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Overview of previous lectures



DiD procedures with covariates

■ We can include covariates into DiD to allow for covariate-specific trends.

■ Covariates should not be post-treatment variables.

■ There are several “correct” ways of implementing conditional DiD:
▶ Regression adjustments;

▶ Inverse probability weighting;

▶ Doubly Robust (augmented inverse probability weighting).

■ TWFE, though, can be severely biased (depends on specification!!!)

■ DR DiD is my preferred method:
▶ More robust against model misspecifications

▶ Can be semiparametrically efficient (confidence intervals are tighter)
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What if we have multiple time periods?

2



DiD with multiple time periods



DiD setup with multiple time periods

■ So far, we have considered the 2x2 DiD setup:
▶ 2 time periods: t = 1 (before treatment) and t = 2 (after treatment)

▶ 2 groups: G = 2 (treated at period 2) and G = ∞ (untreated by period 2)

■ Now, let’s consider the case where we have more periods, but treatment can happen
at a fixed point in time (so we still have two groups):

▶ T time periods: t = 1, 2, . . . , T.

▶ Treatment may happen at a given time, say g.

▶ Pre-treatment periods: t = 1, 2, . . . ,g− 1.
Post-treatment periods: t = g,g+ 1, . . . , T.

▶ 2 groups: G = g (treated at period g) and G = ∞ (untreated by period T)
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What are the parameters of interest?



Parameters of interest

■ We need to discuss what we want to learn in this setup.

■ Building on the 2x2 setup, it is natural to focus on ATT-type parameters.

■ But now, we have multiple post-treatment periods, so we will talk about time (and
group) specific ATT’s:

ATT(g, t) = E [Yt(g)− Yt(∞)|G = g]

Average Treatment Effect among units treated at time g, at time t.

■ Here, we have only one g ̸= ∞, so we will only vary t.
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Parameters of interest

■ But now, we have multiple post-treatment periods, so we will talk about time (and
group) specific ATT’s:

ATT(g, t) ≡ E [Yt(g)− Yt(∞)|G = g] = E [Yt(g)|G = g]− E [Yt(∞)|G = g]

Average Treatment Effect among units treated at time g, at time t.

■ Here, we have only one g ̸= ∞, so we will only vary t.

■ Sometimes, we may re-express the ATT(g,t) in “event-time” e:

ATT(g,g+e) ≡ E [Yg+e(g)− Yg+e(∞)|G = g] = E [Yg+e(g)|G = g]−E [Yg+e(∞)|G = g]

Average Treatment Effect among units treated at time g, e period after (e ≥ 0) /
before (e < 0) treatment started.

■ This is just a change of variable, right?!
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Parameters of interest

■ We can also further aggregate these ATT’s across periods:

θaggs =

s

∑
e=0

ATT(g,g+ e)

s+ 1 , s ≥ 0.

■ If you want to “discount” more distant periods, that is easy, as long as these w′
es are

estimable or known:

θaggs,w =

s

∑
e=0

we · ATT(g,g+ e)

s

∑
e=0

we
, s ≥ 0.

■ Advantage of these aggregations: one-dimensional summary parameters.
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Identification



Multi-period DiD setup: Assumptions

Identification of the ATT(g, t)’s is achieved via two main assumptions:
No-Anticipation and Parallel trends (we are taking SUTVA for granted now).

Assumption (No-Anticipation)
For all units i, Yi,t(g) = Yi,t(∞) for all groups in their pre-treatment periods, i.e., for all
t < g.

■ The No-Anticipation implies that ATT(g, t) = 0 for all pre-treatment periods t < g.

■ We will play with this assumption later, but let’s keep it simple for now.
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Multi-period DiD setup: Assumptions

Identification of the ATT(g, t)’s is achieved via two main assumptions:
No-Anticipation and Parallel trends (we are taking SUTVA for granted now).

Assumption (Parallel Trends Assumption)
For all t ≥ g,

E [Yi,t(∞)|Gi = g]− E [Yi,t−1(∞)|Gi = g] = E [Yi,t(∞)|Gi = ∞]− E [Yi,t−1(∞)|Gi = ∞] .

The parallel trends (PT) assumption states that, in the absence of treatment, the
evolution of the outcomes among the treated units is, on average, the same as the
evolution of the outcomes among the untreated units, in all post-treatment periods.
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How does these PT help us?
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Parallel Trends and the ATT(g,t)

When t = g, we are essentially in the 2x2 case, so we know that

E
[
Yi,t=g (∞) |Gi = g

]
= E

[
Yi,t=g−1|Gi = g

]
+

(
E
[
Yi,t=g|Gi = ∞

]
− E

[
Yi,t=g−1|Gi = ∞

])
.

