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Summary of previous lectures



Canonical DiD setup

■ So far, we have considered the canonical DiD setup.

▶ 2 time periods: t = 1 (before treatment) and t = 2 (after treatment).

▶ 2 groups: G = 2 (treated at period 2) and G = ∞ (untreated by period 2).

■ Main parameter of interest: Average Treatment Effect among Treated units

ATT ≡ E [Yt=2 (2) |G = 2]︸ ︷︷ ︸
estimable from the data

− E [Yt=2 (∞) |G = 2]︸ ︷︷ ︸
counterfactual component
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Canonical DiD setup

Identification of the ATT is achieved via two main assumptions:

Assumption (No-Anticipation)
For all units i, Yi,t(g) = Yi,t(∞) for all groups in their pre-treatment periods, i.e., for all
t < g.

Assumption (Parallel Trends Assumption)

E [Yi,t=2(∞)|Gi = 2]− E [Yi,t=1(∞)|Gi = 2] = E [Yi,t=2(∞)|Gi = ∞]− E [Yi,t=1(∞)|Gi = ∞]

PS: We are taking SUTVA for granted from now onwards (NOT without loss of generality,
though)
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“Brute force” DiD estimator

■ Canonical DiD Estimator:

θ̂DiDn = (Ȳg=2,t=2 − Ȳg=2,t=1)− (Ȳg=∞,t=2 − Ȳg=∞,t=1) ,

where Ȳg=d,t=j is the sample mean of the outcome Y for units in group d in time
period j,

Ȳg=d,t=j =
1

Ng=d,t=j

N·T
∑
i=1
Yi1{Gi = d}1{Ti = j},

with

Ng=d,t=j =
N·T
∑
i=1
1{Gi = d}1{Ti = j},

Gi and Ti are group and time dummy, respectively, and Yi is the “poolled” outcome
data.
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“TWFE” DiD estimator

■ In practice, most of us would rely on the following TWFE regression specification to
estimate the ATT:

Yi,t = α0 + γ01 {Gi = 2}+ λ01 {Ti = 2}+ βtwfe0︸︷︷︸
≡ATT

(1 {Gi = 2} · 1 {Ti = 2}) + εi,t,

where E[εi,t|Gi, Ti] = 0 almost surely.
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What if the Parallel Trends

Assumption is not plausible?
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Conditional Parallel Trends



Unconditional parallel trends assumption

■ So far, covariates have played no role in our analysis

■ But what if units with different observed characteristics were to evolve differently in
the absence of treatment?

▶ Effect of Minimum wage on employment: is it sensible to assume that, in the absence of
treatment, employment in states in the NE of the US would have evolved similarly as in
states in the South of the US?

▶ Effect of training on earnings: is it reasonable to assume that earnings among young
workers would have evolved similarly to older workers in the absence of treatment?

■ In general, the PTA may be implausible if pre-treatment characteristics that are
thought to be associated with the dynamics of the outcome variable are
“unbalanced“ between the treated and the untreated group. (Abadie, 2005).
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How can we “relax” the PTA and

allow for “covariate-specific” trends?
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Conditional Parallel Trends Assumption

■ In order to “relax” the PTA, we can assume that it holds only after conditioning on a
vector of observed pre-treatment covariates

Assumption (Conditional Parallel Trends Assumption)
E [Yt=2(∞)|G = 2, X]− E [Yt=1(∞)|G = 2, X] = E [Yt=2(∞)|G = ∞, X]− E [Yt=1(∞)|G = ∞, X] a.s.

■ The conditional PT assumption states that, in the absence of treatment, conditional
on X, the evolution of the outcome among the treated units is, on average, the same
as the evolution of the outcome among the untreated units.

■ It allows for covariate-specific trends!

8



Strong overlap

■ When covariates are available, we will introduce an additional assumption stating
that every unit has a strictly positive probability of being in the untreated group.

Assumption (Strong Overlap Assumption)
The conditional probability of belonging to the treatment group, given observed
characteristics X, is uniformly bounded away from 1.

That is, for some ϵ > 0, P[G = 2|X] < 1− ϵ almost surely.

■ The covariates X here are the same as those used to justify the conditional PT
assumption!

■ For identification purposes, we can take ϵ = 0. For (standard) inference, though, we
would have problems without relying on “extrapolation“; see, e.g., Khan and Tamer
(2010). 9



How do the conditional PTA and

and strong overlap help us, DiDistas?
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Identification of ATT under conditional parallel trends and overlap

1) First, recall the conditional PT assumption:

E [Yt=2(∞)|G = 2, X]−E [Yt=1(∞)|G = 2, X] = E [Yt=2(∞)|G = ∞, X]−E [Yt=1(∞)|G = ∞, X] .

