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Stylized example using simulated data

■ 1000 units (i = 1, 2, . . . , 1000) from 40 states (state = 1, 2, . . . , 40).

■ Data from 1980 to 2010 (31 years).

■ 4 different groups based on the year treatment starts: g = 1986, 1992, 1998, 2004.

■ Randomly assigns each state to a group.
■ Outcome:

Yi,t = (2010− g)︸ ︷︷ ︸
cohort-specific intercept

+ αi︸︷︷︸
N( state5 ,1)

+ αt︸︷︷︸
(t−g)
10 +N(0,1)

+ τi,t︸︷︷︸
µg·(t−g+1)·1{t≥g}

+ εi,t︸︷︷︸
N
(
0,( 12 )

2)
■ µ1986 = µ2004 = 3, µ1992 = 2, µ1998 = 1

■ ATT for group g at the first treatment period is µg, at the second period since
treatment is 2 · µg, etc.
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Traditional methods: TWFE event-study regression

■ What if we tried to estimate the treatment effects using traditional TWFE event-study
regressions,

Yi,t = αi + αt + γ−K
k D<−K

i,t +
−2
∑
k=−K

γleadk Dki,t +
L

∑
k=0

γlagsk Dki,t + γL+k D>Li,t + εi,t,

with K and L to be equal to 5?

■ Simulate data and repeat 1,000 times to compute bias and simulation standard
deviations.
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Static TWFE Coefficient: −3.19 (0.28)
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Traditional methods: TWFE event-study regression

■ What if we include all possible leads and lags in the TWFE event study specification,
i.e., to set K and L to the maximum allowable in the data, making the inclusion of
D<−K
i,t and of D>Li,t unnecessary ?
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Is there hope?
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Recent Boom of New DiD Methods: Solutions to the TWFE problems

■ The problems associated with using standard TWFE specifications are evident.

■ OLS is variational hungry but causal inference is variational cautious!

■ How to solve the TWFE problem in DiD setups?

■ Ensure that you only make the comparisons you want to

■ Callaway and Sant’Anna (2021) propose a guided and transparent way to do this!

▶ Allow for covariates, different comparison groups, panel and repeated cross-sections.

▶ Separate the analysis into identification, aggregation, and estimation/inference.
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Addressing the TWFE problems



Recent Boom of New DiD Methods: Solutions to the TWFE problems

■ Callaway and Sant’Anna (2021) is not the only game in town:
▶ Sun and Abraham (2021): Their proposed estimator coincides with CS when there are no
covariates and uses the never-treated/last-treated cohort as a comparison group.
However, this paper has many other results about the pitfalls of TWFE that are not in CS.
No treatment of covariates. A great complement to CS.

▶ Gardner (2021), Borusyak, Jaravel and Spiess (2024) and Wooldridge (2021): Propose
“imputation”/regression based methods to recover cohort-time ATT’s . These three
papers do not nest nor are nested by CS, but identification assumptions are sometimes
stronger. Benefit: Sometimes (but not always), they can get you more precise estimates
when these (additional) assumptions are correct. Unlike CS, the handling of covariates
in Gardner (2021) and Borusyak et al. (2024) is restrictive (i.e., rule out heterogeneous
treatment effects); Wooldridge (2021) is more flexible than G and BJS in this regard.

▶ Wooldridge (2023): Propose estimators that are suitable for nonlinear models. It relies
on alternative types of parallel trend assumptions, e.g., ‘ratio-in-ratios” if exponential
model. If use canonical link functions, standard errors can be easily estimated. 11



Recent Boom of New DiD Methods: Solutions to the TWFE problems (cont.)

■ Callaway and Sant’Anna (2021) is not the only game in town:

▶ de Chaisemartin and D’Haultfœuille (2020, 2024): Their proposed estimator coincides
with CS when there are no covariates, uses not-yet-treated units as the comparison
group, and treatment is staggered. However, these two papers allow treatment to turn
on and off, which is not allowed in CS. However, to allow treatment to turn on and off
and still get an interesting/easy-to-interpret parameter of interest, they impose
restrictions on treatment effect dynamics. In fact, de Chaisemartin and D’Haultfœuille
(2020) completely rules out dynamic treatment effects.

