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Introduction



DiD procedures with Covariates

■ We can include covariates into DiD to allow for covariate-specific trends.

■ There are several “correct” ways of implementing conditional DiD:
▶ Regression adjustments;

▶ Inverse probability weighting;

▶ Doubly Robust (augmented inverse probability weighting);

■ DR DiD is my preferred method:
▶ More robust against model misspecifications.

▶ Can be semiparametrically efficient (confidence intervals are tighter).

■ All these are implemented in DRDID and did R packages, and drdid and csdid Stata
packages.
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Implementations, so far, only allow for parametric first-step
models.
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What if I want to leverage Machine
Learning procedures do to DiD?
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We will focus on the 2x2 case with Panel Data.
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Let’s review our assumptions



Assumptions in 2x2 setup

Assumption (Conditional Parallel Trends Assumption)
E [Yt=2(∞)|G = 2, X]− E [Yt=1(∞)|G = 2, X] = E [Yt=2(∞)|G = ∞, X]− E [Yt=1(∞)|G = ∞, X] a.s.

Assumption (No-Anticipation)
For all units i, Yi,t(g) = Yi,t(∞) for all groups in their pre-treatment periods, i.e., for all
t < g.

Assumption (Strong Overlap Assumption)
The conditional probability of belonging to the treatment group, given observed
characteristics X, is uniformly bounded away from 1. That is, for some ϵ > 0,
P[G = 2|X] < 1− ϵ almost surely.
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Different ATT formulations



Regression adjustment procedure

■ Originally proposed by Heckman, Ichimura and Todd (1997) and Heckman, Ichimura,
Smith and Todd (1998):

ATT = E [Yt=2 − Yt=1|G = 2]− E
[
mG=∞

∆ (X) |G = 2
]

where
mG=∞

∆ (X) ≡ E [Yt=2 − Yt=1|G = ∞, X]

■ Now, it is “only” a matter of modelling mG=∞
∆ (X) and applying the plug-in principle.

■ What types of estimation methods can I use to estimate mG=∞
∆ (X)?

Parametric? Nonparametric? Semiparametric? Data-adaptive/Machine Learning?
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Inverse probability weighting procedure

■ Sant’Anna and Zhao (2020), building on Abadie (2005), considered the following IPW
estimand when Panel data are available:

ATTipw,pstd = E


 D

E [D] −

p(X) (1− D)
1− p(X)

E

[
p(X) (1− D)
1− p(X)

]
 (Yt=2 − Yt=1)

 ,

where
p (X) ≡ P [G = 2|X]

■ Now, it is “only” a matter of modelling p (X) and applying the plug-in principle.

■ What types of estimation methods can I use to estimate p(X)?
Parametric? Nonparametric? Semiparametric? Data-adaptive/Machine Learning?
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Doubly Robust DiD procedure with Panel

■ Sant’Anna and Zhao (2020) considered the following doubly robust estimand when
panel data are available:

ATTdr,p = E


 D

E [D] −

p(X) (1− D)
1− p(X)

E

[
p(X) (1− D)
1− p(X)

]
((Yt=2 − Yt=1)−

(
mG=∞
t=2 (X)−mG=∞

t=1 (X)
)) ,

■ Again, it is “only” a matter of modeling p (X) and mG=∞
∆ (X) and applying the plug-in

principle.

■ What estimation methods can I use to estimate these nuisance models?
Parametric? Nonparametric? Semiparametric? Data-adaptive/Machine Learning?
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What if I want to use ML?
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Being inspired by the recent developments in Causal ML

■ In the last 15 years or so, we have seen many advances in Causal Machine Learning.
▶ Belloni, Chernozhukov and Hansen (2014)
▶ Farrell (2015)
▶ Belloni, Chernozhukov, Fernández-Val and Hansen (2017),
▶ Chernozhukov, Chetverikov, Demirer, Duflo, Hansen, Newey and Robins (2017)
▶ Athey and Wager (2018)
▶ Athey, Tibshirani and Wager (2019)
▶ Chernozhukov, Demirer, Duflo and Fernández-Val (2022).

■ All these papers propose estimators that are Doubly Robust/Neyman Orthogonal.

■ These ideas have been explored in DiD setups only recently;
see, e.g., Sant’Anna and Zhao (2020); Chang (2020); Callaway, Drukker, Liu and Sant’Anna
(2023).

■ Let’s touch on some of the basics—only the basics!
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Leveraging Machine Learning



What are the practical appeal and challenges?

■ Nowadays, we are witnessing a boom in data availability.

■ We should be happy about this since more data is more information.

■ Maybe it makes conditional PT more plausible!

■ OTOH, richer set of covariates can make the estimation and inference about the ATT
much more challenging.

▶ What if we have n = 200 but we have 300 different X’s?