2) By simple manipulation, we can write it as

E [Yt=2 (∞) |G = 2, X] = E [Yt=1 (∞) |G = 2, X] + (E [Yt=2 (∞) |G = ∞, X]− E [Yt=1 (∞) |G = ∞, X])

3) Now, exploiting No-Anticipation, SUTVA, and strong overlap:

E [Yt=2 (∞) |G = 2, X] = E [Yt=1 (2) |G = 2, X]︸ ︷︷ ︸
by No−Anticipation

+ (E [Yt=2 (∞) |G=∞, X]− E [Yt=1 (∞) |G = ∞, X])

E [Yt=2 (∞) |G = 2, X] = E [Yt=1|G = 2, X] + (E [Yt=2|G = ∞, X]− E [Yt=1|G = ∞, X])︸ ︷︷ ︸
by SUTVA+overlap
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Conditional Parallel Trends and the conditional ATT

■ Let’s define the Conditional ATT: ATT(X) ≡ E [Yt=2(2)− Yt=2(∞)|G = 2, X].

■ Now, combining the results of previous slides, we have that, under SUTVA +
No-Anticipation + Conditional PT assumptions, it follows that:

ATT(X) = E [Yt=2|G = 2, X]− (E [Yt=1|G = 2, X] + (E [Yt=2|G = ∞, X]− E [Yt=1|G = ∞, X]))
= (E [Yt=2|G = 2, X]− E [Yt=1|G = 2, X])− (E [Yt=2|G = ∞, X]− E [Yt=1|G = ∞, X])

■ We can identify the conditional ATT function - a very rich object!

■ This also implies that the unconditional ATT is identified - all we have to do is to
integrate X among treated units:

ATT = E [ATT(X)|G = 2]
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Conditional Parallel Trends and the unconditional ATT

In terms of estimable pieces, we get that

ATT = E [(E [Yt=2|G = 2, X]− E [Yt=1|G = 2, X])− (E [Yt=2|G = ∞, X]− E [Yt=1|G = ∞, X])|G = 2]

= (E [Yt=2|G = 2]− E [Yt=1|G = 2])− E [(E [Yt=2|G = ∞, X]− E [Yt=1|G = ∞, X])|G = 2]

where the second equality follows from the Law of Iterated Expectations and covariates
and group indicators being stationary (which hold by construction on a balanced panel;
we will come back to this in a bit).
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Can we use a simple regression here?
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Usage of simple TWFE linear regressions with covariates



Usage of simple TWFE linear regressions with covariates
The temptation



TWFE DiD estimator

■ Under unconditional PTA, we have shown that we can use the TWFE regression to
recover the ATT:

Yi,t = α0 + γ01 {Gi = 2}+ λ01 {Ti = 2}+ βtwfe0︸︷︷︸
≡ATT

(1 {Gi = 2} · 1 {Ti = 2}) + εi,t,

where E[εi,t|Gi, Ti] = 0 almost surely.

■ It is very tempting to “extrapolate” and use the “more general” TWFE regression
specification:

Yi,t = α̃0,1 + γ̃01 {Gi = 2}+ λ̃01 {Ti = 2}+ β̃twfe0︸︷︷︸
????

(1 {Gi = 2} · 1 {Ti = 2}) + X′i α̃0,2 + ε̃i,t,

where E[ε̃i,t|Gi, Ti, Xi] = 0 almost surely.
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Is β̃
twfe
0 “similar” to the ATT?
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Usage of simple TWFE linear regressions with covariates
Simulation exercise



Monte Carlo simulation exercise

■ This is a great point to illustrate the power of simulations to assess if “intuitive”
extensions are sensible.

■ Here, knowing the “truth” help us to hold our methods accountable.

■ In this particular exercise, we will use a Data generating process similar to those of
Kang and Schafer (2007)

■ Samples sizes n = 1, 000

■ For each design, we consider 10, 000 Monte Carlo experiments

■ Available data are {Yt=2, Yt=1,D, X}ni=1, where Di = 1{Gi = 2}.
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Monte Carlo simulation exercise

■ Covariates are generated as Xj ∼ N (0, 1), j = 1, 2, 3, 4.

■ Let X = (X1, X2, X3, X4), and

freg (X) = 210+ 27.4 · X1 + 13.7 · (X2 + X3 + X4)
fps (X) = 0.75 · (−X1 + 0.5 · X2 − 0.25 · X3 − 0.1 · X4)

■ Also, let

v (X,D) d∼ N (D · freg (X) , 1)

εt=1
d∼ N (0, 1)

εt=2 (2)
d∼ N (0, 1)

εt=2 (∞)
d∼ N (0, 1)

U d∼ U (0, 1)
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How we generate potential outcomes and group indicators

Yi,t=1 (∞) = freg (Xi) + vi (Xi,Di) + εi,t=1

Yi,t=2 (∞) = 2 · freg (Xi) + vi (Xi,Di) + εi,t=2 (∞)

Yi,t=2 (2) = 2 · freg (Xi) + vi (Xi,Di) + εi,t=2 (2)

p (Xi) =
exp (fps (Xi))

1+ exp (fps (Xi))

Di = 1 {p (Xi) ≥ U}

In this setup, ATT(X) = 0 a.s. 19



Simulation results

We estimate β̃twfe0 from the following specification:

Yi,t = α̃0,1 + γ̃01 {Gi = 2}+ λ̃01 {Ti = 2}+ β̃twfe0 (1 {Gi = 2} · 1 {Ti = 2}) + X′i α̃0,2 + ε̃i,t,

■ Average of the ̂̃βtwfe0 in the simulations: -16.36 (very biased!)