These papers only briefly talk about covariates. When they are available, their proposal
do not nest nor are nested by CS. However, the way covariates are allowed is arguably
restrictive and rules out interesting treatment effect heterogeneity (e.g., they do not
allow the ATT to vary according to age).
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Main take-way message from all DiD proposed solutions

Clearly separate identification, aggregation, and estimation/inference steps!

In what follows, I will focus on Callaway and Sant’Anna’s (2021) approach.

In the future, I plan to add more discussions about the other methods.
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Digging into Callaway and Sant’Anna (2021)



Callaway and Sant’Anna (2021) in practice

Can be implemented via the R package did.

Can be implemented via the Stata packages csdid, csdid2, hdidregress and
xthdidregress

Can be implemented via the Pythgon package csdid
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Main take-way message

Clearly separate identification, aggregation, and estimation/inference steps!
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Identification

Let’s talk about identification
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Identification



Building block of the analysis

■ If the sample size was not a limitation (we have all the data in the world), what kind
of question would we like to answer?

■ In staggered setups, a parameter that is interesting and has clear economic
interpretation is the ATT(g, t)

ATT (g, t) = E [Yt (g)− Yt (∞) |Gg = 1] , for t ≥ g.

■ Average Treatment Effect at time t of starting treatment at time g, among the units
that indeed started treatment at time g.
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Identifying Assumptions: No-Anticipation

■ Given that we never observe Y(∞) in post-treatment periods among units that have
been treated, we need to make assumptions to identify ATT(g, t)’s

■ No-Anticipation Assumption: For all i,t and t < g,g′, Yi,t(g) = Yi,t(g′).

■ Unit treatment effects are zero before treatment takes place.

■ Exactly the same content as in the 2x2 case.
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Parallel trend assumption based on a “never treated” group

Assumption (Parallel Trends based on a “never-treated”)
For each t ∈ {2, . . . , T}, g ∈ G such that t ≥ g,

E[Yt(∞)− Yt−1(∞)|Gg = 1] = E[Yt(∞)− Yt−1(∞)|G = ∞]
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Parallel Trends based on not-yet treated groups

Assumption (Parallel Trends based on “Not-Yet-Treated” Groups)
For each (s, t) ∈ {2, . . . , T} × {2, . . . , T}, g ∈ G such that t ≥ g, s ≥ t

E[Yt(∞)− Yt−1(∞)|Gg = 1] = E[Yt(∞)− Yt−1(∞)|Ds = 0,Gg = 0].

20



ATT(g,t) Estimand: “never-treated” as comparison group

■ Under no-anticipation and PT based on “never-treated”, we have

ATTnevunc(g, t) = E[Yt − Yg−1|Gg = 1]− E[Yt − Yg−1|G = ∞].

■ This looks very similar to the two periods, two-groups DiD result without covariates.

■ The difference is now we take a “long difference”.

■ Same intuition carries, though!

■ This result appears in Callaway and Sant’Anna (2021) and Sun and Abraham (2021).
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ATT(g,t) Estimand: not-yet treated as comparison group

■ If one wants to use the units that have not yet been exposed to treatment by time t,
we have a different estimand:

ATTnyunc(g, t) = E[Yt − Yg−1|Gg = 1]− E[Yt − Yg−1|Dt = 0,Gg = 0].

■ This looks similar to the two periods, two-groups DiD result without covariates, too.

■ The difference is that we now take a “long difference” and the comparison group
changes over time.

■ Same intuition carries, though!

