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Why DiD is so popular?



Causality with Observational Data: What can I do?

■ In many applications, we do not have access to experimental data.

■ Without an experiment, we will rely on observational data.

■ With observational data, we have no choice but rely on assumptions to talk about
causal inference.

■ Different methods rely on different assumptions.

■ Our job as scientists is to assess the pros and cons of each method in their ability to
answer the questions we (and the business) care about.
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Causality with Observational Data: What can I do?

■ DiD is very popular.

■ WHY?!

■ My guess: data requirements and availability of tools to assess the plausibility of
assumptions.

■ What are the main alternatives to DiD?

1. Rely on unconfoundedness and leverage regression, matching, re-weighting or double
machine learning.
Drawback: Rule out selection on unobservables.
We need to have data on everything that affects treatment timing and outcome of
interest (unconfoundedness assumption).
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Causality with Observational Data: What else?

■ What are the other main alternative to DiD?

2. Rely on Pre-Post analysis

Drawback: Does not account for potential trends in outcomes.
This is more reasonable if we study very short-run effects, but that is not usually the
case.
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The appeal of Difference-in-Differences

■ DiD methods exploit variation in time (before vs. after) and across groups (treated vs.
untreated) to recover causal effects of interest.

■ DiD combines previous approaches to avoid their pitfalls.

■ Advantage: Allow for selection on unobservables and for time-trends.
We need to assume that, absent the treatment and conditional on covariates
(features), the outcome of interest would grow similarly across groups/cohorts -
parallel trends assumption.

We need to discuss why Parallel Trends is a plausible assumption in our application.

■ Data Requirements: We need data from time periods before and after treatment to
use DiD (and some periods where no unit is treated).
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Structure of Today’s Talk



Structure of the Talk

■ My main goals for today are to

1. Expose everyone to the two-period DiD setup.

2. Discuss staggered treatment adoption setups

2.1 Problems with Two-Way-Fixed Effects (TWFE) linear regressions
Goodman-Bacon (2021), de Chaisemartin and D’Haultfœuille (2020), Sun and Abraham (2021).

2.2 Simple solutions to these problems
Callaway and Sant’Anna (2021), Sun and Abraham (2021), Wooldridge (2021), Borusyak, Jaravel
and Spiess (2024)
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Difference-in-Differences Checklist

1. Start plotting the treatment rollout (e.g., use panelView R package)

2. Document how many units are treated in each cohort.

3. Plot the evolution of average outcomes across cohorts.

4. Choose the comparison groups and the PT assumption carefully:
Who decides treatment? What do they know? What type of selection is allowed?

5. Do event-study analysis without any covariates and assess if PT is plausible.

6. If unconditional PT is not plausible, incorporate covariates into the analysis.

7. When using covariates, check for overlap: If control groups are small, problems with overlap will
probably arise. If you are OK with extrapolation, use regression adjustment DiD procedures.

8. Do event-study analysis after adjusting for covariates and assess if conditional PT is plausible.

9. Conduct some sensitivity analysis for violations of PT (e.g., use honestDiD R package).

10. If conditional PT is not plausible, look for other methods.
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Let’s start with two-periods DiD
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DiD basics



2x2 DiD Setup

Let’s start our discussion using the simplest DiD setup known as the 2x2 case

■ 2 time periods: t = 1 (before treatment) and t = 2 (after treatment)

■ 2 groups: Gi = 2 (units treated at period 2) and Gi = ∞ (untreated by period 2)

■ Some covariates X may be available.

■ A large number of independent observations (or clusters) is available.
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2x2 DiD Setup: Potential Outcomes and Target Parameters

■ To formalize our causal analysis, we will introduce Potential Outcomes.

■ Yt(g): Potential outcome at period t if units were exposed to treatment for the first
time in period g.

■ There are many different ways to define “Causal Effects”.

■ What causal parameter are we after?

