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Preliminaries



Motivating What‐If Questions

■ In this course, we are interested in asking and answering “What‐if” types of questions.

▶ What is the causal effect expanding Medicaid in a given year on mortality rates compared to not expanding
at all? What about compared to expanding 5 years later?

▶ What is the causal effect of minimum wage increases on employment? Do these effects vary over time?
Do these effects vary across states that raised minimum wage in different years?

▶ Does procedural justice training reduce police complaints and use of force? Do these effects vary across
years since training? Do these effects vary across younger and senior police officers?

■ But to answer these questions, we need to have a clear definition of causality.
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Causality Definitions from Philosophers

“If a person eats of a particular dish, and dies in consequence, that is, would not have died if he had
not eaten it, people would be apt to say that eating of that dish was the source of his death.” – John
Stuart Mill (19th‐century moral philosopher and economist)

“Causation is something that makes a difference, and the difference it makes must be a difference
from what would have happened without it.” – David Lewis (20th‐century philosopher)
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Causal Inference Is Hard

■ Mill’s counterfactuals were immensely valuable for the clarity of the definition as well as its
intuitive validity of causality.

■ But it also made it clear that causality is a tricky business!

■ If I have to know what would have happened had I not eaten the dish, but I did eat the dish, how
would I ever be able to know the causal effect of eating the dish?

■ The same reasoning applies to all the what‐if motivating questions we discussed!

■ This is a valid concern, but this should not stop us from being able to ask questions!
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Causality Is a Game of Counterfactuals

Source: xkcd.com/552
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No Causation Without Manipulations

■ Although this is not an universal point of view, we will adopt the approach popularized by
Holland (1986), “No causation without manipulations”.

■ “Causes are only those things that could, in principle, be treatments in experiment”,(Holland,
1986).

■ “Causes are experiences that units undergo and not attributes that they possess” (Holland, 2003).

■ This restricts the problems we work with, or at least forces us to think about the problem from
this angle.
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Challenges with Causal Inference: Not a Prediction Problem

■ Causal inference is not a prediction problem but rather a counterfactual problem.

■ This makes things challenging because:
▶ Direct use of ML methods is biased for causal effect due to confounding.

▶ ML aims at minimizing prediction error, not counterfactuals.

▶ We never observed the true causal effect, which makes model selection trickier.

▶ We are not only interested in the counterfactual itself but also in quantifying its uncertainty (making
inferences).

■ Some modifications and tricks can be used to bypass several of these.

■ Key: decompose the problem into predictive and causal parts.
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My Approach to Causal Inference

1. Specify the causal question of interest and map that into a causal target parameter.

2. Figure out a research design using domain knowledge that can credibly answer the question (This
usually involves solving identification problems)

▶ We usually abstract from sample size considerations here.

▶ What we want is the “right” data that leverages a “quasi‐random” variation in our treatment variable.

3. State our assumptions, and provide supportive evidence of their credibility in our context.

▶ Why treatment is “quasi‐random”:

▶ For which population you can identify the effects

4. Pick an estimation and inference method with strong statistical guarantees.
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Mapping Questions into Causal Parameters



Examples of Motivating Causal Questions

■ What is the average treatment effect expanding Medicaid in 2014 on mortality rates compared to
not expanding it?

■ What is the average treatment effect of a minimum wage increase in 2004 on employment among
states that indeed raised minimum wage in 2004?

■ What is the average treatment effect of a being eligible for 401(k) retirement plans on asset
accumulation?
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Notation: Cross‐sectional Data

■ We will adopt the Rubin Causal Model and define potential outcomes.
There are other approaches/languages out there, too, e.g., Judea Pearl’s Directed Acyclic Graph (DAG). They should be seen as complements.

■ Potential outcomes define outcomes in different states of the world, depending on the type of
treatment units assigned to them.

■ Let D be a treatment variable.

▶ When D is binary, Di = 1 means unit i is treated, and Di = 0 means unit i is not treated.

▶ When D is multi‐valued, D ∈ {0, 1, 2, . . . ,K}, Di = d means unit i received treatment d.