(1)

(check slide 28 at Lecture 2)

We also have that
ATT(g, g) =

(
E
[
Yi,t=g|Gi = g

]
− E

[
Yi,t=g−1|Gi = g

])
−

(
E
[
Yi,t=g|Gi = ∞

]
− E

[
Yi,t=g−1|Gi = ∞

])

Does anything here get your attention?
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Let’s look at the effect at time t = g+ 1

11



Parallel Trends and the ATT(g,g+1)

1) First, recall the PT assumption at time period t = g+ 1:

E
[
Yi,g+1(∞)|Gi = g

]
− E

[
Yi,g(∞)|Gi = g

]
= E

[
Yi,g+1(∞)|Gi = ∞

]
− E

[
Yi,g(∞)|Gi = ∞

]
.

2) By simple manipulation, we can write it as

E
[
Yi,g+1 (∞) |Gi = 2

]
= E

[
Yi,g (∞) |Gi = g

]
+

(
E
[
Yi,g+1 (∞) |Gi = ∞

]
− E

[
Yi,g (∞) |Gi = ∞

])
3) Now, exploiting No-Anticipation and SUTVA:

E
[
Yi,g+1 (∞) |Gi = g

]
= E

[
Yi,g (∞) |Gi = g

]︸ ︷︷ ︸
this is post−treatment

+
(
E
[
Yi,g+1|Gi = ∞

]
− E

[
Yi,g|Gi = ∞

])︸ ︷︷ ︸
by SUTVA
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Parallel Trends and the ATT(g,g+1)

3) Now, exploiting No-Anticipation and SUTVA:

E
[
Yi,g+1 (∞) |Gi = g

]
= E

[
Yi,g (∞) |Gi = g

]︸ ︷︷ ︸
this is post−treatment

+
(
E
[
Yi,g+1|Gi = ∞

]
− E

[
Yi,g|Gi = ∞

])︸ ︷︷ ︸
by SUTVA

4) Now, exploring that we have already identified E
[
Yi,g (∞) |Gi = g

]
in (1):

E
[
Yi,g+1 (∞) |Gi = g

]
= E

[
Yi,g−1|Gi = g

]
+ E

[
Yi,g|Gi = ∞

]
− E

[
Yi,g−1|Gi = ∞

]
+E

[
Yi,g+1|Gi = ∞

]
− E

[
Yi,g|Gi = ∞

]
5) Now, simplifying our formula (canceling cross-terms):

E
[
Yi,g+1 (∞) |Gi = g

]
= E

[
Yi,g−1|Gi = g

]
+ E

[
Yi,g+1|Gi = ∞

]
− E

[
Yi,g−1|Gi = ∞

]
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Parallel Trends and the ATT(g,g+1)

■ Combining these results, we have that, under SUTVA + No-Anticipation + PT
assumptions, it follows that

ATT(g, g+ 1) =
(
E
[
Yi,t=g+1|Gi = g

]
− E

[
Yi,t=g−1|Gi = g

])
−

(
E
[
Yi,t=g+1|Gi = ∞

]
− E

[
Yi,t=g−1|Gi = ∞

])

■ This is “the birth” of the “long-difference” approach to DiD!
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Parallel Trends and the ATT(g,t),

■ Following the same steps as above, we can easily show that, for every t ≥ g, under
our assumptions,

ATT(g, t) =
(
E [Yi,t|Gi = g]− E

[
Yi,t=g−1|Gi = g

])
−

(
E [Yi,t|Gi = ∞]− E

[
Yi,t=g−1|Gi = ∞

])
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Estimation and inference



“Brute force” DiD estimator for the ATT(g,t)

■ Canonical DiD Estimator:

ÂTT(g, t) =
(
Yg,t − Yg,g−1

)
−

(
Y∞,t − Y∞,g−1

)
,

where Ya,b is the sample mean of the outcome Y for units in group a in time period b,

Ya,b =
1

Na,b

N·T
∑
i=1
Yi1{Gi = a}1{Ti = b},

with

Na,b =
N·T
∑
i=1
1{Gi = a}1{Ti = b},

Gi and Ti are group and time dummy, respectively, and Yi is the “poolled” outcome
data.
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“TWFE” DiD estimator for ATT(g,t)

■ It is very easy to get this via TWFE regressions.

