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Summary of previous lectures



DiD procedures with multiple periods

■ We have now covered the more fun and slightly more complex setup with multiple
periods and two groups.

■ We discuss how we can learn about treatment effect dynamics: ATT(g, t)’s

■ We maintained the No-anticipation assumption.

■ We extend the Parallel Trends assumption to hold for all post-treatment time
periods.

▶ Implication: Long-run effects are “harder” to learn than short-run effects

■ Estimation: Subset the data to look like a 2x2 setup.

■ Inference: Make sure you account for multiple testing (rely on simultaneous
confidence bands).
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Parameters of interest

■ But now, we have multiple post-treatment periods so we will talk about time (and
group) specific ATTs:

ATT(g, t) ≡ E [Yt(g)− Yt(∞)|G = g] = E [Yt(g)|G = g]− E [Yt(∞)|G = g]

Average Treatment Effect among units treated at time g, at time t.

■ Sometimes, we may re-express the ATT(g,t) in “event-time” e:

ATT(g,g+e) ≡ E [Yg+e(g)− Yg+e(∞)|G = g] = E [Yg+e(g)|G = g]−E [Yg+e(∞)|G = g]

Average Treatment Effect among units treated at time g, e periods after (e ≥ 0) / before (e < 0)
treatment started.

■ These allow us to talk about dynamics!
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Multi-period DiD setup: Assumptions

Identification of the ATT(g, t)’s is achieved via two main assumptions:
No-Anticipation and Parallel trends (we are taking SUTVA for granted now).

Assumption (No-Anticipation)
For all units i, Yi,t(g) = Yi,t(∞) for all groups in their pre-treatment periods, i.e., for all
t < g.

Assumption (Parallel Trends Assumption)
For all t ≥ g,

E [Yi,t(∞)|Gi = g]− E [Yi,t−1(∞)|Gi = g] = E [Yi,t(∞)|Gi = ∞]− E [Yi,t−1(∞)|Gi = ∞] .
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Identification result for ATT(g,t)’s

■ We have shown that, under our assumptions, for every t ≥ g,

ATT(g, t) =
(
E [Yi,t|Gi = g]− E

[
Yi,g−1|Gi = g

])
−
(
E [Yi,t|Gi = ∞]− E

[
Yi,g−1|Gi = ∞

])
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“TWFE” DiD estimator for ATT(g,t)

■ First, subset your data to have data only for time periods t and g− 1, for t ≥ g.

■ In this subset of the data, run the TWFE regression using the following spec:

Yi = α0 + γ01 {Gi = g}+ λ01 {Ti = t}+ βtwfe0,gt︸︷︷︸
≡ATT(g,t)

(1 {Gi = g} · 1 {Ti = t}) + εi,

where Yi is the “poolled” outcome data.

■ We can leverage the regression to make (pointwise) inference about the ATT(g, t)
(But be careful with the problem with multiple testing).

■ Better to use simultaneous confidence intervals to avoid the multiple-testing issues
(already implemented in did R package and csdid Stata pacakge).

5



“Brute force” DiD estimator for the ATT(g,t)

■ Canonical DiD Estimator:

ÂTT(g, t) =
(
Yg,t − Yg,g−1

)
−
(
Y∞,t − Y∞,g−1

)
,

where Ya,b is the sample mean of the outcome Y for units in group a in time period b,

Ya,b =
1

Na,b

N·T
∑
i=1
Yi1{Gi = a}1{Ti = b},

with

Na,b =
N·T
∑
i=1
1{Gi = a}1{Ti = b},

Gi and Ti are group and time dummy, respectively, and Yi is the “poolled” outcome
data.
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What if we do not subset the data?
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What do standard TWFE regressions recover?



“TWFE” DiD estimator without subsetting

■ So far, we have shown how you can tweak regressions to respect our assumptions
from the get-go.

■ That involved subsetting the data to have data only for periods t and g− 1, for t ≥ g.

■ What if we do not subset the data and use the following TWFE specification?

Yi,t = αi + αt + βtwfeDi,t + εi,t,

where Di,t is a treatment dummy if unit i is treated by time t.