■ This result appears in Callaway and Sant’Anna (2021) and de Chaisemartin and
D’Haultfœuille (2020), though de Chaisemartin and D’Haultfœuille (2020) focus
exclusively on instantaneous treatment effects, i.e., the case with g = t.
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What if we want to allow for
covariate-specific trends?
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Parallel trend assumption based on a “never treated” group

Assumption (Conditional Parallel Trends based on a “never-treated”)
For each t ∈ {2, . . . , T}, g ∈ G such that t ≥ g,

E[Yt(∞)− Yt−1(∞)|X,Gg = 1] = E[Yt(∞)− Yt−1(∞)|X,G = ∞] a.s..
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Parallel Trends based on not-yet treated groups

Assumption (Conditional Parallel Trends based on “Not-Yet-Treated” Groups)
For each (s, t) ∈ {2, . . . , T} × {2, . . . , T}, g ∈ G such that t ≥ g, s ≥ t

E[Yt(∞)− Yt−1(∞)|X,Gg = 1] = E[Yt(∞)− Yt−1(∞)|X,Ds = 0,Gg = 0] a.s..
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Identification results - never treated as comparison group

■ Under these assumptions, Callaway and Sant’Anna (2021) proved that, for all g and t
such that g ∈ G ≡ G∩ {2, 3, . . . , T}, t ∈ {2, . . . , T} and t ≥ g, ATT (g, t) is
nonparametrically identified by the DR estimand

ATTnevdr (g, t) = E


 Gg

E [Gg]
−

pg (X) C
1− pg (X)

E

[
pg (X) C
1− pg (X)

]
(

Yt − Yg−1 −mnev
g,t, (X)

) .

where mnev
g,t (X) = E [Yt − Yg−1|X,G = ∞] .

■ Extends Heckman, Ichimura and Todd (1997), Abadie (2005) and Sant’Anna and Zhao
(2020).
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Identification results - not-yet treated as comparison group

■ If one invokes the Conditional PTA based on “not-yet-treated” units, Callaway and
Sant’Anna (2021) proved that, for all g and t such that g ∈ G , t ∈ 2, . . . , T and t ≥ g,

ATTnydr (g, t) = E


 Gg

E [Gg]
−

pg,t (X) (1− Dt)
1− pg,t (X)

E

[pg,t (X) (1− Dt)
1− pg,t (X)

]
(

Yt − Yg−1 −mny
g,t (X)

) .

where mny
g,t (X) = E [Yt − Yg−1|X,Dt = 0,Gg = 0] . .

■ Extends Heckman et al. (1997), Abadie (2005) and Sant’Anna and Zhao (2020).
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Aggregation



Second step: Aggregation
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Summarizing ATT(g,t)

■ ATT(g, t) are very useful parameters that allow us to understand treatment effect
heterogeneity better.

■ We can also use these to summarize the treatment effects across groups, time since
treatment, and calendar time.

■ Practitioners routinely attempt to pursue this avenue:
▶ Run a TWFE “static” regression and focus on the β associated with the treatment.

▶ Run a TWFE event-study regression and focus on β associated with the treatment leads
and lags.

▶ Collapse data into a 2 x 2 Design (average pre and post-treatment periods).
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Summarizing ATT(g,t)

■ We propose taking weighted averages of the ATT(g, t) of the form:
T

∑
g=2

T

∑
t=2

1{g ≤ t}wgtATT(g, t)

■ The two simplest ways of combining ATT(g, t) across g and t are, assuming
no-anticipation,

θOM :=
2

T(T− 1)

T

∑
g=2

T

∑
t=2

1{g ≤ t}ATT(g, t) (1)

and

θOW :=
1
κ

T

∑
g=2

T

∑
t=2

1{g ≤ t}ATT(g, t)P(G = g|X ̸= 1) (2)

■ Problem: They “overweight” units that have been treated earlier
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Summarizing ATT(g,t): Cohort-heterogeneity

■ More empirically motivated aggregations do exist!