▶ When D is continuous, D ∈ [a, b], Di = d means unit i received treatment d.

■ Let Yi(d) be the potential outcome for unit i if they were assigned treatment d.

■ Each unit i has a lot of different potential outcomes
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Notation Based on Application About 401(k) Eligibility

■ What is the average treatment effect of a being eligible for 401(k) retirement plans on asset
accumulation?

▶ Treatment D :

Di = 1 if worker i is eligible for 401(k).
Di = 0 if worker i works in firms that do not offer 401(k).

▶ Potential Outcomes Yi(1), Yi(0)
Yi(1) asset accumulation for worker i if eligible for 401(k).
Yi(0) asset accumulation for worker i if not eligible for 401(k).
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Causality with Potential Outcomes

■ Unit‐specific Treatment Effect

▶ The treatment effect or causal effect of switching treatment from d′ to d is the difference between these
two potential outcomes:

Yi(d)− Yi(d′)

▶ When treatment is binary,
Yi(1)− Yi(0)
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Fundamental Problem of Causal Inference

■ Fundamental problem of causal inference (Holland, 1986)

▶ For each unit i, we cannot observe their different potential outcomes at the same time. We only see one
of them.

■ Observed outcome with binary treatments

▶ Observed outcomes for unit i are realized as

Yi = 1{Di = 1}Yi(1) + 1{Di = 0}Yi(0)

Yi =


Yi(1) if Di = 1

Yi(0) if Di = 0
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Fundamental Problem of Causal Inference: Missing Data Problem

Data
Unit Yi(1) Yi(0) Di Yi(1)− Yi(0) Xi

1 ? ✓ 0 ? x1
2 ✓ ? 1 ? x2
3 ? ✓ 0 ? x3
4 ✓ ? 1 ?
...

...
...

...
...

...
n ✓ ? 1 ? xn

✓: Observed data
?: Missing data (unobserved counterfactuals)
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What About Multi‐Valued Treatments?

■ Treatment can take multiple values: Di ∈ {0, 1, 2, 3}

▶ Example: Years of education (0 = no HS, 1 = HS, 2 = Some college, 3 = College+)
▶ Example: Drug dosage levels (none, low, medium, high)
▶ Example: Training program intensity

■ Potential outcomes for each treatment level:
▶ Yi(0), Yi(1), Yi(2), Yi(3) — one for each treatment level

■ Observed outcome:

Yi =
3∑
d=0

1{Di = d} · Yi(d)

■ We observe exactly one of the four potential outcomes
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Multi‐Valued Treatments: Missing Data Problem

Data
Unit Yi(0) Yi(1) Yi(2) Yi(3) Di Xi

1 ✓ ? ? ? 0 x1
2 ? ? ✓ ? 2 x2
3 ? ✓ ? ? 1 x3
4 ? ? ? ✓ 3 x4
...

...
...

...
...

...
...

n ? ? ✓ ? 2 xn

✓: Observed data
?: Missing data (unobserved counterfactuals)

Key insight: With 4 treatment levels, we observe 1 potential outcome and miss 3 for each unit.
The missing data problem is even worse! 15/93



What About Continuous Treatments?

■ Treatment can take any value: Di ∈ D ⊆ R

▶ Example: Hours of training (0 to 2000 hours)
▶ Example: Tax rate (0% to 100%)
▶ Example: Class size (10 to 40 students)
▶ Example: Air pollution level

■ Potential outcomes for each treatment level:
▶ Yi(d) for every d ∈ D — infinitely many potential outcomes!

■ Observed outcome:
Yi = Yi(Di) where Di is the realized treatment

■ We observe exactly one point on an infinite dose‐response curve
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Continuous Treatments: The Dose‐Response Function

For each unit i:
■ The function d 7→ Yi(d) traces out how outcomes
vary with treatment dose

■ We only observe one point: (Di,Yi(Di))
■ The rest of the curve is counterfactual
Causal questions:
■ Effect of increasing D from d to d′: Yi(d′)− Yi(d)

■ Marginal effect at dose d:
∂Yi(d)
∂d

d

Yi(d)

(Di, Yi)

d′

?