■ I have two questions:

1. What does βtwfe recovers?

2. What is the implicit parallel trends assumption here?
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“TWFE” DiD estimator without subsetting

■ The answer to the first question is not very hard to get.

■ The key is to realize that we can replace unit and time FE with group and
post-treatment dummies:

Yj = α0 + γ01
{
Gj = 2

}
+ λ01

{
Timej ≥ g

}
+ βtwfeDj + εj,

where now we have pooled all the data into the “long format” (so each unit j is an
(i, t)-pair).

■ By making simple comparisons of means, we have:

βtwfe = (E[Y|G = g, t ≥ g]− E[Y|G = g, t < g])
− (E[Y|G = ∞, t ≥ g]− E[Y|G = ∞, t < g])
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“TWFE” DiD estimator without subsetting: Assumptions

βtwfe =
(
E[Yj|G = g, t ≥ g]− E[Yj|G = g, t < g]

)
−
(
E[Yj|G = ∞, t ≥ g]− E[Yj|G = ∞, t < g]

)
■ Some remarks on (implicit) assumptions:

▶ βtwfe implicly uses all available pre-treatment periods.

▶ So far, we have assumed parallel trends only for post-treatment periods, t ≥ g.

▶ Thus, at least implicitly, the TWFE regressions rely on a “different” type of PT
assumption!

▶ A PT version compatible with TWFE and “DiD-by-hand” is that PT holds for all time
periods (both pre-and post-treatment).

▶ But what about the “PT only restricts post-treatment potential outcomes ” type of folk
wisdon?!
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“TWFE” DiD estimator without subsetting: Interpretation

βtwfe =
(
E[Yj|G = g, t ≥ g]− E[Yj|G = g, t < g]

)
−
(
E[Yj|G = ∞, t ≥ g]− E[Yj|G = ∞, t < g]

)
■ Some remarks on interpretation:

▶ What type of summary parameter does βtwfe represent when we no-anticipation and PT
for all time periods hold?

▶ Under these stronger assumptions, we can show that

βtwfe =

T
∑
s=g

ATT(g, s)

T− g+ 1 =

T−g

∑
e=0

ATT(g,g+ e)

T− g+ 1 .

▶ Problem Set Question: Prove the above result.
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What if we include leads and lags?
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TWFE with dynamics?

■ In practice, it is also common to use a TWFE dynamic regression spec:

Yi,t = αi + αt + γ−K
k D<−K

i,t +
−2
∑
k=−K

γleadk Dki,t +
L

∑
k=0

γlagsk Dki,t + γL+k D>Li,t + εi,t

with the event study dummies Dki,t = 1 {t− Gi = k}.

■ Dki,t is an indicator for unit i being k periods away from initial treatment at time t.

Do we know what type of causal effect γ’s actually recover?
Do the γ̂’s coincide with our “by-hand” estimators for the ATT(g,t)’s?
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TWFE with dynamics

Yi,t = αi + αt + γ−K
k D<−K

i,t +
−2
∑
k=−K

γleadk Dki,t +
L

∑
k=0

γlagsk Dki,t + γL+k D>Li,t + εi,t

■ When one fully saturates the model, i.e., include all possible treatment leads and
lags, all the γ’s should coincide with the “DiD-by-hand” estimators for the
ATT(g,g+ e)’s.

■ Intuition: model is fully nonparametric (under our original assumptions), with no
over-identifying restrictions.

■ Now, if you “bin” the endpoints, you are implicitly changing the modeling
assumptions and are imposing additional restrictions.

■ In these latter cases, results should not be numerically the same.
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TWFE with dynamics

Yi,t = αi + αt + γ−K
k D<−K

i,t +
−2
∑
k=−K

γleadk Dki,t +
L

∑
k=0

γlagsk Dki,t + γL+k D>Li,t + εi,t

■ Recommendation: when you care about some event-times but not others, estimate
them all and report the ones you care!

■ This is usually more transparent.
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What if we want to leverage more
pre-treatment periods?
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TWFE with dynamics

■ The TWFE specification with all leads and all lags is given by

Yi,t = αi + αt + γ−K
k D<−K

i,t +
−2
∑
k=−K

γleadk Dki,t +
L

∑
k=0

γlagsk Dki,t + γL+k D>Li,t + εi,t.

