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Motivation: Application



Application - Background

■ Reducing police misconduct and the use of force is an important policy objective.

■ Wood, Tyler and Papachristos (2020a, PNAS) studied a randomized rollout of a
procedural justice training program for police officers.

▶ Emphasized respect, neutrality, and transparency in the exercise of authority

■ The original study found large & significant reductions in complaints/use of force.

■ In Wood, Tyler, Papachristos, Roth and Sant’Anna (2020b), we re-analyzed data using
the method of Callaway and Sant’Anna (2021).

▶ No significant impacts on complaints; borderline significant effects on force; but CIs for
all outcomes were wide
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Is the sampling approach to inference here adequate?
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Can we do better than DiD when treatment timing is random?
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In Roth and Sant’Anna (2023b), “Efficient Estimation for Staggered
Rollout Designs”, we tackle these problems!
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Population: Chicago Police officers that are not on special forces
(excluding those selected into the pilot program)
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Table 1: Estimates and 95% CIs as a Percentage of Pre-treatment Means
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Introduction



Introduction

■ We are often interested in the causal effect of a treatment that is rolled out to
different units at different times.

■ Staggered rollouts are often analyzed using methods that extend the simple
two-period difference-in-differences estimator to the staggered setting.

■ This includes two-way fixed effects (TWFE) regressions and recent alternatives that
deal better with treatment effect heterogeneity
(e.g. Callaway and Sant’Anna, 2021; Sun and Abraham, 2021; de Chaisemartin and D’Haultfœuille, 2020).

■ The validity of these estimators depends on a parallel trends assumption:

E
[
Yi,t(∞)− Yi,t−1(∞)|Gi = g

]
= E

[
Yi,t(∞)− Yi,t−1(∞)|Gi = g̃

]
for appropriate g̃′s.
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Introduction

■ But the justification for parallel trends is often (quasi-) random treatment timing
■ In some cases, treatment timing can be randomized by design

▶ E.g., our application to the randomized rollout of a police training program in Chicago
■ In other cases, treatment timing is argued to be “as good as random”

▶ “We exploit the random timing of sudden parental deaths due to car crashes, other
accidents, and unexpected heart attacks.” (Druedahl and Martinello, 2019)

▶ Other examples include quasi-random timing of health shocks (Fadlon and Nielsen, 2021),
parental deaths (Nekoei and Seim, 2019), social security office closings (Deshpande and Li,
2019), stimulus payments (Parker, Souleles, Johnson and McClelland, 2013)

■ If we have random treatment timing, can we get more efficient estimators than DiD?
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How to answer this question?

■ Roth and Sant’Anna (2023b) introduce a design-based framework formalizing the
notion of random treatment timing.

■ We consider the estimation of a large class of causal parameters that aggregate
average effects across periods and cohorts.

■ We solve for the efficient estimator in a class of estimators that nests existing DiD
approaches.

▶ Efficiency gains can be large: reductions of SEs of 2X (or more) in Monte
Carlos/Application!

■ We provide both t-based and permutation-test-based methods for randomization
inference.
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Framework



Framework

■ Finite population of units: i = 1, ...,N

■ T periods: t = 1, ..., T

■ Unit i is first treated at period Gi ∈ G ⊂ {1, ..., T} ∪ {∞}

▶ Gi = ∞ denotes never treated.
▶ Treatment is an “absorbing state” (no switching on-off).

■ Potential outcomes: Yi,t(g) = i’s outcome in t if first treated at g

■ We observe Yi,t = ∑g 1[Gi = g]Yi,t(g)

■ Adopt a design-based framework: Yi,t(·) and Ng = ∑i 1[Gi = g] treated as fixed, G is
stochastic.
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Background on design-based approaches (part 1)

■ Two alternative approaches to accounting for uncertainty about causal parameters:
▶ Sampling-based: Imagine a super-population from which we draw a small fraction of
units. The uncertainty reflects that we draw different units in each sampling draw.

▶ Design-based: Finite population is fixed. The uncertainty reflects that units are assigned
to different treatment cohorts in different draws.