■ Coverage probability of 95% Confidence Interval: 0 (does not control size!)

20



Simulation results

Figure 1: Monte Carlo for TWFE-based estimators
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Why there is so much bias here?
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Usage of simple TWFE linear regressions with covariates
The problems of the simple TWFE specification with covariates



Simple TWFE DiD regression estimator with covariates

■ The TWFE specification is given by

Yi,t = α̃0,1 + γ̃01 {Gi = 2}+ λ̃01 {Ti = 2}+ β̃twfe0 (1 {Gi = 2} · 1 {Ti = 2}) + X′i α̃0,2 + ε̃i,t,

where E[εi,t|Gi, Ti, Xi] = 0 almost surely.

■ Now, let’s play with its terms:

E[Yi,t|Gi = ∞, Ti = 1, Xi] = α̃0,1 + X′i α̃0,2
E[Yi,t|Gi = ∞, Ti = 2, Xi] = α̃0,1 + λ̃0 + X′i α̃0,2
E[Yi,t|Gi = 2, Ti = 1, Xi] = α̃0,1 + γ̃0 + X′i α̃0,2
E[Yi,t|Gi = 2, Ti = 2, Xi] = α̃0,1 + γ̃0 + λ̃0 + β̃twfe0 + X′i α̃0,2
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Simple TWFE regression estimator with covariates

■ Set of moment restrictions:

E[Yi,t|Gi = ∞, Ti = 1, Xi] = α̃0,1 + X′i α̃0,2
E[Yi,t|Gi = ∞, Ti = 2, Xi] = α̃0,1 + λ̃0 + X′i α̃0,2
E[Yi,t|Gi = 2, Ti = 1, Xi] = α̃0,1 + γ̃0 + X′i α̃0,2
E[Yi,t|Gi = 2, Ti = 2, Xi] = α̃0,1 + γ̃0 + λ̃0 + β̃twfe0 + X′i α̃0,2

■ Let’s analyze the implications of these moment restrictions, one by one.
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Simple TWFE regression estimator with covariates

■ Set of moment restrictions:

E[Yi,t|Gi = ∞, Ti = 1, Xi] = α̃0,1 + X′i α̃0,2
E[Yi,t|Gi = ∞, Ti = 2, Xi] = α̃0,1 + λ̃0 + X′i α̃0,2
E[Yi,t|Gi = 2, Ti = 1, Xi] = α̃0,1 + γ̃0 + X′i α̃0,2
E[Yi,t|Gi = 2, Ti = 2, Xi] = α̃0,1 + γ̃0 + λ̃0 + β̃twfe0 + X′i α̃0,2

■ First, notice that

E[Yi,t|Gi = ∞, Ti = 2, Xi]− E[Yi,t|Gi = ∞, Ti = 1, Xi] = λ̃0

Evolution of the outcome among untreated units does not depend on X!
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Simple TWFE regression estimator with covariates

■ Set of moment restrictions:

E[Yi,t|Gi = ∞, Ti = 1, Xi] = α̃0,1 + X′i α̃0,2
E[Yi,t|Gi = ∞, Ti = 2, Xi] = α̃0,1 + λ̃0 + X′i α̃0,2
E[Yi,t|Gi = 2, Ti = 1, Xi] = α̃0,1 + γ̃0 + X′i α̃0,2
E[Yi,t|Gi = 2, Ti = 2, Xi] = α̃0,1 + γ̃0 + λ̃0 + β̃twfe0 + X′i α̃0,2

■ Second, notice that

E[Yi,t|Gi = 2, Ti = 2, Xi]− E[Yi,t|Gi = 2, Ti = 1, Xi] = λ̃0 + β̃twfe0

Evolution of the outcome among treated units does not depend on X!
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Simple TWFE regression estimator with covariates

■ Set of moment restrictions:

E[Yi,t|Gi = ∞, Ti = 1, Xi] = α̃0,1 + X′i α̃0,2
E[Yi,t|Gi = ∞, Ti = 2, Xi] = α̃0,1 + λ̃0 + X′i α̃0,2
E[Yi,t|Gi = 2, Ti = 1, Xi] = α̃0,1 + γ̃0 + X′i α̃0,2
E[Yi,t|Gi = 2, Ti = 2, Xi] = α̃0,1 + γ̃0 + λ̃0 + β̃twfe0 + X′i α̃0,2

■ Lastly, notice that, under conditional PT, No-Anticipation, and SUTVA,

ATT(X) = (E[Yi,t|Gi = 2, Ti = 2, Xi]− E[Yi,t|Gi = 2, Ti = 1, Xi])
− (E[Yi,t|Gi = ∞, Ti = 2, Xi]− E[Yi,t|Gi = ∞, Ti = 1, Xi])

= β̃twfe0

Average Treatment effects are homogeneous between covariate subpopulations!
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TWFE with covariates
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Key to success:

Separate identification from
estimation/inference!
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How can we do it?
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Alternative Estimands



Semi and nonparametric DiD procedures

Once you separate identification from estimation procedures, we realize that DiD with
covariates has many faces!
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Alternative Estimands
Regression adjustment



Regression adjustment procedure

■ The “first face” of DiD procedure is already familiar.