Dose‐response curve

Key insight: With continuous treatment, we observe 1 point and miss infinitely many. The miss‐
ing data problem is infinitely worse!
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Causality with Potential Outcomes: Even the Simplest Case Is Hard

■ Problem:
▶ Causal inference is difficult because it involves missing data.

▶ How can we find Yi(1)− Yi(0)?

■ “Cheap” solution ‐ Rule out heterogeneity.
▶ Yi(1),Yi(0) constant across units.
▶ Assuming all potential outcomes are the same is very strong: who believes in that?!

Very little hope for learning about unit‐specific treatment effects
We will acknowledge that learning unit‐specific TEs is hard, if not impossible.

We will focus on treatment effects in an average sense, but allow them to vary with X.
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Mapping Questions into Causal Parameters
Average Treatment Effect Parameters



For simplicity, I will focus on binary treatment
setups.
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Parameters of Interest: Average Treatment Effects

■ ATT: The Average Treatment Effect among the Treated units is

ATT = E [Yi(1)− Yi(0)|Di = 1]

What is the average treatment effect of being eligible for 401(k) retirement plans on asset accumulation, among workers

that actually eligible for it?

Particularly useful to assess if workers that are eligible to 401(k) benefit from it (accumulated more assets).

■ ATU: The Average Treatment Effect among Untreated units is

ATU = E [Yi(1)− Yi(0)|Di = 0]

What is the average treatment effect of being eligible for 401(k) retirement plans on asset accumulation, among workers

that were not eligible for it?

Particularly useful to assess if 401(k) plan would benefit those who were not eligible for it.
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Parameters of Interest: Average Treatment Effects

■ ATE: The (overall) Average Treatment Effect is

ATE = E [Yi(1)− Yi(0)]

What is the average treatment effect of being eligible for 401(k) retirement plans on asset accumulation among all

workers?

Particularly useful to assess the value of 401(k) plans if they were available in all firms.
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What if we want to express

average causal effects

as relative lifts?
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Parameters of Interest: Relative Metrics

■ All the average causal parameters discussed so far are expressed in the same units as Y.

■ If Y is expressed in dollars, ATE, ATT and ATU will also be expressed in dollars.

■ If Y is expressed in number of units shipped, ATE, ATT and ATU will also be expressed in number
of units shipped.

■ Sometimes, want to translate the ATE, ATT or ATU into percentage terms.
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Parameters of Interest: Relative Treatment Effects

■ RATT: The Relative Average Treatment Effect among the Treated units is

RATT =
E [Yi(1)− Yi(0)|Di = 1]

E [Yi(0)|Di = 1]

■ RATU: The Relative Average Treatment Effect among Untreated units is

RATU =
E [Yi(1)− Yi(0)|Di = 0]

E [Yi(0)|Di = 0]

■ RATE: The Relative Average Treatment Effect is

RATE =
E [Yi(1)− Yi(0)]

E [Yi(0)]
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What if we want to understand

treatment effects

in a distributional sense?
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Mapping Questions into Causal Parameters
Distributional Treatment Effect Parameters



Quantile and Distributional Treatment Effects

■ Despite their popularity, average treatment effects can mask important treatment effect
heterogeneity across different subpopulations, see, e.g., Bitler, Gelbach and Hoynes (2006).

■ Let’s say that ATE for being eligible for 401(k) on asset accumulation is $10, 000.
▶ Does eligibility help low‐asset households? Is the effect driven by high savers? Does it increase
inequality?

■ We can focus on different treatment effect parameters beyond the mean to better uncover
treatment effect heterogeneity. Leading examples include the distributional and quantile
treatment effect parameters.

■ Let FY(d)(y) = P(Y(d) ≤ y) denote the marginal distribution of the potential outcome Y(d).

■ Let FY(d)(y) = P(Y(d) ≤ y|D = a) denote the conditional distribution of the potential outcome
Y(d) among units with treatment a.
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Distributional Treatment Effects

■ DTT(y): The Distributional Treatment Effect among the Treated units is

DTT(y) = FY(1)|D=1(y)− FY(0)|D=1(y).