■ We discuss some of this in Lecture 3 when we talked about inference.

■ Design-based approach attractive when it is hard to imagine the “super-population”.
▶ E.g. if states or counties are units of observation, or one has admin data on the full
population (Manski and Pepper, 2018; Abadie, Athey, Imbens and Wooldridge, 2020).

■ This has prompted a lot of recent work considering a design-based approach in
statistics/econometrics (Imbens and Rubin, 2015; Athey and Imbens, 2022; Abadie et al., 2020;
Bojinov, Rambachan and Shephard, 2021; Rambachan and Roth, 2022; Xu, 2021).
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Background on design-based approaches (part 2)

■ Design-based approaches are also useful for thinking about finite-sample properties
of permutation tests (aka Fisher Randomization Tests).

■ And as we’ll show, there are nice connections between our setting and design-based
work on covariate-adjustment in randomized experiments.

■ That said, the approaches are not so different:
Even if the sample is drawn from superpopulation, estimators are valid for Sample
Average Treatment Effect (SATE).

■ But more work to be done connecting efficiency results in design-based and
sampling-based frameworks

12



Table 1: Design-based uncertainty with four time periods and three different treatment cohorts

Actual Sample Alternative Sample I Alternative Sample II …
Unit Yi,t(2) Yi,t(3) Yi,t(4) Gi Yi,t(2) Yi,t(3) Yi,t(4) Gi Yi,t(2) Yi,t(3) Yi,t(4) Gi …

1 ? ? ✓ 4 ? ✓ ? 3 ? ? ✓ 4 …
2 ✓ ? ? 2 ? ✓ ? 3 ? ✓ ? 3 …
3 ? ? ✓ 4 ? ? ✓ 4 ✓ ? ? 2 …
4 ? ✓ ? 3 ✓ ? ? 2 ? ? ✓ 4 …
...

...
...

...
...

...
...

...
...

...
...

... …
N ✓ ? ? 2 ✓ ? ? 2 ? ? ✓ 3 …
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Two Key Assumptions

Assumption (Random treatment timing)

Let G = (G1, ...,GN). Then P (G = g̃) = (∏g∈G Ng!)/N! if ∑i 1[g̃i = g] = Ng for all g, and
zero otherwise.

■ Any permutation of treatment timing that preserves group size is equally likely

Assumption (No anticipation)

For all i,t and g,g′ > t, Yi,t(g) = Yi,t(g′).

■ No Anticipation may fail if treatment timing is announced in advance (Malani and Reif,
2015), as we have discussed this several times already!

14



Comments on random treatment timing

■ Assumption 1 (Random treatment timing) is usually stronger than parallel trends.
▶ At least for a fixed set of units.

■ Thus, Assumption 1 may not be plausible in all observational settings where parallel
trends is used.

■ But random timing appears to be the justification for parallel trends in many cases.

■ Without random timing, parallel trends will typically be sensitive to functional form
as discussed in Extra Lecture 1 (Roth and Sant’Anna, 2023a).

■ Roth and Sant’Anna (2023b) propose several pre-tests to assess the plausibility of
the Random treatment timing assumptions.

▶ See R package staggered. The function “balance_checks” check for the plausibility of
random timing assumption.
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Special Case: 2-Period Model

■ Suppose T = 2 and G = {2,∞}, so some units are treated in period 2 and some are
never treated.

■ Under Randomization and No Anticipation, this is analogous to a cross-sectional
random experiment with Yi,t=2 the outcome and Yi,t=1 playing the role of a fixed
covariate.

▶ Yi = Yi,t=2;

▶ Xi = Yi,t=1 ≡ Yi,t=1(∞)

▶ Di = 1[Gi = 2]

■ We will come back to this example throughout the talk to provide intuition and
connect to the literature.
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Causal parameters of interest



Estimands

■ With staggered treatment timing, there are many possible causal estimands.
Let’s consider a flexible class of possible aggregations.

■ Building block: let τt,gg′ be average effect on outcome in period t of switching
treatment from g′ to g:

τt,gg′ ≡ ATE(g′,g, t) = 1
N ∑

i
Yi,t(g)− Yi,t(g′).