■ Originally proposed by Heckman, Ichimura and Todd (1997); Heckman, Ichimura,
Smith and Todd (1998)

■ Idea is to work directly from the identifying assumptions.

■ We have already seen that, under conditional PT, No-anticipation, and SUTVA,

ATT = E


E [Yt=2|G = 2, X]︸ ︷︷ ︸

=mG=2
t=2 (X)

− E [Yt=1|G = 2, X]︸ ︷︷ ︸
=mG=2

t=1 (X)

−

E [Yt=2|G = ∞, X]︸ ︷︷ ︸
=mG=∞

t=2 (X)

− E [Yt=1|G = ∞, X]︸ ︷︷ ︸
=mG=∞

t=1 (X)


∣∣∣∣∣∣∣G = 2


= E

[(
mG=2
t=2 (X)−mG=2

t=1 (X)
)
−

(
mG=∞
t=2 (X)−mG=∞

t=1 (X)
)∣∣∣G = 2

]
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Regression adjustment procedure

■ Our life is a bit easier once we have that

ATT = E
[(
mG=2
t=2 (X)−mG=2

t=1 (X)
)
−

(
mG=∞
t=2 (X)−mG=∞

t=1 (X)
)∣∣∣G = 2

]
.

■ Now, it is a matter of estimating the unknown regression functions mG
t (X) with your

favorite estimation method - it can be parametric, semiparametric, or nonparametric!

33



Regression adjustment procedure

■ Our life is a bit easier once we have that

ATT = E
[(
mG=2
t=2 (X)−mG=2

t=1 (X)
)
−

(
mG=∞
t=2 (X)−mG=∞

t=1 (X)
)∣∣∣G = 2

]
.

■ For example, let µG=gt=s (X) = X′βG=g0,t=s be a working model for m
G=g
t=s (X).

■ We can then estimate the betas in each subsample using OLS, compute the fitted
values using all covariates values among treated units, and then average the
combination of these fitted values:

ÂTTregn = En
[(

µ̂G=2t=2 (X)− µ̂G=2t=1 (X)
)
−

(
µ̂G=∞
t=2 (X)− µ̂G=∞

t=1 (X)
)∣∣∣G = 2

]
.
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Regression adjustment with panel data

■ Our life can be even easier if we have access to panel data:

Assumption (Panel Data Sampling Scheme)
The data {Yi,t=1, Yi,t=2,Gi, Xi}ni=i is a random sample of the population of interest.

■ Observing Yt=1 and Yt=2 for the same units allows us to simplify the formulas a lot!
ATT = E [(E [Yt=2|G = 2, X]− E [Yt=1|G = 2, X])− (E [Yt=2|G = ∞, X]− E [Yt=1|G = ∞, X])|G = 2]

= E [E [Yt=2 − Yt=1|G = 2, X]− E [Yt=2 − Yt=1|G = ∞, X] |G = 2]
= E [Yt=2 − Yt=1|G = 2]− E [E [Yt=2 − Yt=1|G = ∞, X] |G = 2]

= E [Yt=2 − Yt=1|G = 2]− E
[
mG=∞

∆ (X) |G = 2
]

■ Only have to model one conditional expectation:

mG=∞
∆ (X) ≡ E [Yt=2 − Yt=1|G = ∞, X]
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Regression adjustment with stationary repeated cross-section data

■ Sometimes, we only have access to (stationary) repeated cross-section data:

Assumption (Repeated Cross-Section Data Sampling Scheme)
The pooled repeated cross-section data {Yi,Gi, Ti, Xi}ni=1 consist of iid draws from the
mixture distribution

P (Y ≤ y, X ≤ x,G = g, T = t) = 1{t = 2} · λ · P (Yt=2 ≤ y, X ≤ x,G = g|T = 2)
+1{t = 1} · (1− λ) P (Yt=1 ≤ y, X ≤ x,G = g|T = 1) ,

where (y, x,g, t) ∈ R × Rk × {2,∞} × {1, 2}, λ = P (T = 2) ∈ (0, 1).

Furthermore, (G, X) |T = 1 d∼ (G, X) |T = 2, i.e., there are no compositional changes over
time.

■ Question: Would it be possible to allow compositional changes? What would
change? How would you proceed?
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Regression adjustment with stationary repeated cross-section data

■ In this case, the formula can also be simplified (but not as much as in the case of
panel data):

ATT = E
[(
mG=2
t=2 (X)−mG=2

t=1 (X)
)
−

(
mG=∞
t=2 (X)−mG=∞

t=1 (X)
)∣∣∣G = 2

]
= (E [Y|G = 2, T = 2]− E [Y|G = 2, T = 1])− E

[(
mG=∞
t=2 (X)−mG=∞

t=1 (X)
)∣∣∣G = 2

]
■ We have to model conditional expectations only for untreated units:

mG=∞
t=s (X) = E [Y|G = ∞, T = s, X] , s = 1, 2
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Regression-adjusted DiD estimators

rely on researchers ability to model

the outcome evolution.
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Alternative Estimands
Inverse Probability Weighting procedure



Inverse probability weighting procedures

■ The “second face” of semi/nonparametric DiD procedures avoids directly modeling
the outcome evolution.