■ Main parameter of interest:
Average Treatment Effect among Treated units in period t = 2,

ATT ≡ E [Yt=2 (2) |G = 2]︸ ︷︷ ︸
estimable from the data

− E [Yt=2 (∞) |G = 2]︸ ︷︷ ︸
counterfactual component
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Causal Parameter of interest with multiple periods and multiple groups

■ This is a good place to discuss a more general notation of causal treatment
parameters when we have multiple periods and treatment groups.

ATT(g, t) ≡ E [Yt (g) |G = g]︸ ︷︷ ︸
estimable from the data

− E [Yt (∞) |G = 2]︸ ︷︷ ︸
counterfactual component

■ Average Treatment Effect at time t of starting treatment at time g, among the units
that indeed started treatment at time g.

■ Effects can vary according to time of adoption g, time period t, and time since
adoption e = t− g.
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Let’s go back to the 2x2 case to solidify things
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Assumptions in 2x2 DiD Setups

Assumption (SUTVA - No spillovers or interference)
Observed outcomes at time t are realized as

Yi,t = ∑
g∈G

1{Gi = g}Yi,t(g).

That is, for units who are treated in period t = 2, we observe Yi,t(2).

For units who remain untreated in period t = 2, we observe Yi,t(∞).
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Assumptions in 2x2 DiD Setups

Assumption (No-Anticipation)
For all units i, Yi,t(g) = Yi,t(∞) for all groups in their pre-treatment periods.

That is, units that are treated do not change their behavior before treatment starts in anticipation of what is
coming next.

Assumption (Strong Overlap Assumption)
For some ϵ > 0, P[G = 2|X] < 1− ϵ almost surely.

That is, we can find units in the control group that have the same covariate values X as those units in the
treatment group.

Intuitively, if you tell me X, I cannot say if that a unit is treated with 100% confidence.
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Assumptions in 2x2 DiD Setups

Assumption (Conditional Parallel Trends Assumption)
E [Yt=2(∞)|G = 2, X]− E [Yt=1(∞)|G = 2, X] = E [Yt=2(∞)|G = ∞, X]− E [Yt=1(∞)|G = ∞, X] a.s.

That is, in the absence of treatment, within each covariate-strata, the average evolution of outcome Y among
units treated in period 2 is the same as the average evolution of outcome Y among units that remain
untreated.
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Identification without covariates

■ Under parallel trends and no anticipation, can show that

τATT = (E[Yi,t=2|Gi = 2]− E[Yi,t=1|Gi = 2])︸ ︷︷ ︸
Change for treated group

− (E[Yi,t=2|Gi = ∞]− E[Yi,t=1|Gi = ∞])︸ ︷︷ ︸
Change for comparison group

,

a “difference-in-differences” of population means.

■ This can be easily estimated by

ÂTTDiDn =
(
Yg=2,t=2 − Yg=2,t=1

)
−

(
Yg=∞,t=2 − Yg=∞,t=1

)
,

where Yg=d,t=j is the sample mean of the outcome Y for units in group d in time
period j.
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“TWFE” specification without covariates

■ In practice, most of us would rely on the following regression specification:

Yi,t = α0 + γ01 {Gi = 2}+ λ01 {Ti = 2}+ βtwfe0︸︷︷︸
≡ATT

(1 {Gi = 2} · 1 {Ti = 2}) + εi,t

■ With balanced panel data, that above “simpler” regression is equivalent to the TWFE
regression

Yi,t = γi + λt + βtwfe0︸︷︷︸
≡ATT

(1 {Gi = 2} · 1 {Ti = 2}) + εi,t.

■ The “simpler” spec also works for unbalanced panels and repeated cross-section
data.

■ Inference: clustered standard errors are valid as the number of clusters is “large”.
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What if I want to add covariates?
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Being inspired by the recent developments in Causal ML

■ In the last 10 years or so, we have been seeing a lot of advances in Causal ML.
▶ Belloni, Chernozhukov and Hansen (2014)
▶ Farrell (2015)
▶ Belloni, Chernozhukov, Fernández-Val and Hansen (2017),
▶ Chernozhukov, Chetverikov, Demirer, Duflo, Hansen, Newey and Robins (2017)
▶ Athey and Wager (2018)
▶ Athey, Tibshirani and Wager (2019)
▶ Chernozhukov, Demirer, Duflo and Fernández-Val (2022).