■ This is why, in Lecture 1, we spent some time discussing this type of parameter!

■ Consider a (scalar) estimand that aggregates this building blocks:

θ = ∑
t,gg′

at,gg′τt,gg′
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Special Case: 2-Period Model

■ Set-up: Two periods (T = 2). Units treated in period 2 or never (G = {2,∞})

■ Target parameter: Average treatment effect (ATE) in period 2:

θ = τ2,2∞ =
1
N ∑

i
Yi,t=2(2)− Yi,t=2(∞)

18



Estimands in the Staggered Case

■ In the staggered case, there are many possible ways of aggregating effects across
cohorts and time periods.

■ One useful parameter is ATE(g, t), the average effect at time t of being treated at g
relative to being never treated:

ATE(g, t) = 1
N ∑

i
Yi,t(g)− Yi,t(∞).

■ Following Callaway and Sant’Anna (2021), one might also be interested in summary
parameters that are weighted averages of ATE(g, t) along different dimensions.

■ In Roth and Sant’Anna (2023b), we change the order of g and t; don’t ask me why!
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■ The simple weighted average averages ATE(g, t) across all (g, t) pairs with t ≥ g:

θsimple =
1

∑t ∑g:g≤t Ng
∑
t

∑
g:g≤t

NgATE(g, t).

■ Let’s define the time-specific and cohort-specific weighted averages as

θt =
1

∑g:g≤t Ng
∑
g:g≤t

NgATE(g, t) and θg =
1

T− g+ 1 ∑
t:t≥g

ATE(g, t),

and introduce the calendar and cohort summary parameters

θcalendar =
1
T ∑

t
θt and θcohort =

1
∑g:g ̸=∞ Ng

∑
g:g ̸=∞

Ngθg.

■ Finally, let’s introduce event-study parameters that aggregate the treatment effects
at a given lag l since treatment

θESl =
1

∑g:g+l≤T Ng
∑

g:g+l≤T
NgATE(g+ l,g).
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Class of estimators we consider



Estimators

■ Define θ̂0 to be the sample plug-in estimator for θ:

θ̂0 = ∑
t,gg′

at,gg′ τ̂t,gg′ ,

where τ̂t,gg′ = Ytg − Ytg′ and Ytg is the sample mean of Yi,t for cohort g.

■ Let’s will consider the class of estimators of the form

θ̂β = θ̂0 − X̂′β,

where X̂ is a vector guaranteed to be mean-zero by No Anticipation.

■ Formally, each element of X̂ aggregates differences between groups before either is
treated

X̂j = ∑
(t,g,g′):g,g′>t

bjt,gg′ τ̂t,gg′ .
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Example: 2 period Example

■ Our proposed estimator is of the form

θ̂β = θ̂0 − βX̂
= (Y22 − Y2∞)︸ ︷︷ ︸

Post-treatment diff

−β (Y12 − Y1∞)︸ ︷︷ ︸
Pre-treatment diff

■ The difference-in-differences estimator corresponds with β = 1.

■ The simple difference-in-means estimator corresponds with β = 0

■ For β ∈ (0, 1), θ̂β is a weighted average of DiD and DiM

■ More generally, θ̂β = θ̂0 − X̂′β is isomorphic to class of regression adjusted
estimators in Freedman (2008b,a); Lin (2013), treating Yi,t=1 as a fixed covariate.
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Estimators in this class in the staggered case

■ Several previously proposed estimators correspond with θ̂1 = θ̂0 − X̂ for an
appropriately specificied θ̂0 and X̂.

■ Callaway and Sant’Anna (2021) consider estimators that aggregate 2x2 diff-in-diff
estimators:

τ̂CSw = ∑
t,g
wt,g

(Yt,g − Yt,∞)︸ ︷︷ ︸
Diff in period t

− (Yg−1,g − Yg−1,∞)︸ ︷︷ ︸
Diff in period g−1

 .