■ Since γlagse is equivalent to ATT(g,g+ e), for e ≥ 0, we know that this specification is
using data from period t = g− 1 as baseline.

■ If we were willing to accept that PT hold in all periods, this specification would not
use all the pre-treatment information to estimate the ATT(g,g+ e)s parameters.

■ How can we modify the above TWFE ES specification to leverage more pre-treatment
data to estimate the parameters of interest?
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Modified TWFE with dynamics

■ This is the idea behind Borusyak, Jaravel and Spiess (2024), Wooldridge (2021) and
Gardner (2021)!

■ They (implicitly) considered the modified specification

Yi,t = αi + αt +
L

∑
k=0

γ̃lagsk Dki,t + γL+k D>Li,t + εi,t.

■ Now, OLS estimators of γ̃lagsk are not equivalent to ÂTT(g, t).

■ The difference is that γ̃lagsk (implicit) uses the average of all pre-treatment outcomes
as the baseline period.
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Modified TWFE with dynamics

■ More precisely, you should be able to show that, for e ≥ 0,

γ̃lagse =
1

g− 1

g−1

∑
t′=1

E [Yg+e − Yt′ |G = g]− E [Yg+e − Yt′ |G = ∞]

=

(
E [Yg+e|G = g]− E

[
1

g− 1

g−1

∑
t′=1

Yt′
∣∣∣∣G = g

])

−
(

E [Yg+e|G = ∞]− E

[
1

g− 1

g−1

∑
t′=1

Yt′
∣∣∣∣G = ∞

])
.

■ Thus, when PT hold in all periods (both pre and post-treatment), as well as the other
identification assumptions hold,

γ̃lagse = ATT(g,g+ e).

■ Are OLS estimators of γ̃lagse more efficient than ÂTT(g, t), as it uses more data?
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Comparing across TWFE ES specifications



Comparing across TWFE ES specifications

■ As formalized by Chen, Sant’Anna and Xie (2024), when PT hold in all periods, the DiD
model is nonparametrically over-identified.

■ This has interesting consequences for comparing different specifications, as their
estimators have different (asymptotic) efficiency properties.

■ When one is willing to impose strong assumptions on treatment effect heterogeneity
(by assuming homoskedasticity) and serial correlation (by assuming “error terms”
are independent over time), Borusyak et al. (2024) and Wooldridge (2021) have shown
that OLS estimators for γ̃lagse are asymptotic efficient (in a Gauss-Markov sense).

■ However, these conditions are not realistic in most applications: if we believe errors
were uncorrelated, we would never cluster our standard errors.

■ Without these strong conditions, it is generally not possible to rank OLS estimators
for γ̃lagse and ÂTT(g, t) in terms of the length of confidence intervals (precision). 20



Comparing across TWFE ES specifications

■ Chen et al. (2024) discuss how one can fully leverage the empirical content of PT
holding in all periods to form estimators for ATT(g,g+ e) that are asymptotically
efficient.

■ Their proposed efficient estimators weigh observations from different pre-treatment
periods differently, so it explores the correlation structure of the outcome evolution
between the treatment and comparison groups.

■ Their estimator does not make strong assumptions about spherical error terms
(homoskedastic and zero serial correlation) or impose additional time-series
restrictions beyond those used in the identification assumptions.

■ Their estimator dominates the other available estimators regarding asymptotic
efficiency.

21



What if I also want to add covariates
into my TWFE ES?
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TWFE ES specifications with covariates

■ All the discussion so far focused on DiD and TWFE specifications without covariates.

■ Although it is always easy to linearly add covariates into a TWFE specification, it is
not easy to guarantee that the OLS coefficients from these specifications recover
meaningful average treatment effects of interest.

■ Indeed, all the discussion and the equivalences we have established in this lecture
are only valid in setups without covariates.

■ If you want to add covariates, I strongly recommend using an alternative estimation
procedure.

■ See Caetano and Callaway (2023) for a more through discussion.
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