■ Average effect of participating in the treatment that units in group g experienced:

θS(g) =
1

T− g+ 1

T

∑
t=2

1{g ≤ t}ATT(g, t)
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Summarizing ATT(g,t): Calendar time heterogeneity

■ Average effect of participating in the treatment in time period t for groups that have
participated in the treatment by time period t

θC(t) =
T

∑
g=2

1{g ≤ t}ATT(g, t)P(G = g|G ≤ t,G ̸= ∞)
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Summarizing ATT(g,t): Event-study / dynamic treatment effects

■ The effect of a policy intervention may depend on the length of exposure to it.

■ Average effect of participating in the treatment for the group of units that have been
exposed to the treatment for exactly e time periods

θD(e) =
T

∑
g=2

1{g+ e ≤ T}ATT(g,g+ e)P(G = g|G+ e ≤ T,G ̸= ∞)

■ This is perhaps the most popular summary measure currently adopted by empiricists.
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Summarizing ATT(g,t): Event-study

■ When we compare θD(e) across two relative times e1 and e2, we have that

θD(e2)− θD(e1)

=
T
∑
g=2

1{g+ e1 ≤ T} (ATT(g,g+ e2)− ATT(g,g+ e1))︸ ︷︷ ︸
dynamic effect for group g

P(G = g|G+ e1 ≤ T)

+
T
∑
g=2

1{g+ e2 ≤ T}ATT(g,g+ e2) (P(G = g|G+ e2 ≤ T)− P(G = g|G+ e1 ≤ T))︸ ︷︷ ︸
differences in weights

−
T
∑
g=2

1{T− e2 ≤ g ≤ T− e1}︸ ︷︷ ︸
different composition of groups

ATT(g,g+ e2)P(G = g|G+ e2 ≤ T)

■ Balance sample in “event time” to avoid compositional changes that complicate comparisons across e.
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Third step: Estimation and Inference
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Estimation and Inference



Estimation

■ Identification results suggest a simple two-step estimation procedure.

■ Estimate the generalized propensity score pg (X) by p̂g (X).

■ Estimate outcome regression models for the comparison group, mC
g−1(X) and mC

t (X),
by m̂C

g−1 (X), and m̂C
t (X), respectively.

■ With these estimators on hand, estimate the ATT(g, t) using the plug-in principle
(you can use IPW, OR, or DR estimands!).

■ Callaway and Sant’Anna (2021) provides high-level conditions that these first-step
estimators have to satisfy.

▶ Similar to Chen, Linton and Van Keilegom (2003) and Chen, Hong and Tarozzi (2008)
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Inference

■ Under relatively weak regularity conditions,

√
n
(
ÂTT(g, t)− ATT(g, t)

)
=

1√
n

n

∑
i=1

ψgt(Wi) + op(1)

■ From the above asymptotic linear representation and a CLT, we have
√
n
(
ÂTT(g, t)− ATT(g, t)

)
d→ N(0,Σg,t)

where Σgt = E[ψgt(W)ψgt(W)′].

■ Above result ignores the dependence across g and t, and “multiple-testing”
problems.
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Simultaneous Inference

■ Let’s simplify and ignore anticipation issues for the moment.

■ Let ATTg≤t and ÂTTg≤t denote the vector of ATT(g, t) and ÂTT(g, t), respectively, for all
g = 2, . . . , T and t = 2, . . . , T with g ≤ t.

■ Analogously, let Ψg≤t denote the collection of ψgt across all periods t and groups g
such that g ≤ t.

■ Hence, we have √
n(ÂTTg≤t − ATTg≤t)

d−→ N(0,Σ)

where
Σ = E[Ψg≤t(W)Ψg≤t(W)′].

38



Simultaneous confidence intervals

■ How to construct simultaneous confidence intervals?

■ We propose the use of a simple multiplier bootstrap procedure.

■ Let Ψ̂g≤t(W) denote the sample-analogue of Ψg≤t(W).