■ This can be viewed as an estimator of the form θ̂0 − X̂, where

θ̂0 = ∑
t,g
wt,gτ̂t,g∞ and X̂ = ∑

t,g
wt,gτ̂g−1,g∞
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Related Staggered Estimators

■ Several variants to the Callaway and Sant’Anna (2021) estimator have been proposed
that can likewise be cast into this class

■ Callaway and Sant’Anna (2021) propose an alternative estimator using not-yet-treated
instead of never-treated as the comparison

■ Sun and Abraham (2021) propose a similar estimator using last-to-be-treated as the
comparison

■ de Chaisemartin and D’Haultfœuille (2020)’s estimator equivalent to Callaway and
Sant’Anna (2021) estimator for a particular choice of weights, corresponding with
event-study at lag 0
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TWFE Estimators

■ It is common to estimate the parameter θ̂TWFE from the OLS regression:

Yi,t = αi + λt + Di,tθTWFE + ϵi,t

where Di,t = 1[Gt ≤ t] is an indicator for having received treatment.

■ Athey and Imbens (2022) show that θ̂TWFE can be written in the form:

θ̂TWFE = ∑
t

∑
(g,g′):

min(g,g′)≤t

γt,gg′ τ̂t,gg′ − ∑
t

∑
(g,g′):

min(g,g′)>t

γt,gg′ τ̂t,gg′

■ Hence, the TWFE estimator can able be written in the form θ̂0 − X̂.

■ However, the weights γt,gg′ may be negative, and so it is not obvious that the
estimand θ is interesting under staggered treatment.
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The efficient estimator



Unbiasedness

Proposition (Unbiasedness)
The estimator θ̂β = θ̂0 − X̂′β is unbiased over the randomization distribution for any β,

E
[
θ̂β

]
= θ for all β.

Proof sketch:

■ By usual arguments, under randomization

E
[
Yt,g
]
= Ef [Yi,t(g)] .

■ Since θ̂0 is a linear combination of sample means, it follows that E
[
θ̂0
]
= θ

■ Likewise, E
[
X̂
]
= 0 under no anticipation
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Efficient Estimator

Proposition
The variance of θ̂β = θ̂0 − X̂′β is uniquely minimized at

β∗ = (Var
[
X̂
]

︸ ︷︷ ︸
=VX̂

)−1 Cov
[
X̂, θ̂0

]
︸ ︷︷ ︸

=VX̂,θ̂0

if VX̂ is positive definite.

Proof sketch: By definition,

argmin
β

Var
[
θ̂0 − X̂′β

]
= argmin

β
E

[(
(θ̂0 − E

[
θ̂0
]
)− (X̂− E

[
X̂
]
)′β
)2]

.

This is just OLS! The solution follows immediately from the usual OLS formula.
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Solving for the Variance

Recall that θ̂0 and X̂ are both linear functions of cohort sample means Yg.
Can write them as:

θ̂0 = ∑
g
Aθ,gYg and X̂ = ∑

g
A0,gYg.

Proposition

Var
[(

θ̂0
X̂

)]
=

(
∑g Ng−1 Aθ,g Sg A′θ,g−N−1Sθ, ∑g Ng−1 Aθ,g Sg A′0,g

∑g Ng−1 A0,g Sg A′θ,g, ∑g Ng−1 A0,g Sg A′0,g

)
,

where Sg = Varf [Yi(g)], Sθ = Varf
[
∑g Aθ,gYi(g)

]
.

■ Depends on estimable variances of potential outcomes (Sg), and
non-estimable variances of treatment effects Sθ .

■ But β∗ depends only on estimable quantities, not on heterogeneous treatment effects. 28



Example: 2 period case

■ Recall that

θ̂β = θ̂0 − βX̂
= (Y22 − Y2∞)︸ ︷︷ ︸

Post-treatment diff

−β (Y12 − Y1∞)︸ ︷︷ ︸
Pre-treatment diff

■ Thus β = 1 is DiD and β = 0 is DiM

■ Our results imply that the efficient β∗ is equal to N∞
N β2 +

N2
N β∞, where βg is the

coefficient from a regression of Yi2(g) on Yi1 (and a constant); see Lin (2013) as well.