■ All these papers propose estimators that are Doubly Robust/Neyman Orthogonal.

■ These ideas have been explored in DiD setups only recently;
see, e.g., Sant’Anna and Zhao (2020); Chang (2020); Callaway, Drukker, Liu and Sant’Anna
(2023).
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Doubly Robust DiD procedure with Panel

Sant’Anna and Zhao (2020) proposed the following DR DiD estimand:

ATTdr,p = E


 D

E [D] −

p(X) (1− D)
1− p(X)

E

[
p(X) (1− D)
1− p(X)

]
(

∆Y−mG=∞
∆ (X)

) ,

where

∆Y = Yt=2 − Yt=1, Di = 1{Gi = 2}, mG=∞
∆ (X) = E[∆Y|X,G = ∞], p(X) = P[G = 2|X].

■ This is similar to cross-sectional DR formulation but with outcomes measured as
“post - pre” instead of “post” (and the focus is on ATT not ATE).

19



DiD basics
What if we have variations in treatment timing?



What if we have staggered treatment timing?

■ What if we have staggered treatment adoption?

■ This is, what if units can select into treatment at different points in time?

■ In the 2-period case this was not possible, but this is realistic in many applications!
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Does TWFE “work” in setups with variation in treatment timing?



Traditional methods: TWFE regressions

■ We know that, in the 2x2 case,

Yi,t = α0 + γ01 {Gi = 2}+ λ01 {Ti = 2}+ βtwfe0︸︷︷︸
≡ATT

(1 {Gi = 2} · 1 {Ti = 2}) + εi,t,

■ It is tempting to “extrapolate” from this setup and use variations of the following
TWFE specification to estimate causal effects:

Yi,t = αi + αt + β · Di,t + εi,t

where dummies Di,t = 1 {t− Gi ≥ 0}, where Gi indicates the period unit i is first
treated (Group).

■ Di,t is an indicator for unit i being treated by period t.

■ For simplicity, let’s assume that treatment is “irreversible”: once a unit is treated, it is
forever treated - aka staggered design 21



Does TWFE “work” in setups with variation in treatment timing?
Example: Effect of ACA Medicaid Expansion on Health Insurance rate



Empirical Example: Medicaid Expansion

■ To motivate our problem, let’s look at a classical example: Medicaid Expansion

■ We want to analyze its effect on health insurance rate among low-income, childless
adults aged 25-64.
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ACA Medicaid Expansion Circa 2014

Figure 1: Health Insurance Rate (low-income Childless Adults Aged 25-64)
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ACA Medicaid Expansion Circa 2015

Figure 2: Health Insurance Rate (low-income Childless Adults Aged 25-64)
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ACA Medicaid Expansion Circa 2019

Figure 3: Health Insurance Rate (low-income Childless Adults Aged 25-64)
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ACA Medicaid Expansion Circa 2019

■ 23 states expanded circa 2014 - 4 did it earlier (ACA is effectively relabeled), we drop
them.

■ 3 states expanded circa 2015

■ 2 states expanded circa 2016

■ 1 states expanded circa 2017

■ 2 states expanded circa 2019

■ 16 states haven’t expanded by 2019
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OLS estimate of β

■ Let β̂ be the OLS estimator of the following TWFE regression specification:

Yi,t = αi + αt + β · Di,t + εi,t
■ What is β̂?

■ Goodman-Bacon (2021) shows that we can answer this question following these
three steps:
1. Remove unit means

Di,t − Di
2. Remove time means of (Di,t − Di):

D̃i,t = (Di,t − Di)− (Dt − D̄)

3. Calculate univariate regression of Yi,t on D̃i,t:

β̂ =
(nT)−1 ∑i,t Yi,t · D̃i,t
(nT)−1 ∑i,t D̃2i,t 27



TWFE computes weighted-averages of 2x2 DiD’s

■ β̂ = 0.074 in the empirical application.

■ Goodman-Bacon (2021) highlights that:

■ OLS weights use sample size and
variance

■ Is that what you really want?