■ Let {Vi}ni=1 be a sequence of iid random variables with zero mean, unit variance, and
bounded third moment, independent of the original sample {Wi}ni=1

■ ÂTT∗g≤t , a bootstrap draw of ÂTTg≤t, via

ÂTT∗g≤t = ÂTTg≤t + En
[
V · Ψ̂g≤t(W)

]
. (3)
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Multiplier Bootstrap procedure

1. Draw a realization of {Vi}ni=1.

2. Compute ÂTT∗g≤t as in (3), denote its (g, t)-element as ÂTT
∗
(g, t), and form a bootstrap draw of its

limiting distribution as
R̂∗ (g, t) =

√
n
(
ÂTT∗ (g, t)− ÂTT (g, t)

)
3. Repeat steps 1-2 B times.
4. Estimate Σ1/2 (g, t) by

Σ̂1/2 (g, t) = (q0.75 (g, t)− q0.25 (g, t)) / (z0.75 − z0.25)

5. For each bootstrap draw, compute t− test∗g≤t = max(g,t)
∣∣R̂∗ (g, t)∣∣ Σ̂ (g, t)−1/2 .

6. Construct ĉ1−α as the empirical (1− a)-quantile of the B bootstrap draws of t− test∗g≤t.
7. Construct the bootstrapped simultaneous confidence intervals for ATT (g, t), g ≤ t, as

Ĉ (g, t) = [ÂTT (g, t)± ĉ1−α · Σ̂ (g, t)−1/2 /
√
n].
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Simultaneous cluster-robust confidence intervals

■ Sometimes, one wishes to account for clustering.

■ This is straightforward to implement with the multiplier bootstrap described above.

■ Example: allow for clustering at the state level

▶ draw a scalar Us S times – where S is the number of states

▶ set Vi = Us for all observations i in state s

■ This procedure is justified, provided that the number of clusters is “large”.
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Let’s go back to the ACA Medicaid
Expansion Example
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ACA Medicaid Expansion

■ 23 states expanded circa 2014 - 4 did it earlier (ACA is effectively relabeled), we drop
them.

■ 3 states expanded circa 2015

■ 2 states expanded circa 2016

■ 1 states expanded circa 2017

■ 2 states expanded circa 2019

■ 16 states haven’t expanded by 2019

Challenge setup to make inference on ATT(g,t)’s per se
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ACA Medicaid Expansion: Not-yet-treated as comparison group
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ACA Medicaid Expansion: TWFE Event-study specification

Figure 1: Health Insurance Rate (low-income Childless Adults Aged 25-64)

Static TWFE Coefficient:
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ACA Medicaid Expansion: CS Event-study specification

Figure 2: Results using “never-treated” as a comparison group

Average of post−treatment ES coef's:
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ACA Medicaid Expansion: CS Event-study specification

Figure 3: Results using “not-yet-treated” as comparison groups

Average of post−treatment ES coef's:
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Take-way messages



DiD procedures multiple time periods

■ With multiple time periods and variations in treatment timing, TWFE does not respect our
assumptions:

▶ OLS is “variational hungry” and makes many comparisons of means

▶ Some of these comparisons are bad: use already-treated units as a comparison group
to “later-treated” groups

▶ This can lead to “negative weighting” problems.

■ Solution to the TWFE problem is simple
▶ Separate the identification, aggregation, and estimation/inference parts of the problem

■ Use ATT(g, t) as a building block so we can transparently see how things are constructed

■ Many different aggregation schemes are possible: they deliver different parameters!

■ Can allow for covariates via regressions adjustments, IPW, and DR.
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Empirical Application



Empirical Application

■ Let’s switch to R/Stata so we can see how to do all these things!

49



References



Abadie, Alberto, “Semiparametric Difference-in-Differences Estimators,” The Review of
Economic Studies, 2005, 72 (1), 1–19.

Borusyak, Kirill, Xavier Jaravel, and Jann Spiess, “Revisiting Event Study Designs: Robust
and Efficient Estimation,” Review of Economic Studies, 2024, Forthcoming.