■ First, subset your data to have data only for periods t and g− 1, for t ≥ g.

■ In this subset of the data, run the TWFE regression using the following linear
specification:

Yi = α0 + γ01 {Gi = g}+ λ01 {Ti = t}+ βtwfe0,gt︸︷︷︸
≡ATT(g,t)

(1 {Gi = g} · 1 {Ti = t}) + εi,

where Yi is the “poolled” outcome data.

■ We can leverage the regression to make (pointwise) inference about the ATT(g, t).
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What if we want to include covariates?
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Including covariates



Conditional Parallel Trends Assumption

■ In order to “relax” the PTA, we can assume that it holds only after conditioning on a
vector of observed pre-treatment covariates

Assumption (Conditional Parallel Trends Assumption)
For all t ≥ g,

E [Yi,t(∞)|Gi = g, X]−E [Yi,t−1(∞)|Gi = g, C] = E [Yi,t(∞)|Gi = ∞, X]−E [Yi,t−1(∞)|Gi = ∞, X] a.s.

The conditional PT assumption states that, in the absence of treatment, conditional
on X, the evolution of the outcome among the treated units is, on average, the same
as the evolution of the outcome among the untreated units, in all post-treatment
periods.
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Strong overlap

■ When covariates are available, we will introduce an additional assumption stating
that every unit has a strictly positive probability of being in the untreated group.

Assumption (Strong Overlap Assumption)
The conditional probability of belonging to the treatment group, given observed
characteristics X, is uniformly bounded away from 1.

That is, for some ϵ > 0, P[G = g|X] < 1− ϵ almost surely.

■ The covariates X here are the same as those used to justify the conditional PT
assumption!

■ For identification purposes, we can take ϵ = 0. For (standard) inference, though, we
would have problems without relying on “extrapolation“; see, e.g., Khan and Tamer
(2010). 20



We now can use all the DiD estimators
suitable for 2x2 setups!
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Regression adjustment procedure with Panel Data

■ Very easy to show that, under our assumptions,

ATT(g, t) = E [Yt − Yg−1|G = g]− E
[
mG=∞
g−1,t (X) |G = g

]

■ Only have to model one conditional expectation:

mG=∞
g−1,t (X) ≡ E [Yt − Yg−1|G = ∞, X]

■ Choose your favorite method to estimate this regression (as long as it is “smooth
enough”)!
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Inverse probability weighted estimator with Panel

We can also get (normalized) IPW estimators.

Let D = 1 {G = g} and p(X) = E[D|X]. Then,

ATTipw,pstd (g, t) = E
[(
wpG=g (D)−wpG=∞ (D, X;p)

)
(Yt − Yg−1)

]

= E


 D

E [D] −

p(X) (1− D)
1− p(X)

E

[
p(X) (1− D)
1− p(X)

]
 (Yt − Yg−1)

 ,

where

wpG=g (D) =
D

E [D] , and wpG=∞ (D, X;g) = g(X) (1− D)
1− g(X)

/
E

[
g(X) (1− D)
1− g(X)

]
23



Doubly robust DiD procedure with Panel

DR estimator (Sant’Anna and Zhao, 2020; Callaway and Sant’Anna, 2021)

ATTdr,p = E
[(
wpG=g (D)−wpG=∞ (D, X;p)

) (
(Yt − Yg−1)−

(
mG=∞
t (X)−mG=∞

g−1 (X)
))]

= E


 D

E [D] −

p(X) (1− D)
1− p(X)

E

[
p(X) (1− D)
1− p(X)

]
(

(Yt − Yg−1)−
(
mG=∞
t (X)−mG=∞

g−1 (X)
)) ,

where

wpG=g (D) =
D

E [D] , and wpG=∞ (D, X;g) = g(X) (1− D)
1− g(X)

/
E

[
g(X) (1− D)
1− g(X)

]
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All these are implemented in Stata’s
csdid package

All these are implemented in R’s did
package
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Remark on pre-treatment period



Remark on pre-treatment periods

■ So far, we have focused on the case where t ≥ g.

■ But we can “fix” all the formulas above and also consider cases where t < g.

■ This may allow us to “pre-test” for the reliability of parallel trends in this context.

■ Rationale is: if pre-trends are parallel, post-treatment trends may be more likely to
be parallel.

■ Very easy to do.
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Remark on inference



Inference

■ Under relatively weak regularity conditions,

√
n
(
ÂTT(g, t)− ATT(g, t)

)
=

1√
n

n

∑
i=1

ψgt(Wi) + op(1)

■ From the above asymptotic linear representation and a CLT, we have
√
n
(
ÂTT(g, t)− ATT(g, t)

)
d→ N(0,Σg,t)

where Σgt = E[ψgt(W)ψgt(W)′].