■ TWFE exploits all 2x2 DiD comparisons

▶ Treated vs. “Never-treated”

▶ Early-treated vs. Later-treated

▶ Later-treated vs. Already-treated

■ Are all these comparisons “reasonable”
to attach a causal interpretation to β̂?
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TWFE regressions, in general,

do not recover an easy-to-interpret

causal parameter of interest,

unless we rule out TE heterogeneity and
dynamics
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What happens when we consider a TWFE
event-study specification?
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Event-Study via TWFE specifications



Event-Study via TWFE specifications

■ One of the main attractive features of observing multiple time periods is that we can
attempt to “learn” about treatment effect dynamics.

■ Status-quo in the literature is to consider variants of the TWFE event-study
regression

Yi,t = αi + αt + γ−K
k D<−K

i,t +
−2
∑
k=−K

γleadk Dki,t +
L

∑
k=0

γlagsk Dki,t + γL+k D>Li,t + εi,t

with the event study dummies Dki,t = 1 {t− Gi = k}, where Gi indicates the period
unit i is first treated (Group).

■ Dki,t is an indicator for unit i being k periods away from initial treatment at time t.
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Does this strategy “work”?
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ACA Medicaid Expansion: TWFE Event-study specification

Figure 4: Health Insurance Rate (low-income Childless Adults Aged 25-64

Static TWFE Coefficient:

           0.0740 (0.013)
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Event-Study via TWFE specifications
Sun and Abraham (2021)



Problem with Event-Study via TWFE specifications: Sun and Abraham (2021)

■ Sun and Abraham (2021) bring “bad” news, once again!

■ Even when we impose the Strong unconditional parallel trends and the
no-anticipation assumption, the OLS coefficients of the TWFE ES specification are, in
general, very hard to interpret.

■ Coefficient on a given lead or lag can be contaminated by effects from other periods

■ Pre-trends can arise solely from treatment effects heterogeneity!

■ Even under treatment effect homogeneity across cohorts (they all share same
dynamics in event-time), the OLS coefficients can still be contaminated by treatment
effects from the excluded periods.
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Event-Study via TWFE specifications
Stylized example using simulated data



Stylized example using simulated data
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Stylized example using simulated data

■ 1000 units (i = 1, 2, . . . , 1000) from 40 states (state = 1, 2, . . . , 40).

■ Data from 1980 to 2010 (31 years).

■ 4 different groups based on year that treatment starts: g = 1986, 1992, 1998, 2004.

■ Randomly assign each state to a group.
■ Outcome:

Yi,t = (2010− g)︸ ︷︷ ︸
cohort-specific intercept

+ αi︸︷︷︸
N( state5 ,1)

+ αt︸︷︷︸
(t−g)
10 +N(0,1)

+ τi,t︸︷︷︸
µg·(t−g+1)·1{t≥g}

+ εi,t︸︷︷︸
N
(
0,( 12 )

2)
■ µ1986 = µ2004 = 3, µ1992 = 2, µ1998 = 1

■ ATT for group g at the first treatment period is µg, at the second period since
treatment is 2 · µg, etc.

36



Traditional methods: TWFE event-study regression

■ What if we tried to estimate the treatment effects using traditional TWFE event-study
regressions,

Yi,t = αi + αt + γ−K
k D<−K

i,t +
−2
∑
k=−K

γleadk Dki,t +
L

∑
k=0

γlagsk Dki,t + γL+k D>Li,t + εi,t,

with K and L to be equal to 5 ?

■ Simulate data and repeat 1,000 times to compute bias and simulation standard
deviations.
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Static TWFE Coefficient: −3.19 (0.28)
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Traditional methods: TWFE event-study regression

■ What if we include all possible leads and lags in the TWFE event study specification,
i.e., to set K and L to the maximum allowable in the data, making inclusion of D<−K

i,t
and of D>Li,t unnecessary ?