■ Instead, it models the propensity score, i.e., prob of belonging to the group G = 2:
p(X) ≡ P (G = 2|X) = P (D = 1|X), where D = 1{G = 2}.

■ Originally proposed by Abadie (2005):

ATTipw,p =

E

[(
D− (1− D)p (X)

1− p(X)

)
(Yt=2 − Yt=1)

]
E [D] ,

ATTipw,rc =

E

[(
D− (1− D)p (X)

1− p(X)

)
1 {T = 2} − λ

λ
Y
]

E [D] ,

where λ = E [1 {T = 2}] . 39



Inverse probability weighting procedures

ATTipw,p =

E

[(
D− (1− D)p (X)

1− p(X)

)
(Yt=2 − Yt=1)

]
E [D] ,

ATTipw,rc =

E

[(
D− (1− D)p (X)

1− p(X)

)
T− λ

λ
Y
]

E [D] ,

where λ = E [T] .

■ These formulas suggest a simple two-step estimation procedure, too!
1. Choose your favorite method to estimate the unknown propensity score p(X).

2. Plug in the estimated fitted propensity score values into the ATT equation, and replace
the population expectations with their sample analogue.
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Inverse probability weighting procedures

■ For example, let π(X) = Λ(X) ≡ exp(X′γ0)
1+ exp(X′γ0)

be a working model for the propensity
score

■ We can estimate γ0 using the logit maximum likelihood estimator.

■ Let π̂(X) = exp(X′γ̂0)
1+ exp(X′γ̂n)

■ Abadie’s proposed ATT estimator with panel data is

ÂTTipw,pn =

En

[(
D− (1− D)π̂ (X)

1− π̂(X)

)
(Yt=2 − Yt=1)

]
En [D]

.
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Hájek-based Inverse probability weighting procedures

■ One potential drawback of Abadie’s IPW DiD estimator is that their weights are not
“normalized”, i.e., they do not sum up to one.

■ More formally, Abadie’s IPW DiD estimator is of the Horvitz and Thompson (1952)
type.

■ We know from the survey literature that Hájek (1971)-type estimators can be more
stable, as they use “normalized” weights.

■ Building on this insight, Sant’Anna and Zhao (2020) built on Abadie (2005) and
considered the Hájek (1971)-type IPW DiD estimands.
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Hájek-based Inverse probability weighting with panel

Sant’Anna and Zhao (2020) considered the following estimand when Panel data are
available:

ATTipw,pstd = E
[(
wpG=2 (D)−wpG=∞ (D, X;p)

)
(Yt=2 − Yt=1)

]

= E


 D

E [D] −

p(X) (1− D)
1− p(X)

E

[
p(X) (1− D)
1− p(X)

]
 (Yt=2 − Yt=1)

 ,

where

wpG=2 (D) =
D

E [D] , and wpG=∞ (D, X;g) = g(X) (1− D)
1− g(X)

/
E

[
g(X) (1− D)
1− g(X)

]
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Hájek-based Inverse probability weighting with repeated cross-section

Sant’Anna and Zhao (2020) considered the following estimand when stationary RCS data
are available:

ATTipw,rcstd = E [(wrcG=2 (D, T)−wrcG=∞ (D, T, X;p)) · Y]
where

wrcG=2 (D, T) = wrcG=2,t=2 (D, T)−wrcG=2,t=1 (D, T) ,
wrcG=∞ (D, T, X;g) = wrcG=∞,t=2 (D, T, X;g)−wrcG=∞,t=1 (D, T, X;g) ,

and, for s = 1, 2,

wrcG=2,t=s (D, T) =
D · 1 {T = s}

E [D · 1 {T = s}] ,

wrcG=∞,t=s (D, T, X;g) =
g(X) (1− D) · 1 {T = s}

1− g(X)

/
E

[
g(X) (1− D) · 1 {T = s}

1− g(X)

]
.

44



IPW-adjusted DiD estimators

rely on researchers ability to model

the propensity score.

45
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Alternative Estimands
Doubly robust DiD estimators



Doubly robust DiD procedures

■ Combine both outcome regression and IPW approaches to form more robust
estimators.

■ Originally proposed by Sant’Anna and Zhao (2020)

■ Estimators are Doubly Robust consistent: they are
consistent for the ATT if either (but not necessarily both)

▶ Regression working models for outcome dynamics are
correctly specified

▶ Propensity score working model is correctly specified
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Doubly robust DiD procedure with panel

Sant’Anna and Zhao (2020) considered the following doubly robust estimand when panel
data are available:

ATTdr,p = E
[(
wpG=2 (D)−wpG=∞ (D, X;p)

) (
(Yt=2 − Yt=1)−

(
mG=∞
t=2 (X)−mG=∞

t=1 (X)
))]

= E


 D

E [D] −

p(X) (1− D)
1− p(X)

E

[
p(X) (1− D)
1− p(X)

]
(

(Yt=2 − Yt=1)−
(
mG=∞
t=2 (X)−mG=∞

t=1 (X)
)) ,

where

wpG=2 (D) =
D

E [D] , and wpG=∞ (D, X;g) = g(X) (1− D)
1− g(X)

/
E

[
g(X) (1− D)
1− g(X)

]
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Doubly robust DiD procedure with panel

■ Sant’Anna and Zhao (2020) also shown that ATTdr,p is semiparametrically (locally)
efficient.