Above result (and everything we have discussed so far in this lecture) ignores the
dependence across g and t, and “multiple-testing” problems.
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Simultaneous Inference

■ Let’s simplify and ignore anticipation issues for the moment.

■ Let ATTg≤t and ÂTTg≤t denote the vector of ATT(g, t) and ÂTT(g, t), respectively, for all
g = 2, . . . , T and t = 2, . . . , T with g ≤ t.

■ Analogously, let Ψg≤t denote the collection of ψgt across all periods t and groups g
such that g ≤ t.

■ Hence, we have √
n(ÂTTg≤t − ATTg≤t)

d−→ N(0,Σ)

where
Σ = E[Ψg≤t(W)Ψg≤t(W)′].
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Simultaneous confidence intervals

■ How to construct simultaneous confidence intervals?

■ We propose the use of a simple multiplier bootstrap procedure.

■ Let Ψ̂g≤t(W) denote the sample-analogue of Ψg≤t(W).

■ Let {Vi}ni=1 be a sequence of iid random variables with zero mean, unit variance, and
bounded third moment, independent of the original sample {Wi}ni=1

■ ÂTT∗g≤t , a bootstrap draw of ÂTTg≤t, via

ÂTT∗g≤t = ÂTTg≤t + En
[
V · Ψ̂g≤t(W)

]
. (2)

29



Multiplier Bootstrap procedure

1. Draw a realization of {Vi}ni=1.

2. Compute ÂTT∗g≤t as in (2), denote its (g, t)-element as ÂTT
∗
(g, t) , and form a bootstrap draw of its

limiting distribution as
R̂∗ (g, t) =

√
n
(
ÂTT∗ (g, t)− ÂTT (g, t)

)
3. Repeat steps 1-2 B times.
4. Estimate Σ1/2 (g, t) by

Σ̂1/2 (g, t) = (q0.75 (g, t)− q0.25 (g, t)) / (z0.75 − z0.25)

5. For each bootstrap draw, compute t− test∗g≤t = max(g,t)
∣∣R̂∗ (g, t)∣∣ Σ̂ (g, t)−1/2 .

6. Construct ĉ1−α as the empirical (1− a)-quantile of the B bootstrap draws of t− test∗g≤t.
7. Construct the bootstrapped simultaneous confidence intervals for ATT (g, t), g ≤ t, as

Ĉ (g, t) = [ÂTT (g, t)± ĉ1−α · Σ̂ (g, t)−1/2 /
√
n].
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Simultaneous cluster-robust confidence intervals

■ Sometimes, one wishes to account for clustering.

■ This is straightforward to implement with the multiplier bootstrap described above.

■ Example: allow for clustering at the state level

▶ draw a scalar Us S times – where S is the number of states

▶ set Vi = Us for all observations i in state s

■ This procedure is justified, provided that the number of clusters is “large”.
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But what do standard TWFE regressions recover?



“TWFE” DiD estimator without subsetting

■ So far, we have shown how you can tweak regressions to respect our assumptions
from the get-go.

■ That involved subsetting the data o have data only for time periods t and g− 1, for
t ≥ g.

■ What if we do not subset the data and use the following TWFE specification?

Yi,t = αi + αt + βtwfeDi,t + εi,t,

where Di,t is a treatment dummy if unit i is treated by time t.

■ What does βtwfe recovers?

■ What is the implicit parallel trends assumption here?

■ I want you to try to answer this question in the next couple of days! 32



TWFE with dynamics?

■ In practice, it is also common to use a TWFE dynamic regression spec:

Yi,t = αi + αt + γ−K
k D<−K

i,t +
−2
∑
k=−K

γleadk Dki,t +
L

∑
k=0

γlagsk Dki,t + γL+k D>Li,t + εi,t

with the event study dummies Dki,t = 1 {t− Gi = k}.

■ Dki,t is an indicator for unit i being k periods away from initial treatment at time t.

Do we know what type of causal effect γ’s actually recover?
Do the γ̂’s coincide with our “by-hand” estimators for the ATT(g,t)’s?
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What is next?



What is next?

■ How do we assess the validity of our assumptions?

■ What are the dangers of pre-testing?

■ Can we allow for anticipation behavior? If so, of what type?

■ What if we want to use more information about pre-treatment periods?

■ All this, next class!
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