▶ What if we do not know the functional form of the pscore and the outcome-regression?

▶ More generally, what variables conditioning variables X should I include in my models?

▶ Should we include X, or 1/X, or exp (X) or log (X) or X1/2, X2, . . .
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Treatment effects in Data-Rich environments

■ This is where machine learning techniques can help us!

■ We want to estimate and make inferences about the ATT, allowing for the number of
potential covariates, k := dim f (X), to be potentially larger than the number of
cross-sectional units in the data, n.

■ Of course, informative inference about any causal parameters cannot proceed
allowing k≫ n without further restrictions.

■ Different machine learning procedures impose different restrictions.

■ Here, we will follow the popular approach (at least in economics) of assuming that
our nuisance functions, p(X) and mG=∞

∆ (X), are approximately sparse.
(This is not required in low dimensional settings; we can also make alternative assumptions).
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Approximate Sparsity

■ Approximate sparsity imposes that these nuisance functions can be represented up
to a “small” approximation error as linear combinations of a number s≪ n of
variables f (X), whose identity is a priori unknown to the researcher.

▶ This is the case under which we don’t know how X should enter our models
(X2, log(X), exp (X) , sin (X) ...) but we impose that only a “small” number of these
transformations of X matter, though we do not know a priori which one.

■ The approximate sparse approach imposes that we are unsure about what to do, so
we must conduct some model selection.

■ Key challenge: how to do valid inference following model selection is nontrivial.

■ ML procedures were not originally built to be reliable for inference but to have good
predictive properties.
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Valid inference after model selection

■ We should ignore the model selection step unless we are willing to assume
additional structure to the model that imposes that perfect model selection is
possible.

■ Example allowing perfect model selection: “beta-min” condition

▶ Requires that all but a small number of coefficients are exactly zero. The nonzero
coefficients are large enough to be distinguished from zero with probability near 1 in
finite samples.

■ Such structure can be restrictive and seems unlikely to be satisfied in many
applications.

■ Rules out the possibility that some variables have moderate but nonzero effects.
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Valid inference after model selection

■ There are plenty of ML procedures one can use, including:
1. LASSO
2. Ridge-Regression
3. Random Forest and Random Trees
4. Boosting
5. Support vector machine(SVM)
6. Neural nets

■ We will focus on LASSO because they are known to perform very well under
(approximate) sparsity constraints; see, e.g., Chernozhukov et al. (2017) and Chang
(2020) for additional discussions on other methods.

■ With LASSO, the implementation is very easy and requires little modifications of
available software (which is another reason why we are focusing on it)
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Using LASSO regressions



LASSO

■ A very popular data-adaptive procedure to estimate the nuisance parameters is the
LASSO.

■ LASSO stands for least absolute shrinkage and selection operator.

■ Its a method that performs both variable selection and regularization.
▶ Enhance prediction accuracy and interpretability of the resulting statistical model
(Tibshirani, 1996).

■ It has been successfully used in many causal inference procedures, see, e.g., Belloni
et al. (2014), Farrell (2015), Chernozhukov et al. (2017), Belloni et al. (2017), among
many others.

■ More recently, Chang (2020) have built on it for DiD analysis, too!

16



But what do I need to do LASSO, in
practice?

17



LASSO in practice

■ First step, select a “dictionary” of transformations of your covariates X, f(X).

■ Now, generically speaking, LASSO becomes a penalized OLS regression (when you
think OLS is appropriate):

min
b

(
1
n

n

∑
i=1

(
Yi − f (Xi)′ b

)2
2 +

λ

n
∥∥Ψ̂b

∥∥
1

)
,

where, for a generic Z, ∥Z∥p =
(
∑n
l=1 |Zl|

p)1/p is the standard lp-norm and
Ψ̂ = diag

(
l̂1, . . . , l̂k

)
is a diagonal matrix of data-dependent penalty loading’s.
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Using LASSO to estimate mG=∞
∆ (X)

■ Construct a “dictionary” of transformations of your covariates X, f(X).

■ Next, we can fit penalized OLS regression using only untreated units:

min
b

(
1
n ∑
i:Gi=∞

(
∆Yi − f (Xi)′ b

)2
2 +

λ

n
∥∥Ψ̂b

∥∥
1

)
,

■ Once we have our β̂’s, we can then estimate mG=∞
∆ (x) by µ̂G=∞

∆ (x) = f(x)′ β̂.
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Using LASSO to estimate p(X)

■ OLS is not appropriate to estimate binary outcomes, as in the case with the
propensity score.

■ But we can easily modify the criterion function and fit a penalized maximum
likelihood regression:

min
b

{
1
n

n

∑
i=1

−
[
1 {Di = 1} log Λ

(
f (Xi)′ b

)
+

+1 {Di = 0} log
(
1− Λ

(
f (Xi)′ b

))]
+

λ

n
∥∥Ψ̂b

∥∥
1

}
,

where, in our context, D = 1{G = 2}, and Λ(·) is a link function–in our case, a logistic
function, Λ(·) = exp(·)/(1+ exp(·).