■ DTU(y) The Distributional Treatment Effect among the Untreated units is

DTU(y) = FY(1)|D=0(y)− FY(0)|D=0(y).

■ DTE(y) The Distributional Treatment Effect is

DTE(y) = FY(1)(y)− FY(0)(y).

See, e.g., Firpo (2007), Chen, Hong and Tarozzi (2008), Firpo and Pinto (2016) and Belloni,
Chernozhukov, Fernández‐Val and Hansen (2017) for discussions.
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Computing DTE(y): Illustration

Example: 401(k) eligibility effect on assets (illustrative numbers)

Assets (y)

CDF

FY(0)(y)

FY(1)(y)

y = $10k

DTE($10k)
0.32

0.12

28/93



Computing DTE(y): Illustration

Example: 401(k) eligibility effect on assets (illustrative numbers)

Computation at y = $10, 000:

DTE($10k) = FY(1)($10k)− FY(0)($10k) = 0.12− 0.32 = −0.20

Interpretation: 401(k) Eligibility decreases by 20pp the fraction with assets ≤ $10k.
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Parameters of Interest: Distributional Treatment Effects

■ All these distributional treatment effect parameters are functional parameters as they vary with
the evaluation point y ∈ R.

■ They are all displayed in percentage points, as they are the difference of two distribution
functions.

■ These parameters are bounded between ‐1 and 1. As a function of y, they all start and end at
zero. Note that if y = −∞, all of them is zero. If y = ∞, all of them is also zero.

■ This is equivalent to binarize the potential outcome using a givin threshold, Ỹy(d) = 1{Y(d) ≤ y},
and compute the ATE/ATT/ATU using the binarized outcome.

■ The appeal is that you do this using many thresholds y, and not only a fixed one.
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Parameters of Interest: Distributional Treatment Effects

■ You need to pay attention with the sign of the parameter:

■ 401(k) example: DTE(1, 000) would measure the difference in the fraction of workers with at
most 1, 000 in accumulated assets in treated and untreated states.

■ If this number is positive, it means that the fraction of workers accumulating at most 1, 000 in
assets is higher when they are eligible to 401(k) than if they were not eligible.

■ This implies that the fraction of workers accumulating more than 1, 000 in assets is smaller when
they are eligible to 401(k) than if they were not eligible.
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Parameters of Interest: Quantile Treatment Effects

■ For τ ∈ (0, 1), let qY(d)(τ) = inf
{
y : FY(d) (y) ≥ τ

}
denote the quantile function of the potential

outcome Y(d).

■ We define qY(d)|D=1(τ) and qY(d)|D=0(τ) analogously.

■ These are quantile functions and are always expressed in the same unit of measure as the
potential outcome Y(d).
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Parameters of Interest: Quantile Treatment Effects

■ QTT(τ ): The Quantile Treatment Effect among the Treated units is

QTT(τ) = qY(1)|D=1(τ)− qY(0)|D=1(τ).

■ QTU(τ ) The Quantile Treatment Effect among the Untreated units is

QTU(τ) = qY(1)|D=0(τ)− qY(0)|D=0(τ).

■ QTE(τ ) The Quantile Treatment Effect is

QTE(τ) = qY(1)(τ)− qY(0)(τ)

■ E.g., if QTE(τ) ≈ $0 for τ ∈ (0, 0.3), QTE(τ) ≈ $5, 000 for τ ∈ (0.4, 0.6), and QTE(τ) > $15, 000 for
τ > 0.7, this would mean that 401(k) eligibility benefit mostly those in the upper‐tail of the
wealth distribution. Perhaps because financially sophisticated households take strong advantage
of tax‐deferred saving.
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Computing QTE(τ ): Same CDFs, Different Perspective

Key insight: QTE fixes a probability (quantile τ ) and compares asset levels

Assets (y)

CDF

FY(0)(y)

FY(1)(y)
τ = 0.5

qY(0)(0.5) = $24kqY(1)(0.5) = $35k

QTE(0.5) = $11k
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Computing QTE(τ ): Illustration