■ If all working models are correctly specified, the DR DiD estimator for the ATTdr,p is
“the most precise estimator” (minimum asymptotic variance) among all (regular)
estimators that does not rely on additional functional form restrictions.

■ Sant’Anna and Zhao (2020) also discuss how to get further improved DR DiD
estimators by “carefully” choosing first-step estimators for the regression adjustment
and propensity score working models.

■ For the sake of time, we will not go into detail on these.

49



Doubly robust DiD procedure with repeated cross-section

Sant’Anna and Zhao (2020) considered two different doubly robust estimands when RCS
data are available.

ATTdr,rc1 = E
[
(wrcG=2 (D, T)−wrcG=∞ (D, T, X;p)) ·

(
Y−

(
mrc
G=∞,t=2 (X)−mrc

G=∞,t=1 (X)
))]

where

wrcG=2 (D, T) = wrcG=2,t=2 (D, T)−wrcG=2,t=1 (D, T) ,
wrcG=∞ (D, T, X;g) = wrcG=∞,t=2 (D, T, X;g)−wrcG=∞,t=1 (D, T, X;g) ,

and, for s = 1, 2, g = 2,∞, we have that mrc
G=g,t=s (x) ≡ E[Y|G = g, T = s, X = x],

wrcG=2,t=s (D, T) =
D · 1 {T = s}

E [D · 1 {T = s}] ,

wrcG=∞,t=s (D, T, X;g) =
g(X) (1− D) · 1 {T = s}

1− g(X)

/
E

[
g(X) (1− D) · 1 {T = s}

1− g(X)

]
. 50



Doubly robust DiD procedure with repeated cross-section

Sant’Anna and Zhao (2020) second DR DiD estimand also relies on outcome regression
models for the treated unit:

ATTdr,rc2 = ATTdr,rc1

+
(
E
[
mrc
G=2,t=2 (X)−mrc

G=∞,t=2 (X)
∣∣D = 1

]
− E

[
mrc
G=2,t=2 (X)−mrc

G=∞,t=2 (X)
∣∣D = 1, T = 2

])
−

(
E
[
mrc
G=2,t=1 (X)−mrc

G=∞,t=1 (X)
∣∣D = 1

]
− E

[
mrc
G=2,t=1 (X)−mrc

G=∞,t=1 (X)
∣∣D = 1, T = 1

])
,
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Doubly robust DiD procedure with repeated cross-section

■ Both DR DiD estimators for RCS data are consistent for the ATT under the same
conditions:

■ Even if the regression model for the outcome evolution for the treated group is
misspecified, ATTdr,rc2 is consistent for the ATT (provided that either the pscore or the
regression models for outcome evolution among untreated units are correctly
specified).

■ However, in general, ATTdr,rc2 is more efficient than ATTdr,rc1 .

■ In fact, Sant’Anna and Zhao (2020) shown that ATTdr,rc2 is (locally) semiparametrically
efficient.
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Let’s see how these work in a
simulation exercise
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Monte Carlo simulations



Simulations

■ Data generating processes are similar to those considered in the TFWE example

■ We compare DR DiD estimators with IPW (standardized and non-standardized),
outcome regression, and TWFE estimators

■ Samples sizes n = 1, 000

■ For each design, we consider 10, 000 Monte Carlo experiments

■ Available data are {Yt=2, Yt=1,D, Z}ni=1, where Di = 1{Gi = 2}.

■ We estimate the pscore assuming a logit specification, and the outcome regression
models assuming a linear specification
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DGPs

■ Since we want to check the effect of model misspecifications, we will generate
covariates slightly different than before.

■ Let Zj =
(
Z̃− E

[
Z̃
])/√

Var
(
Z̃
)
, j = 1, 2, 3, 4, where

Z̃1 = exp

(
X1
2

)
Z̃2 =

X2
1+ exp (X1)

+ 10

Z̃3 =

(
X1X3
25 + 0.6

)3

Z̃4 = (X2 + X4 + 20)2

and Xj ∼ N (0, 1), j = 1, 2, 3, 4.

55



DGPs

■ For a generic W = (W1,W2,W3,W4) , let

freg (W) = 210+ 27.4 ·W1 + 13.7 · (W2 +W3 +W4)

fps (W) = 0.75 · (−W1 + 0.5 ·W2 − 0.25 ·W3 − 0.1 ·W4)

■ Also, let

v (X,D) d∼ N (D · freg (X) , 1)

v (Z,D) d∼ N (D · freg (Z) , 1)

εt=1
d∼ N (0, 1)

εt=2 (2)
d∼ N (0, 1)

εt=2 (∞)
d∼ N (0, 1)

U d∼ U (0, 1) 56



DGPs

■ We now consider four different DGPs

■ DGP1:

Yi,t=1 (∞) = freg (Zi) + vi (Zi,Di) + εi,t=1

Yi,t=2 (∞) = 2 · freg (Zi) + vi (Zi,Di) + εi,t=2 (∞)