■ Once we have our β̂ps’s, we can then estimate p(x) by π̂(x) = Λ(f(x)′ β̂ps).
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Using LASSO regressions
How do we pick the penalty parameters?



Picking penalty parameters

■ In the previous slides, you saw that using LASSO involves choosing tuning
parameters λ and Ψ̂ = diag

(
l̂1, . . . , l̂k

)
■ If λ is “too large” : we select “few” regressors

■ If λ is “too small” : we select “too many” (perhaps noisy) regressors

■ How should you choose the penalty λ and the loadings l̂j, j = 1 . . . , k?

■ They are selected to guarantee good theoretical properties of the method.

■ But how?
▶ Theory-driven way of picking these: Belloni et al. (2017)
▶ More computationally expensive (but with good performances, too): cross-validation
Chetverikov, Liao and Chernozhukov (2021)
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“Problem” of LASSO

■ Estimated LASSO parameters β̂LASSOn for β tend to be downward biased

■ This is induced by the shrinkage (penalization)

■ To avoid this problem, one can use Post-LASSO, which is a two-step procedure:

1. Use LASSO as a model selection: that is, run LASSO and select all the variables such
that β̂LASSOj,n ̸= 0, j = 1, . . . , k.

2. Run OLS (or Maximum likelihood) using only the selected variables.

■ For references, see Belloni and Chernozhukov (2013) and Belloni, Chernozhukov and
Wei (2016).

■ You can include the union of selected covariates when using doubly robust
procedures; see, e.g., Belloni et al. (2014).
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Let’s see how these work in a DiD
simulation exercise
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Monte Carlo Simulations



Simulations

■ Use LASSO to estimate all functions, using cross-validation to select penalty terms.

■ Compare DR DiD estimators with standardized IPW, outcome regression, and
unconditional DiD estimators.

■ Samples sizes n = 500. 500 Monte Carlo repetitions.

■ Available data are {Yt=2, Yt=1,D, X}ni=1, where Di = 1{Gi = 2}.

■ We estimate the pscore assuming a logit specification and the outcome regression
models assuming a linear specification.

■ We enter all X linearly (linear dictionary).

■ Select “relevant” covariates using LASSO, them run equivalent “post-LASSO”
procedure.
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DGPs

■ Let X ∼ N (0,Σ) be a p = 300 dimensional vector of covariates, with Σj,k = 0.5|j−k|.

■ Let γreg0 = (γreg0,1 , . . . ,γreg0,p)
′, where γreg0,j = 0.1× 1{j ≤ 10}+ 1

j2 .

■ Likewise γps0 = (γps0,1, . . . ,γps0,p)
′, where γps0,j =

11− j
10 × 1{j ≤ 10} − 1

j2 .

■ In our DGPs, we do not have “exact” sparsity!
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DGPs

fps (X) = X′γps0
fv (X) = X′(1+ γreg0 )

ftrend (X) = 5× exp(p(X)) + 5× X4 + 10 ∗ X10
v (X,D) d∼ N (D · fv (X) , 1)

εt=1(∞)
d∼ N (0, 1)

εt=2 (2)
d∼ N (0, 1)

εt=2 (∞)
d∼ N (0, 1)

U d∼ U (0, 1)
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3 DGPs, varying the level of
heterogeneity
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DGP1 - Unconditional PT is valid

■ DGP1:

Yi,t=1 (∞) = fv (Xi) + vi (Xi,Di) + εi,t=1(∞)

Yi,t=2 (∞) = 1+ fv (Xi) + vi (Xi,Di) + εi,t=2 (∞)

Yi,t=2 (2) = 1+ fv (Xi) + vi (Xi,Di) + εi,t=2 (∞)

p (Xi) =
exp (0.5 · fps (Xi))

1+ exp (0.5 · fps (Xi))
Di = 1 {p (Xi) ≥ U}

■ ATT is constant across values of X, ATT(X) = 0 a.s.
■ PT holds unconditionally on X–average trend equal to 1.
■ Approx. sparsity is only there for the growth, not for the levels–the term fv(X) is not
approximately sparse.
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DGP2 - Conditional PT holds with ATT(X) = 0

■ DGP2:

Yi,t=1 (∞) = fv (Xi) + vi (Xi,Di) + εi,t=1(∞)

Yi,t=2 (∞) = fv (Xi) + ftrend (Xi) + vi (Xi,Di) + εi,t=2 (∞)

Yi,t=2 (2) = fv (Xi) + ftrend (Xi) + vi (Xi,Di) + εi,t=2 (∞)

p (Xi) =
exp (0.5 · fps (Xi))

1+ exp (0.5 · fps (Xi))
Di = 1 {p (Xi) ≥ U}

■ ATT is constant across values of X, ATT(X) = 0 a.s.