■ Intuitively, put more weight on lagged outcomes if they are more predictive of
current outcomes:

▶ If Yi2(g) and Yi1 are uncorrelated, then DiM (β∗ = 0) is optimal;

▶ If correlation is such that β2 = β∞ = 1, then DiD (β∗ = 1) is optimal. 29



Properties of the Plug-In Efficient Estimator



The Plug-In Estimator

■ So far we have solved for the efficient β∗, but it depends on the variances of
potential outcomes Sg, which are typically not known ex-ante.

■ Consider the feasible plug-in efficient estimator based on β̂∗, which replaces Sg with
a sample analog Ŝg in the expression for β∗.

▶ Ŝg = 1/(Ng − 1)∑i 1[Gi = g](Yi − Yg)(Yi − Yg)′.

■ Will show that in large populations the plug-in estimator θ̂β̂∗ has similar properties
to the “oracle” estimator θ̂β∗ .
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Large population asymptotics

■ Consider a sequence of populations in which Ng grows large for all g, satisfying
certain regularity conditions

Assumption

(i) Cohort shares converge to a constant:
• For all g ∈ G , Ng/N→ pg ∈ (0, 1).

(ii) Variances of potential outcomes converge to a constant:
• For all g,g′ , Sg and Sgg′ have limiting values denoted S∗g and S∗gg′ , respectively, with S∗g positive
definite.

(iii) No individual dominates the variance of potential outcomes (Lindeberg-type condition):
• maxi,g ||Yi(g)− Y(g)||2/N→ 0.
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Asymptotic Properties of the Plug-In Estimator

■ Under the given asymptotic conditions, the plug-in efficient estimator is
asymptotically normally distributed with the same variance as the “oracle” efficient
estimator.

Proposition

Under the given asymptotic conditions,
√
N(θ̂β̂∗ − θ) →d N

(
0, σ2∗

)
,

where
σ2∗ = lim

N→∞
NVar

[
θ̂β∗

]
.

Proof sketch: Apply CLT from Li and Ding (2017) to show that (θ̂0, X̂) asymptotically
normal, then apply Slutsky’s lemma plus convergence of β̂∗ →p β∗
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Inference



Covariance Estimation

■ As is common in finite-population settings, the variance of θ̂β̂∗ can only be estimated
conservatively.

■ The issue is that the variance of θ̂β̂∗ contains the term −Sθ = −Varf
[
∑g Aθ,gYi(g)

]
.

This is not consistently estimable since it depends on covariances of potential
outcomes that are never observed together.

■ A natural conservative approach is the Neyman-style variance estimate, which
ignores Sθ and replaces Sg with Ŝg in the variance formula.

■ Roth and Sant’Anna (2023b) shows that a less conservative variance estimator can
be obtained by estimating the part of Sθ explained by X̂.
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What about Fisher Randomization Tests
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Fisher Randomization Tests

■ An alternative approach to inference uses Fisher Randomization Tests (FRTs)

■ We show that an FRT using a studentized version of the efficient estimator has dual
advantages :
1. has exact size under the sharp null of no treatment effects for all units;

2. is asymptotically valid for the weak null that θ = 0.

■ Studentization is key!
▶ In general, (un-studentized) FRTs may not have the correct size for such weak null
hypotheses even asymptotically (Wu and Ding, 2020).

▶ Roth and Sant’Anna (2023b) builds on Wu and Ding (2020) and Zhao and Ding (2020) to
show that studentization bypasses this problem: FRT is asy. equiv. to testing that 0 falls
within the t-based confidence interval CI∗∗
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Fisher Randomization Tests

The following regularity condition imposes that the means of the potential outcomes
have limits and that their fourth moment is bounded.

Assumption
Suppose that for all g, limN→∞ Ef [Yi(g)] = µg < ∞, and there exists L < ∞ such that
N−1 ∑i ||Yi(g)− Ef [Yi(g)] ||4 < L for all N.
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Fisher Randomization Tests

With this assumption in hand, we can make precise the sense in which the FRT is
asymptotically valid under the weak null.