Callaway, Brantly and Pedro H. C. Sant’Anna, “Difference-in-Differences with Multiple
Time Periods,” Journal of Econometrics, 2021, 225 (2), 200–230.

Chen, Xiaohong, Han Hong, and Alessandro Tarozzi, “Semiparametric efficiency in GMM
models with auxiliary data,” The Annals of Statistics, apr 2008, 36 (2), 808–843.
, Oliver Linton, and Ingrid Van Keilegom, “Estimation of semiparametric models when
the criterion function is not smooth,” Econometrica, 2003, 71 (5), 1591–1608.

de Chaisemartin, Clément and Xavier D’Haultfœuille, “Two-Way Fixed Effects Estimators
with Heterogeneous Treatment Effects,” American Economic Review, 2020, 110 (9),
2964–2996.
and , “Difference-in-Differences Estimators of Intertemporal Treatment Effects,” The
Review of Economics and Statistics, 2024, Forthcoming, 1–45.



Gardner, John, “Two-Stage Difference-in-Differences,” Technical Report, Working Paper
2021.

Heckman, James J., Hidehiko Ichimura, and Petra E. Todd, “Matching As An Econometric
Evaluation Estimator: Evidence from Evaluating a Job Training Programme,” The Review
of Economic Studies, October 1997, 64 (4), 605–654.

Sant’Anna, Pedro H. C. and Jun Zhao, “Doubly robust difference-in-differences estimators,”
Journal of Econometrics, November 2020, 219 (1), 101–122.

Sun, Liyan and Sarah Abraham, “Estimating Dynamic Treatment Effects in Event Studies
with Heterogeneous Treatment Effects,” Journal of Econometrics, 2021, 225 (2).

Wooldridge, Jeffrey M, “Two-Way Fixed Effects, the Two-Way Mundlak Regression, and
Difference-in-Differences Estimators,” Working Paper, 2021, pp. 1–89.

Wooldridge, Jeffrey M., “Simple approaches to nonlinear difference-in-differences with
panel data,” Econometrics Journal, 2023, Forthcoming.

49


	Summary of previous lecture
	Stylized example using simulated data

	Addressing the TWFE problems
	Digging into Callaway and Sant'Anna (2021)
	Identification
	Aggregation
	Estimation and Inference
	Take-way messages
	Empirical Application
	Appendix
	References


	anm0: 
	0.85: 
	0.84: 
	0.83: 
	0.82: 
	0.81: 
	0.80: 
	0.79: 
	0.78: 
	0.77: 
	0.76: 
	0.75: 
	0.74: 
	0.73: 
	0.72: 
	0.71: 
	0.70: 
	0.69: 
	0.68: 
	0.67: 
	0.66: 
	0.65: 
	0.64: 
	0.63: 
	0.62: 
	0.61: 
	0.60: 
	0.59: 
	0.58: 
	0.57: 
	0.56: 
	0.55: 
	0.54: 
	0.53: 
	0.52: 
	0.51: 
	0.50: 
	0.49: 
	0.48: 
	0.47: 
	0.46: 
	0.45: 
	0.44: 
	0.43: 
	0.42: 
	0.41: 
	0.40: 
	0.39: 
	0.38: 
	0.37: 
	0.36: 
	0.35: 
	0.34: 
	0.33: 
	0.32: 
	0.31: 
	0.30: 
	0.29: 
	0.28: 
	0.27: 
	0.26: 
	0.25: 
	0.24: 
	0.23: 
	0.22: 
	0.21: 
	0.20: 
	0.19: 
	0.18: 
	0.17: 
	0.16: 
	0.15: 
	0.14: 
	0.13: 
	0.12: 
	0.11: 
	0.10: 
	0.9: 
	0.8: 
	0.7: 
	0.6: 
	0.5: 
	0.4: 
	0.3: 
	0.2: 
	0.1: 
	0.0: 