■ PT holds conditionally on X but not unconditionally

■ Approx. sparsity is only there for the growth, not for the levels–the term fv(X) is not
approximately sparse.

29



DGP3 - Conditional PT holds with varying ATT(X)

■ DGP3:

Yi,t=1 (∞) = fv (Xi) + vi (Xi,Di) + εi,t=1(∞)

Yi,t=2 (∞) = fv (Xi) + ftrend (Xi) + vi (Xi,Di) + εi,t=2 (∞)

Yi,t=2 (2) = 1.05× fv (Xi) + ftrend (Xi) + vi (Xi,Di) + εi,t=2 (∞)

p (Xi) =
exp (0.5 · fps (Xi))

1+ exp (0.5 · fps (Xi))
Di = 1 {p (Xi) ≥ U}

■ ATT is varying across values of X, ATT(X) = E[fv(X)|D = 1] = 0.13.

■ PT holds conditionally on X but not unconditionally

■ ATT(X) is dense in X.
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Table 1: Monte Carlo Simulations, DGP1: Unconditional PT

Bias RMSE MC Std. Dev. Coverage CI length

τ̂unf 0.0026 0.0884 0.0884 NA NA
τ̂unc -0.0072 0.0884 0.1301 0.9460 0.4949
τ̂reg -0.0070 0.1304 0.1302 0.9440 0.4950
τ̂ipw,pstd -0.0106 0.1887 0.1884 0.9480 0.6790
τ̂dr -0.0065 0.1896 0.1894 0.9400 0.6765
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Figure 1: Monte Carlo for DID estimators, DGP1: Unconditional PT
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Table 2: Monte Carlo Simulations, DGP2: Conditional PT but homogeneous ATT across X

Bias RMSE MC Std. Dev Coverage CI length

τ̂unf -0.0039 0.0940 0.0940 NA NA
τ̂unc 6.4718 6.4364 1.4666 0.0040 5.6945
τ̂reg 0.1875 0.2516 0.1677 0.768 0.6403
τ̂ipw,pstd 1.0821 2.2643 1.9890 0.8540 6.8466
τ̂dr 0.0253 0.1929 0.1913 0.9280 0.6790
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Figure 2: Monte Carlo for DID estimators, DGP2: Conditional PT but homogeneous ATT across X
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Figure 3: Monte Carlo for DID estimators, DGP2: Conditional PT but homogeneous ATT across X
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Table 3: Monte Carlo Simulations, DGP3: Conditional PT and heterogeneous ATT across X

Bias RMSE MC Std. Dev, Coverage CI length

τ̂unf -0.0062 0.1292 0.1290 NA NA
τ̂unc 6.5815 6.7297 1.4045 0.0020 5.7457
τ̂reg 0.1959 0.2811 0.2015 0.8020 0.7481
τ̂ipw,pstd 1.3172 2.4383 2.0519 0.8180 6.8487
τ̂dr 0.0212 0.2192 0.2182 0.9260 0.7806
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Figure 4: Monte Carlo for DID estimators, DGP3: Conditional PT and heterogeneous ATT across X
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Figure 5: Monte Carlo for DID estimators, DGP3: Conditional PT and heterogeneous ATT across X
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What are the requirements?



What are the requirements to use ML in the first step?

■ We need to use “orthogonal” moment equations that are first-order (locally)
insensitive to changes in the values of the nuisance parameters mG=∞

∆ (·), and p (·)
that are estimated using data-adaptive methods.

▶ This is usually referred to as the “Neyman Orthogonality condition”, which our
Doubly-Robust formulation satisfies!

■ We need to ensure that the model selection mistakes are “moderately” small for the
underlying model.

▶ It suffices that the product of errors are relatively small, that is,

||(mG=∞
∆ (·)− µ̂G=∞

∆ (·))(p (·)− π̂ (·))||2 = o
(
n−1/4

)
.

▶ This usually comes from assumptions about the “complexity” of the model. Cross-fitting
also helps to ensure this for some classes of models (relax some additional conditions
when doing LASSO, too).
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Take-way messages



Take-way message

■ As long as you use the Doubly-Robust formula for DiD, you can use machine learning
to estimate nuisance functions.

■ Cross-fitting is unnecessary if you proceed with LASSO and have approximate
sparsity.

■ In some more sophisticated ML procedures, however, you do!

■ See Chang (2020) for some results and discussions.

■ Although we haven’t covered it in detail here, it is easy to use Random Forests a la
Athey and Wager (2018) and Athey et al. (2019) with DiD, too. Some tuning is needed,
though.
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