Yi,t=2 (2) = 2 · freg (Zi) + vi (Zi,Di) + εi,t=2 (∞)

p (Zi) =
exp (fps (Zi))

1+ exp (fps (Zi))
Di = 1 {p (Zi) ≥ U}

■ Both the pscore and the OR models are correctly specified
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DGPs

■ DGP2:

Yi,t=1 (∞) = freg (Zi) + vi (Zi,Di) + εi,t=1

Yi,t=2 (∞) = 2 · freg (Zi) + vi (Zi,Di) + εi,t=2 (∞)

Yi,t=2 (2) = 2 · freg (Zi) + vi (Zi,Di) + εi,t=2 (∞)

p (Xi) =
exp (fps (Xi))

1+ exp (fps (Xi))
Di = 1 {p (Xi) ≥ U}

■ Only the OR model is correctly specified
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DGPs

■ DGP3:

Yi,t=1 (∞) = freg (Xi) + vi (Xi,Di) + εi,t=1

Yi,t=2 (∞) = 2 · freg (Xi) + vi (Xi,Di) + εi,t=2 (∞)

Yi,t=2 (2) = 2 · freg (Xi) + vi (Xi,Di) + εi,t=2 (∞)

p (Zi) =
exp (fps (Zi))

1+ exp (fps (Zi))
Di = 1 {p (Zi) ≥ U}

■ Only the pscore model is correctly specified
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DGPs

■ DGP4:

Yi,t=1 (∞) = freg (Xi) + vi (Xi,Di) + εi,t=1

Yi,t=2 (∞) = 2 · freg (Xi) + vi (Xi,Di) + εi,t=2 (∞)

Yi,t=2 (2) = 2 · freg (Xi) + vi (Xi,Di) + εi,t=2 (∞)

p (Xi) =
exp (fps (Xi))

1+ exp (fps (Xi))
Di = 1 {p (Xi) ≥ U}

■ Both the pscore and the OR models are misspecified
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Table 1: Monte Carlo Simulations, DGP1: Both pscore and OR are correctly specified

Bias RMSE Std. error Coverage CI length

τ̂fe -20.9518 21.1227 2.5271 0.0000 9.9061
τ̂reg -0.0012 0.1005 0.1010 0.9500 0.3960
τ̂ipw,p 0.0257 2.7743 2.6636 0.9518 10.4412
τ̂ipw,pstd 0.0075 1.1320 1.0992 0.9476 4.3090
τ̂dr,p -0.0014 0.1059 0.1052 0.9473 0.4124
τ̂dr,pimp -0.0013 0.1057 0.1043 0.9451 0.4088
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Figure 2: Monte Carlo for DID estimators, DGP1: Both pscore and OR are correctly specified
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Table 2: Monte Carlo Simulations, DGP2: Only OR is correctly specified

Bias RMSE Std. error Coverage CI length

τ̂fe -19.2859 19.4683 2.5754 0.0000 10.0955
τ̂reg -0.0008 0.0997 0.1004 0.9492 0.3937
τ̂ipw,p 2.0100 3.2982 2.5049 0.8376 9.8193
τ̂ipw,pstd -0.7942 1.2253 0.9241 0.8564 3.6226
τ̂dr,p -0.0008 0.1036 0.1031 0.9469 0.4043
τ̂dr,pimp -0.0007 0.1042 0.1030 0.9445 0.4039
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Figure 3: Monte Carlo for DID estimators, DGP2: Only OR is correctly specified
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Table 3: Monte Carlo Simulations, DGP3: Only PS is correctly specified

Bias RMSE Std. error Coverage CI length

τ̂fe -13.1703 13.3638 3.5611 0.0035 13.9596
τ̂reg -1.3843 1.8684 1.2286 0.8001 4.8159
τ̂ipw,p 0.0114 3.1982 3.0043 0.9468 11.7769
τ̂ipw,pstd -0.0299 1.4270 1.3990 0.9447 5.4840
τ̂dr,p -0.0513 1.2142 1.1768 0.9416 4.6132
τ̂dr,pimp -0.0709 1.0151 0.9842 0.9423 3.8581
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Figure 4: Monte Carlo for DID estimators, DGP3: Only PS is correctly specified
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Table 4: Monte Carlo Simulations, DGP4: Both OR and PS are misspecified

Bias RMSE Std. error Coverage CI length

τ̂fe -16.3846 16.5383 3.6268 0.0000 14.2169
τ̂reg -5.2045 5.3641 1.2890 0.0145 5.0531
τ̂ipw,p -1.0846 2.6557 2.3746 0.9487 9.3084
τ̂ipw,pstd -3.9538 4.2154 1.4585 0.2282 5.7172
τ̂dr,p -3.1878 3.4544 1.2946 0.3076 5.0749
τ̂dr,pimp -2.5291 2.7202 0.9837 0.2737 3.8561
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Figure 5: Monte Carlo for DID estimators, DGP4: Both OR and PS are misspecified
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Monte Carlo simulations for repeated cross-section data

■ Same DGPs as before, but now, we observe a sample from T = 2 or T = 1 with
probability 0.5.
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Table 5: Monte Carlo Simulations, DGP1: Both the pscore and the OR are correctly specified