39



−40

−20

0

−5 −4 −3 −2 −1 0 1 2 3 4 5
Relative Time

E
st

im
at

e

True Effect Estimated Effect

TWFE event−study regression with 'all' leads and lags

40



Is there hope?
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Callaway and Sant’Anna (2021)



Main take-way message

Clearly separate identification, aggregation, and estimation/inference steps!
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Identification

Let’s talk about identification
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Callaway and Sant’Anna (2021)
Identification



Building block of the analysis

■ If sample size was not a limitation (we have all the data in the world), what kind of
question we would like to answer?

■ In staggered setups, a parameter that is interesting and has clear economic
interpretation is the ATT(g, t)

ATT (g, t) = E [Yt (g)− Yt (∞) |Gg = 1] , for t ≥ g.

■ Average Treatment Effect at time t of starting treatment at time g, among the units
that indeed started treatment at time g.
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Identifying Assumptions: No-Anticipation

■ Given that we never observe Y(∞) in post-treatment periods among units that have
been treated, we need to make assumptions to identify ATT(g, t)’s

■ No-Anticipation Assumption: For all i,t and t < g,g′, Yi,t(g) = Yi,t(g′).

■ Unit treatment effects are zero before treatment takes place.

■ Exactly the same content as in the 2x2 case.
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Parallel trend assumption based on a “never treated” group

Assumption (Parallel Trends based on a “never-treated”)
For each t ∈ {2, . . . , T}, g ∈ G such that t ≥ g,

E[Yt(∞)− Yt−1(∞)|Gg = 1] = E[Yt(∞)− Yt−1(∞)|C = 1]
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Parallel Trends based on not-yet treated groups

Assumption (Parallel Trends based on “Not-Yet-Treated” Groups)
For each (s, t) ∈ {2, . . . , T} × {2, . . . , T}, g ∈ G such that t ≥ g, s ≥ t

E[Yt(∞)− Yt−1(∞)|Gg = 1] = E[Yt(∞)− Yt−1(∞)|Ds = 0,Gg = 0].
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ATT(g,t) Estimand: “never-treated” as comparison group

■ Under no-anticipation and PT based on “never-treated”, we have

ATTnevunc(g, t) = E[Yt − Yg−1|Gg = 1]− E[Yt − Yg−1|C = 1].

■ This looks very similar to the two periods, two-groups DiD result without covariates.

■ The difference is now we take a “long difference”.

■ Same intuition carries, though!
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ATT(g,t) Estimand: not-yet treated as comparison group

■ If one wants to use an the units that have not-yet been exposed to treatment by
time t, we have a different estimand:

ATTnyunc(g, t) = E[Yt − Yg−1|Gg = 1]− E[Yt − Yg−1|Dt = 0,Gg = 0].

■ This looks similar to the two periods, two-groups DiD result without covariates, too.

■ The difference is now we take a “long difference” , and that the comparison group
changes over time.

■ Same intuition carries, though!
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Callaway and Sant’Anna (2021)
Aggregation



Second step: Aggregation
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Summarizing ATT(g,t)

■ We propose taking weighted averages of the ATT(g, t) of the form:
T

∑
g=2

T

∑
t=2

1{g ≤ t}wgtATT(g, t)

■ The two simplest ways of combining ATT(g, t) across g and t are, assuming
no-anticipation,

θOM :=
2

T(T− 1)

T

∑
g=2

T

∑
t=2

1{g ≤ t}ATT(g, t) (1)

and

θOW :=
1
κ

T

∑
g=2

T

∑
t=2

1{g ≤ t}ATT(g, t)P(G = g|C ̸= 1) (2)

■ Problem: They “overweight” units that have been treated earlier
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Summarizing ATT(g,t): Cohort-heterogeneity

■ More empirically motivated aggregations do exist!

■ Average effect of participating in the treatment that units in group g experienced:

θS(g) =
1

T− g+ 1

T

∑
t=2

1{g ≤ t}ATT(g, t)
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Summarizing ATT(g,t): Calendar time heterogeneity

■ Average effect of participating in the treatment in time period t for groups that have
participated in the treatment by time period t

θC(t) =
T

∑
g=2

1{g ≤ t}ATT(g, t)P(G = g|G ≤ t, C ̸= 1)
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Summarizing ATT(g,t): Event-study / dynamic treatment effects

■ The effect of a policy intervention may depend on the length of exposure to it.