Proposition

Suppose Assumptions 1-4 hold. Let tπ = (θ̂∗/ŝe)π be the studentized statistic under
permutation π. Then tπ →d N (0, 1), PG-almost surely. Hence, if pFRT is the p-value from
the FRT associated with |tπ|, then under H0 : θ = 0,

lim
N→∞

P(pFRT ≤ α) ≤ α,

PG-almost surely, with equality if and only if S∗θ = 0.
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Fisher Randomization Tests for Callaway and Sant’Anna (2021)

■ Nothing prevents us to adopt this randomization-based approach to inference for
the Callaway and Sant’Anna (2021) estimators.

■ Recall that it is a special case of Roth and Sant’Anna (2023b) when β = 1.

■ Thus, one can use this approach to conduce “design-based” inference for Callaway
and Sant’Anna (2021).

■ Although, technically speaking, one (implicitly) imposes random treatment timing,
Rambachan and Roth (2022)’s results suggest that the results are still valid (but
conservative) without that assumption.
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Simulations



Simulations

Monte Carlo 1
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Monte Carlo 2

■ Based on our application to the procedural justice training program for police
officers studied in Wood et al. (2020a)

▶ Yi,t is complaints against officer i in period t
▶ Gi is the date on which officer i is first-trained

■ Run simulations under sharp null in which Yi,t(g) is equal to the observed outcome
in the data for all g

▶ In paper, also consider specifications with heterogeneous treatment effects.

■ Simulate Gi so that the number treated Ng match the data
▶ We have 72 periods, 48 cohorts, 7785 officers. Cohort sizes range from 6 to 642.

■ Compare plug-in efficient estimator to Callaway and Sant’Anna (2021) and Sun and
Abraham (2021) estimators for several aggregation schemes (simple, calendar, cohort,
and instantaneous event-study)
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Results

Estimator Estimand Bias Coverage FRT Size Mean SE SD

PlugIn calendar 0.00 0.93 0.06 0.27 0.29
PlugIn cohort 0.00 0.92 0.06 0.24 0.24
PlugIn ES0 0.01 0.94 0.05 0.26 0.27
PlugIn simple 0.00 0.92 0.06 0.22 0.22
CS calendar 0.00 0.94 0.05 0.55 0.55
CS cohort -0.01 0.95 0.05 0.41 0.41
CS/dCDH ES0 0.01 0.94 0.07 0.36 0.36
CS simple -0.01 0.96 0.05 0.41 0.40
SA calendar 0.06 0.93 0.04 1.30 1.30
SA cohort 0.05 0.92 0.05 1.34 1.38
SA ES0 0.03 0.94 0.06 0.83 0.89
SA simple 0.06 0.92 0.04 1.46 1.49

41



Results

Ratio of SD to Plug-In

Estimand CS SA

calendar 1.92 4.57
cohort 1.67 5.68
ES0 1.36 3.33
simple 1.82 6.76
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Application



Application - Background

■ Reducing police misconduct and use of force is an important policy objective.
■ Wood et al. (2020a, PNAS) studied a randomized roll out of a procedural justice
training program for police officers

▶ Emphasized respect, neutrality, and transparency in the exercise of authority
■ In Wood et al. (2020b), we re-analyzed data using the method of Callaway and
Sant’Anna (2021)

▶ No significant impacts on complaints; borderline significant effects on force; but CIs for
all outcomes were wide
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Population: Chicago Police officers that are not on special forces
(excluding those selected into the pilot program)
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Table 4: Estimates and 95% CIs as a Percentage of Pre-treatment Means
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Can we assess the validity of the assumptions?
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Take-way message



Conclusion

■ When treatment timing is random, classical DiD estimators “leave too much money
on the table”.

■ Roth and Sant’Anna (2023b) show how you use additional information to “collect” the
money!

■ Estimators and inference procedures can easily used in R, via the staggered package.

■ I recommend this approach when treatment timing is (quasi-) random.
▶ But note other procedures are valid under the weaker assumption of parallel trends!