Example: 401(k) eligibility effect on assets (same distributions as before)

Quantile (τ )

Assets

0 0.25 0.5 0.75 1.0

qY(0)(τ)

qY(1)(τ)

τ = 0.5 (median)

QTE(0.5)
$35k

$24k
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Computing QTE(τ ): Illustration

Example: 401(k) eligibility effect on assets (same distributions as before)

Computation at τ = 0.5 (median):

QTE(0.5) = qY(1)(0.5)− qY(0)(0.5) = $35k− $24k = $11k

Interpretation: Eligibility increases median assets by $11,000.
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Distribution and Quantile of the Treatment Effects

■ The quantile and distributional treatment parameters discussed up to now are expressed as the
difference of two quantile and distribution functions, respectively.

■ In general, these should not be interpreted as the distribution of the treatment effects, or the
quantile of the treatment effects; see, e.g., Heckman, Smith and Clements (1997), Masten and
Poirier (2020), and Callaway (2021).

■ They can sometimes coincide, but that requires additional assumptions, such as rank‐invariance;
see, e.g., Heckman et al. (1997) for a discussion.
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Distribution and Quantile of the Treatment Effects

■ DoTT(y): The Distributional of Treatment Effect among the Treated units is

DoTT(y) = FY(1)−Y(0)|D=1(y).

■ DoTE(y): The Distributional of Treatment Effect

DoTE(y) = FY(1)−Y(0)(y).

■ QoTT(τ ): The Quantile of Treatment Effect among the Treated units is

QoTT(τ) = qY(1)−Y(0)|D=1(τ).

■ QoTE(τ ): The Quantile of Treatment Effect is

QoTE(τ) = qY(1)−Y(0)(τ). 38/93



Computing DoTE(y): Illustration

Example: Distribution of treatment effects for 401(k) eligibility

Treatment Effect (y)

CDF

FY(1)−Y(0)(y)

y = $10k

DoTE($10k) = 0.50
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Computing DoTE(y): Illustration

Example: Distribution of treatment effects for 401(k) eligibility

Computation at y = $10, 000:

DoTE($10k) = FY(1)−Y(0)($10k) = 0.50

Interpretation: 50% of the population has treatment effects ≤ $10, 000.

40/93



Computing QoTE(τ ): Same CDF, Different Perspective

Key insight: QoTE fixes a probability (quantile τ ) and finds treatment effect value

Treatment Effect (y)

CDF

FY(1)−Y(0)(y)

τ = 0.5

qY(1)−Y(0)(0.5) = $11k

Find y where CDF = 0.5
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What if we want to understand

how the average causal effects

vary with covariates?
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Parameters of Interest: Conditional Average Treatment Effects

■ Let Xall be a set of features/covariates available to you, and let Xs be a subset of Xall.

■ CATE: The Conditional Average Treatment Effect given Xsub is

CATEXs(xs) = E [Yi(1)− Yi(0)|Xs = xs]

How does the average treatment effect of being eligible for 401(k) retirement plans on asset accumulation vary with age,
marital status, and number of kids? What about education?

■ Note that CATE(xs) is a functional parameter, as it varies with the covariate values xs.

■ Other parameters have similar characterizations.
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Computing CATE(age): Illustration

Example: How does 401(k) eligibility effect vary with age?

Age

Treatment Effect

20 30 40 50 60

CATE(age)

25

$5k

40

$15k

55

$27k
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Computing CATE(age): Illustration

Example: How does 401(k) eligibility effect vary with age?

Computations at different ages:
■ CATE(25) = $5k: Young workers gain $5,000 in assets
■ CATE(40) = $15k: Mid‐career workers gain $15,000
■ CATE(55) = $27k: Older workers gain $27,000
Interpretation: Older workers benefit more from 401(k) eligibility, possibly due to higher earn‐
ings and greater ability to contribute.
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There Is No

“The” Causal Effect!