■ Average effect of participating in the treatment for the group of units that have been
exposed to the treatment for exactly e time periods

θD(e) =
T

∑
g=2

1{g+ e ≤ T}ATT(g,g+ e)P(G = g|G+ e ≤ T, C ̸= 1)

■ This is perhaps the most popular summary measure currently adopted by empiricists.
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Third step: Estimation and Inference
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Callaway and Sant’Anna (2021)
Estimation and Inference



Estimation

■ Identification results suggest a simple plug-in estimation procedure.

■ Replace population expectations with their empirical analogues.

■ Callaway and Sant’Anna (2021) allows for covariates and provides high-level
conditions that first-step estimators have to satisfy.
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Inference

■ Under relatively weak regularity conditions,
√
n
(
ÂTT(g, t)− ATT(g, t)

)
=

1√
n

n

∑
i=1

ψgt(Wi) + op(1)

■ From the above asymptotic linear representation and a CLT, we have
√
n
(
ÂTT(g, t)− ATT(g, t)

)
d→ N(0,Σg,t)

where Σgt = E[ψgt(W)ψgt(W)′].

■ Above result ignores the dependence across g and t, and “multiple-testing”
problems.

■ Solution: Use bootstrap to do simultaneous inference.

■ Details are on the paper (and also on slides available on my webpage).
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Let’s go back to the ACA Medicaid
Expansion Example
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ACA Medicaid Expansion

■ 23 states expanded circa 2014 - 4 did it earlier (ACA is effectively relabeled), we drop
them.

■ 3 states expanded circa 2015

■ 2 states expanded circa 2016

■ 1 states expanded circa 2017

■ 2 states expanded circa 2019

■ 16 states haven’t expanded by 2019

Challenge setup to make inference on ATT(g,t)’s per se
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ACA Medicaid Expansion: Not-yet-treated as comparison group
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ACA Medicaid Expansion: TWFE Event-study specification

Figure 5: Health Insurance Rate (low-income Childless Adults Aged 25-64)

Static TWFE Coefficient:

           0.0740 (0.013)
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ACA Medicaid Expansion: CS Event-study specification

Figure 6: Results using “never-treated” as a comparison group

Average of post−treatment ES coef's:
           0.0751 (0.013)
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ACA Medicaid Expansion: CS Event-study specification

Figure 7: Results using “not-yet-treated” as comparison groups

Average of post−treatment ES coef's:

          0.0758 (0.0124)
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Take-way messages



DiD procedures multiple time periods

■ With multiple time periods and variation in treatment timing, TWFE does not respect our
assumptions:

▶ OLS is “variational hungry” and makes many comparisons of means

▶ Some of these comparisons are bad: use already-treated units as a comparison group
to “later-treated” groups

▶ This can lead to “negative weighting” problems.

■ The solution to the TWFE problem is simple
▶ Separate the identification, aggregation and estimation/inference parts of the problem

■ Use ATT(g, t) as building blocks so we can transparently see how things are constructed

■ Many different aggregation schemes are possible: they deliver different parameters!

■ Can allow for covariates via regressions adjustments, IPW and DR.
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Difference-in-Differences Checklist

1. Start plotting the treatment rollout (e.g., use panelView R package)

2. Document how many units are treated in each cohort.

3. Plot the evolution of average outcomes across cohorts.

4. Choose the comparison groups and the PT assumption carefully:
Who decides treatment? What do they know? What type of selection is allowed?

5. Do event-study analysis without any covariates and assess if PT is plausible.

6. If unconditional PT is not plausible, incorporate covariates into the analysis.

7. When using covariates, check for overlap: If control groups are small, problems with overlap will
probably arise. If you are OK with extrapolation, use regression adjustment DiD procedures.

8. Do event-study analysis after adjusting for covariates and assess if conditional PT is plausible.

9. Conduct some sensitivity analysis for violations of PT (e.g., use honestDiD R package).

10. If conditional PT is not plausible, look for other methods.
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