Bias RMSE Std. error Coverage CI length

τ̂fe -20.7916 21.0985 3.5705 0.0002 13.9962
τ̂reg 0.0263 7.5878 7.5702 0.9510 29.6751
τ̂ipw,rc -0.6619 55.9708 55.5516 0.9493 217.7621
τ̂ipw,rcstd -0.0502 9.6477 9.5815 0.9487 37.5596
τ̂dr,rc1 0.0129 3.0414 3.0340 0.9504 11.8934
τ̂dr,rc2 0.0041 0.2159 0.2102 0.9441 0.8239
τ̂dr,rc1,imp 0.0136 3.0413 3.0337 0.9507 11.8921
τ̂dr,rc2,imp 0.0047 0.2163 0.2049 0.9371 0.8032
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Figure 6: Monte Carlo for DID estimators, DGP1: Both the pscore and the OR are correctly specified
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Figure 7: Monte Carlo for DID estimators, DGP1: Both the pscore and the OR are correctly specified
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Figure 8: Monte Carlo for DID estimators, DGP1: Both the pscore and the OR are correctly specified
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Table 6: Monte Carlo Simulations, DGP2: Only the OR is correctly specified

Bias RMSE Std. error Coverage CI length

τ̂fe -19.1783 19.5289 3.6345 0.0005 14.2472
τ̂reg -0.0244 8.1906 8.1493 0.9481 31.9454
τ̂ipw,rc 1.8203 55.0496 54.9614 0.9491 215.4486
τ̂ipw,rcstd -0.8119 9.8141 9.7018 0.9459 38.0310
τ̂dr,rc1 -0.0102 3.2814 3.2651 0.9486 12.7991
τ̂dr,rc2 -0.0002 0.2108 0.2054 0.9454 0.8051
τ̂dr,rc1,imp -0.0095 3.2818 3.2650 0.9488 12.7989
τ̂dr,rc2,imp 0.0002 0.2127 0.2030 0.9403 0.7958
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Figure 9: Monte Carlo for DID estimators, DGP2: Only the OR is correctly specified
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Figure 10: Monte Carlo for DID estimators, DGP2: Only the OR is correctly specified
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Table 7: Monte Carlo Simulations, DGP3: Only the PS is correctly specified

Bias RMSE Std. error Coverage CI length

τ̂fe -13.1310 14.0577 5.0424 0.2598 19.7664
τ̂reg -1.3763 8.1367 8.0046 0.9421 31.3782
τ̂ipw,rc -0.9734 57.2618 56.9005 0.9465 223.0501
τ̂ipw,rcstd 0.0508 9.4283 9.3068 0.9431 36.4826
τ̂dr,rc1 -0.0855 5.6917 5.6276 0.9453 22.0602
τ̂dr,rc2 -0.0289 4.7419 4.6585 0.9416 18.2613
τ̂dr,rc1,imp -0.1191 4.8371 4.7970 0.9450 18.8042
τ̂dr,rc2,imp -0.0762 4.0623 3.9669 0.9436 15.5503
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Figure 11: Monte Carlo for DID estimators, DGP3: Only the PS is correctly specified
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Figure 12: Monte Carlo for DID estimators, DGP3: Only the PS is correctly specified
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Figure 13: Monte Carlo for DID estimators, DGP3: Only the PS is correctly specified
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Table 8: Monte Carlo Simulations, DGP4: Both the OR and the PS are misspecified

Bias RMSE Std. error Coverage CI length

τ̂fe -16.3305 17.1263 5.1307 0.1138 20.1123
τ̂reg -5.3378 9.9773 8.5196 0.9075 33.3969
τ̂ipw,rc -1.3912 55.1777 55.6717 0.9518 218.2330
τ̂ipw,rcstd -4.1487 10.5195 9.6864 0.9304 37.9707
τ̂dr,rc1 -3.3422 7.0709 6.1963 0.9157 24.2897
τ̂dr,rc2 -3.2751 6.0158 4.8876 0.8863 19.1593
τ̂dr,rc1,imp -2.6888 5.5642 4.8416 0.9134 18.9790
τ̂dr,rc2,imp -2.6138 4.8453 3.9673 0.8923 15.5519
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Figure 14: Monte Carlo for DID estimators, DGP4: Both the OR and the PS are misspecified
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Figure 15: Monte Carlo for DID estimators, DGP4: Both the OR and the PS are misspecified
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Figure 16: Monte Carlo for DID estimators, DGP4: Both the OR and the PS are misspecified
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What are the main take-away
messages?
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Take-way messages



DiD procedures with covariates

■ We can include covariates into DiD to allow for covariate-specific trends

■ Covariates should not be post-treatment variables

■ There are several ”correct” ways of implementing conditional DiD:
▶ Regression adjustments

▶ Inverse probability weighting

▶ Doubly Robust (augmented inverse probability weighting)

■ TWFE, though, can be severely biased.

■ DR DiD is my preferred method:
▶ More robust against model misspecifications

▶ Can be semiparametrically efficient (confidence intervals are tighter)
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Empirical application



Empirical application

■ Let’s switch to R/Stata so we can see how to do all these things!
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