Only different averages,
distributions, and quantiles
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There Is No “The” Causal Effect

■ Unit‐specific effects Yi(1)− Yi(0) vary across units
▶ Treatment effect heterogeneity is the norm, not the exception

■ When we report “the ATT” or “the ATE,” we’re reporting one particular average

■ Different parameters answer different questions:
▶ ATT, ATE, CATE: Different averages across units
▶ DTE, QTE, DoTE: Distributional summaries of effects

Key Insight: The “right” parameters are ones that are meaningful for your research question.
More complex parameters can reveal richer heterogeneity, but may also be harder to learn.
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All these are very well motivated in cross‐sectional setups.

But what if we have panel data?

Do we need to adapt these different parameters?
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Why Standard Potential Outcomes Fall Short

Consider these counterfactual questions:

1. Medicaid Expansion: “What would mortality be if a state expanded in 2014 vs. 2019 vs. never?”
▶ Y(0)/Y(1) can’t distinguish when treatment occurred

2. Divorce Laws: “What is the effect 1 year vs. 5 years vs. 10 years after adoption?”
▶ Simple Y(0)/Y(1) can’t capture dynamic effects over time

3. Democracy & Growth: “What is GDP if always democratic vs. democratized then reverted vs.
never democratic?”
▶ Y(0)/Y(1) can’t capture treatment history

Takeaway: We need potential outcomes indexed by treatment histories, not just current treat‐
ment status
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Potential Outcomes and Causal Parameters with Panel Data



Different Treatment Settings in Panel Data

Single Treatment Time

All treated at same time

Staggered Adoption

Different adoption times

Treatment On/Off

Complex treatment paths
Treated Period Untreated / Pre‐treatment

■ Same underlying framework, but how do we define “groups”?
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Defining Treatment Groups

Single Treatment Time

2 groups: g,∞

Staggered Adoption

3 groups: g = 2, 4,∞

Treatment On/Off

4 groups: each sequence!

■ Single treatment time: Group = treated vs. never‐treated Staggered: Group = first treatment
period Gi

■ On/Off: Group = unique treatment sequence⇒ more groups, more parameters!
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Potential Outcomes and Causal Parameters with Panel Data
Single Treatment Time



Single Treatment Time: The Simplest Case

Setting:
■ All treated units start treatment at the same time g
■ Treatment never turns off
■ Some units never treated (Gi = ∞)

Example: Card and Krueger (1994)
■ NJ raises minimum wage in April 1992
■ PA does not (control group)
■ Two periods: before and after

Time: t = 1, . . . , T

Gi = g

Gi = ∞

g

Only two treatment sequences matter:

■ Treated: d = (0, . . . , 0, 1, . . . , 1) starting at g
■ Never‐treated: d = (0, 0, . . . , 0)
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Single Treatment Time: Simplified Notation

With a single treatment time, we can simplify:

■ Index potential outcomes by whether treated, not full sequence
■ Yit(g) = outcome if first treated at g (and treatment stays on)
■ Yit(∞) = outcome if never treated

This maps to our cross‐sectional notation:

■ Yit(g) ≈ Yit(1) (treated potential outcome at time t)
■ Yit(∞) ≈ Yit(0) (untreated potential outcome at time t)

Key insight: All parameters from earlier apply, but now indexed by time:

■ ATT(t) = E[Yit(g)− Yit(∞) | Gi = g]
■ Can study dynamic effects: How does ATT(t) change as t increases?
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Beyond ATT(t): Other Parameters of Interest

Remember our cross‐sectional parameters? They all extend to panel data!

