on outcome regression
models for the treated unit:

ATTgr,rc _ ATT?”C
+ (B [mreczz,tzz (X) = MG—cot—2 (X)‘ D=1]-E [mreczz,tzz (X) = MG—co.t=2 (X)‘ D=1T=2])

— (E [MG_3,1=1 (X) = Moo= (X)| D =] = E [M_p,1—1 (X) = Mot (X)| D =1,T=1]),

51
ENMORY



Doubly robust DiD procedure with repeated cross-section

Both DR DiD estimators for RCS data are consistent for the ATT under the same
conditions:

Even if the regression model for the outcome evolution for the treated group is
misspecified, ATT‘ZWC is consistent for the ATT (provided that either the pscore or the
regression models for outcome evolution among untreated units are correctly
specified).

However, in general, ATTS"'® is more efficient than ATTJ"'.

In fact, Sant'’Anna and Zhao (2020) shown that ATT?”C is (locally) semiparametrically
efficient.

52
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Let’'s see how these work in a
simulation exercise
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Monte Carlo simulations
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Data generating processes are similar to those considered in the TFWE example

We compare DR DiD estimators with IPW (standardized and non-standardized),
outcome regression, and TWFE estimators

Samples sizes n = 1,000
For each design, we consider 10, 000 Monte Carlo experiments
Available data are {Yi=2, Yi=1,D,Z}!_,, where D; = 1{G; = 2}.

We estimate the pscore assuming a logit specification, and the outcome regression
models assuming a linear specification
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Since we want to check the effect of model misspecifications, we will generate
covariates slightly different than before.

LetZj= (Z—E [Z])/+/Var (2),j=1,2,3,4, where

X
VAR exp<21>

/y = + 10
’ 14 exp (X1)

5 X1Xs :

/3 = —4+0.6

Zy = (Xo+X,+20)°

and X; ~ N (0,1),j =1,2,3, 4.

) 55
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For a generic W = (W4, Wy, W3, W,) , let
freg (W) = 210 +27.4- Wy +13.7 - (Wy + W5 + W,)

fos (W) = 075-(=W;+0.5-W, —0.25- W5 —0.1- W,)

Also, let

=2
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We now consider four different DGPs

DGP1:
Yi =1 () freg (Zi) + Vi (Zi, Di) + €11
Yit=2 () 2 freq (Zi) + Vi (Z;, Dj) + €j1— (c0)
Yiee2 (2) = 2-freg (Zi) + Vi (Z;, Dj) + € 1= ()
v exp(fps(Z))
P = T e (s (2)

Both the pscore and the OR models are correctly specified

, 57
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DGP2:

= freg (Zi) + Vi (Zi, D) + € 1=

)
2 freq (Zi) + Vi (Zi, Dj) + & 1= (0)
2 freq (Zi) + Vi (Z;, Dj) + €t (0)
exp (fps (Xi))
T+ exp (fps (X))
{p (X;) > U}

Only the OR model is correctly specified

ENMORY
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DGP3:

= freqg (Xi) + Vi (Xi, Dj) + & 1

)
2 freg (Xi) + Vi (X, Di) + €jt= ()
2 freg (Xi) + Vi (X, Dj) + €= ()
exp (fps (Zj))
14 exp (fps (2i))
{p(z)) = U}

Only the pscore model is correctly specified
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DGP4:

= freqg (Xi) + Vi (Xi, Dj) + & 1

)
2 - freq (Xi) + Vi (Xi, Dj) + & 1—5 (0)
2 freg (Xi) + Vi (Xi, Dj) + €t (o)
exp (fps (Xi))
T+ exp (fps (X))
{p (X;) > U}

Both the pscore and the OR models are misspecified

ENMORY
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Table 1: Monte Carlo Simulations, DGP1: Both pscore and OR are correctly specified

Bias RMSE  Std. error Coverage Cl length
Tle -20.9518 21.1227 2.5271 0.0000  9.9061
Treg -0.0012  0.1005 0.1010 0.9500  0.3960
TPWP  0.0257  2.7743 2.6636 09518  10.4412
TPWP 00075 11320 10992 09476 43090
Tdrp -0.0014  0.1059 0.1052 0.9473  0.4124
£dr.p -0.0013  0.1057 0.1043 0.9451  0.4088

imp
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Figure 2: Monte Carlo for DID estimators, DGP1: Both pscore and OR are correctly specified
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Table 2: Monte Carlo Simulations, DGP2: Only OR is correctly specified

Bias RMSE  Std. error Coverage Cl length
Tfe -19.2859  19.4683 2.5754 0.0000  10.0955
Treg -0.0008  0.0997 0.1004 0.9492  0.3937
TPw.p 20100  3.2982 2.5049 0.8376  9.8193
%;fgw -0.7942  1.2253 0.9241 0.8564  3.6226
Tdrp -0.0008  0.1036 0.1031 09469  0.4043
£drp -0.0007  0.1042 0.1030 0.9445 0.4039

imp

& EMORY

63



@ EMORY
GNIVERSITY

Figure 3: Monte Carlo for DID estimators, DGP2: Only OR is correctly specified
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Table 3: Monte Carlo Simulations, DGP3: Only PS is correctly specified