▶ Gains are coming from additional rationalization/structure of the problem!
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Monte Carlo Experiment 1

■ Based on a two-period running example.
■ Draw Yi(∞) ∼ N

(
0, Σρ

)
, where Σρ has 1’s on diagonal and ρ’s off diagonal.

▶ ρ governs the serial correlation of POs
■ Set Yi,t=2(2) = Yi,t=2(∞) + γ(Yi,t=2(∞)− Ef [Yi,t=2(∞)])

▶ γ governs the heterogeneity of treatment effects

■ We hold the POs fixed across sims, and re-draw treatment assignment across
simulation draws so that N2 are treated in period 2 and N∞ are never treated.

■ Compare performance of plug-in efficient estimator (θ̂β̂∗ ), simple difference in means
(θ̂0), and difference-in-differences (θ̂1)

■ Use ρ ∈ {0, .5, .99}, γ ∈ {0, .5} and N2 = N∞ ∈ {25, 1000}. Back
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Results

Bias SD Coverage FRT Size

N_1 N_0 rho gamma PlugIn DiD DiM PlugIn DiD DiM PlugIn DiD DiM PlugIn DiD DiM

1000 1000 0.99 0.0 0.00 0.00 −0.00 0.01 0.01 0.04 0.95 0.95 0.95 0.05 0.05 0.05
1000 1000 0.99 0.5 0.00 0.00 −0.00 0.01 0.01 0.06 0.95 0.95 0.95 0.04 0.06 0.05
1000 1000 0.50 0.0 0.00 0.00 0.00 0.04 0.04 0.05 0.94 0.95 0.94 0.06 0.05 0.05
1000 1000 0.50 0.5 0.00 0.00 0.00 0.05 0.05 0.06 0.95 0.95 0.95 0.06 0.05 0.05
1000 1000 0.00 0.0 −0.00 0.00 −0.00 0.04 0.07 0.04 0.95 0.94 0.95 0.05 0.06 0.05
1000 1000 0.00 0.5 −0.00 0.00 −0.00 0.06 0.07 0.06 0.95 0.95 0.95 0.04 0.05 0.05
25 25 0.99 0.0 0.00 0.00 −0.03 0.04 0.04 0.27 0.94 0.94 0.94 0.04 0.05 0.06
25 25 0.99 0.5 0.00 −0.01 −0.04 0.05 0.08 0.34 0.92 0.93 0.93 0.06 0.06 0.06
25 25 0.50 0.0 −0.01 0.02 −0.02 0.24 0.29 0.26 0.94 0.95 0.94 0.04 0.04 0.05
25 25 0.50 0.5 −0.01 0.01 −0.03 0.30 0.32 0.33 0.94 0.95 0.94 0.04 0.04 0.05
25 25 0.00 0.0 −0.03 −0.02 −0.03 0.28 0.38 0.27 0.93 0.95 0.93 0.06 0.04 0.06
25 25 0.00 0.5 −0.04 −0.02 −0.04 0.35 0.42 0.34 0.93 0.94 0.94 0.06 0.05 0.0650



SD Relative to Plug-In

N_1 N_0 rho gamma betastar PlugIn DiD DiM

1000 1000 0.99 0.0 0.99 1.00 1.00 7.09
1000 1000 0.99 0.5 1.24 1.00 1.71 7.07
1000 1000 0.50 0.0 0.52 1.00 1.13 1.15
1000 1000 0.50 0.5 0.65 1.00 1.04 1.15
1000 1000 0.00 0.0 −0.03 1.00 1.45 1.00
1000 1000 0.00 0.5 −0.03 1.00 1.31 1.00
25 25 0.99 0.0 0.97 1.00 0.99 6.58
25 25 0.99 0.5 1.22 1.00 1.47 6.31
25 25 0.50 0.0 0.41 1.00 1.21 1.10
25 25 0.50 0.5 0.51 1.00 1.08 1.10
25 25 0.00 0.0 0.10 1.00 1.35 0.98
25 25 0.00 0.5 0.13 1.00 1.22 0.98

■ Can be as much as 1.7 or 7 times more efficient! 51
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