Bias RMSE  Std. error Coverage Cl length
Tle -13.1703  13.3638 35611  0.0035 13.9596
T"eg -1.3843  1.8684 1.2286 0.8001  4.8159
TPWP  0.0114  3.1982 3.0043 09468 11.7769
TOUP 200299 14270 13990 09447 54840
TP -0.0513  1.2142 1.1768  0.9416  4.6132
7P -0.0709  1.0151 0.9842 0.9423  3.8581

imp
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Figure 4: Monte Carlo for DID estimators, DGP3: Only PS is correctly specified
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Table 4: Monte Carlo Simulations, DGP4: Both OR and PS are misspecified

Bias RMSE  Std. error Coverage Cl length
Tle -16.3846 16.5383 3.6268 0.0000  14.2169
T"eg -5.2045  5.3641 1.2890 0.0145  5.0531
TPWP 10846  2.6557 2.3746 09487  9.3084
TPUP 309538 42154 14585 02282 57172
£dr.p -3.1878  3.4544 1.2946 0.3076  5.0749
7P -2.5291  2.7202 0.9837 0.2737  3.8561
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Figure 5: Monte Carlo for DID estimators, DGP4: Both OR and PS are misspecified
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Monte Carlo simulations for repeated cross-section data

Same DGPs as before, but now, we observe a sample from T =2 or T = 1 with
probability 0.5.
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Table 5: Monte Carlo Simulations, DGP1: Both the pscore and the OR are correctly specified

& EMORY

Bias RMSE  Std. error Coverage Cl length
Tfe -20.7916  21.0985 3.5705 0.0002  13.9962
T'€9 0.0263  7.5878 7.5702 09510 29.6751
TIPWIC 06619 559708  55.5516 09493 217.7621
TPUC 00502 9.6477 95815 09487  37.5596
ﬁd”c 0.0129  3.0414 3.0340 0.9504  11.8934
"?f’”c 0.0041  0.2159 0.2102 0.9441 0.8239
?f’fngg 0.0136  3.0413 3.0337 0.9507 11.8921
:L’\C{r ' 0.0047  0.2163 0.2049 0.9371 0.8032
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Figure 6: Monte Carlo for DID estimators,
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Figure 7: Monte Carlo for DID estimators, DGP1: Both the pscore and the OR are correctly specified
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Figure 8: Monte Carlo for DID estimators, DGP1: Both the pscore and the OR are correctly specified
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Table 6: Monte Carlo Simulations, DGP2: Only the OR is correctly specified

Bias RMSE  Std. error Coverage Cl length
Tfe -19.1783 19.5289 3.6345 0.0005  14.2472
T'€9 -0.0244  8.1906 8.1493 09481  31.9454
Tipw.rc 1.8203 55.0496 549614 09491 215.4486
TP 08119 98141 97018 09459  38.0310
ﬁd”c -0.0102  3.2814 3.2651 09486  12.7991
"?f’”c -0.0002  0.2108 0.2054 0.9454 0.8051
?f’fngg -0.0095  3.2818 3.2650 0.9488  12.7989
:L’\C{r i~ 0.0002  0.2127 0.2030 0.9403 0.7958
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Figure 10: Monte Carlo for DID estimators, DGP2: Only the OR is correctly specified
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Table 7: Monte Carlo Simulations, DGP3: Only the PS is correctly specified

Bias RMSE  Std. error Coverage Cl length
Tfe -13.1310 14.0577 5.0424 0.2598  19.7664
T'€9 -1.3763  8.1367 8.0046 09421  31.3782
TIPW.C 09734 57.2618  56.9005 0.9465 223.0501
?Sifc‘l/v’rc 0.0508  9.4283 9.3068 09431  36.4826
ﬁd”c -0.0855  5.6917 56276 0.9453  22.0602
?ZC’”C -0.0289  4.7419 4.6585 09416  18.2613
?f’fnc[g -0.1191  4.8371 4.7970 0.9450  18.8042
?Cfr i~ -0.0762  4.0623 3.9669 09436  15.5503
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Figure 12: Monte Carlo for DID estimators, DGP3: Only the PS is correctly specified
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Figure 13: Monte Carlo for DID estimators, DGP3: Only the PS is correctly specified
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Table 8: Monte Carlo Simulations, DGP4: Both the OR and the PS are misspecified

Bias RMSE  Std. error Coverage Cl length
Tfe -16.3305 17.1263 5.1307 0.1138  20.1123
T'€9 -5.3378 99773 8.5196 0.9075  33.3969
TiPw.rc -13912 551777  55.6717 0.9518 218.2330
TPC 41487 105195  9.6864 09304  37.9707
ﬁd”c -3.3422  7.0709 6.1963 09157  24.2897
"?2‘”'“ -3.2751  6.0158 4.8876 0.8863  19.1593
?f’fnc; -2.6888 55642 4.8416 09134  18.9790
?Cfr i~ -2.6138  4.8453 3.9673 0.8923  15.5519
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Figure 15: Monte Carlo for DID estimators, DGP4: Both the OR and the PS are misspecified
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Figure 16: Monte Carlo for DID estimators, DGP4: Both the OR and the PS are misspecified
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What are the main take-away
messages?
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Take-way messages
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DiD procedures with covariates

We can include covariates into DiD to allow for covariate-specific trends
Covariates should not be post-treatment variables

There are several "correct” ways of implementing conditional DiD:
Regression adjustments

Inverse probability weighting
Doubly Robust (augmented inverse probability weighting)
TWFE, though, can be severely biased.

DR DID is my preferred method:
More robust against model misspecifications

Can be semiparametrically efficient (confidence intervals are tighter)
® EMORY %



Empirical application
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Empirical application

Let's switch to R/Stata so we can see how to do all these things!
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