■ ATE(t) = E[Yt(g)− Yt(∞)]

▶ Effect if everyone were treated at g vs. never
■ QTT(t, τ) = Qτ [Yt(g)|G = g]−Qτ [Yt(∞)|G = g]

▶ Effect at τ ‐th quantile for the treated at time t
■ DTT(t, y) = FYt(g)|G=g(y)− FYt(∞)|G=g(y)

▶ Distributional effects: How does the CDF shift?
■ DoTT(t, y) = FYt(g)−Yt(∞)|G=g(y)

▶ Full distribution of unit‐level effects
■ CATT(t, x) = E[Yt(g)− Yt(∞)|G = g,X = x]

▶ Heterogeneous effects by pre‐treatment covariates

Key insight: Panel data enriches all parameters with time dimension t.
Each requires additional assumptions and estimation strategies.
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Single Treatment Time: Aggregating Over Time

With multiple post‐treatment periods, we have many ATT(t)’s:

t = 1 t = 2 t = 3 t = 4 t = 5

g = 3 — — ATT(3) ATT(4) ATT(5)

Summary measures:

■ Overall ATT: ATT =
1

T− g+ 1

T∑
t=g

ATT(t)

▶ Simple average across all post‐treatment periods

■ Other weighting schemes: ATTw =

T∑
t=g

wtATT(t)

▶ Choose weights wt based on importance
▶ Allows to discount distant periods more heavily
▶ E.g., wt ∝ ρt−g for some ρ ∈ (0, 1)
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Potential Outcomes and Causal Parameters with Panel Data
Staggered Adoption



Staggered Adoption: Multiple Treatment Cohorts

Setting:
■ Units start treatment at different times
■ Once treated, treatment never turns off
■ Gi ∈ {2, 4, 6,∞}

Some Empirical Examples:
■ Medicaid: States expanded in 2014, 2015, ..., or
never (Miller, Johnson and Wherry, 2021)

■ Divorce laws: States adopted unilateral divorce at
different times (Wolfers, 2006)

Time: t = 1, . . . , T

g = 2

g = 4

g = 6

Gi = ∞

Treatment sequence determined by Gi:

■ Gi = 2: (0, 1, 1, . . .) Gi = 4: (0, 0, 0, 1, . . .) Gi = 6: (0, 0, 0, 0, 0, 1, . . .) Gi = ∞: (0, 0, . . .)
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Staggered Adoption: Group‐Time ATT

Since treatment stays on, potential outcomes indexed by first treatment time:

■ Yit(g) = outcome for unit i at time t if first treated at g
■ Yit(∞) = outcome if never treated
■ Observed: Yit =

∑
g∈G 1{Gi = g}Yit(g)

Group‐time ATT (Callaway and Sant’Anna, 2021):

ATT(g, t) = E[Yt(g)− Yt(∞) | G = g]

■ Effect for units first treated at g, measured at time t
■ Allows heterogeneity across cohorts and time

Building blocks: The ATT(g, t)’s are fundamental parameters. We can aggregate them in differ‐
ent ways to answer different research questions.
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Staggered Adoption: Many Parameters!

Example: T = 5 periods, groups g ∈ {2, 3, 4, 5,∞}

t = 2 t = 3 t = 4 t = 5

g = 2 ATT(2, 2) ATT(2, 3) ATT(2, 4) ATT(2, 5)
g = 3 — ATT(3, 3) ATT(3, 4) ATT(3, 5)
g = 4 — — ATT(4, 4) ATT(4, 5)
g = 5 — — — ATT(5, 5)

10 parameters! And this is just 5 periods...

■ Hard to estimate each precisely
■ Hard to interpret/communicate
■ Need to aggregate into summary measures

Question: Which aggregation should you use? It depends on your research question!
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Aggregation Strategies: Roadmap

We have many ATT(g, t) parameters. How do we aggregate them?

Four main approaches, each answering a different question:

1. Cohort Heterogeneity θS(g)
“How does the average effect differ for early vs. late adopters?”

2. Calendar Time θC(t)
“What is the overall policy average effect at time t?”

3. Event‐Study θD(e)
“How do average effects evolve with exposure (e.g., 1 year post, 2 years post)?”

4. Overall Average θO

“What is a single summary number for the entire policy?”

Key insight: All four are valid! Your choice depends on your research question.
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Aggregating ATT(g, t): Weighted Averages

General form:
T∑
g=2

T∑
t=2

1{g ≤ t}wg,t ATT(g, t)

Simple aggregations (assuming no‐anticipation):

■ Unweighted average:

θOM :=
2

T(T− 1)

T∑
g=2

T∑
t=2

1{g ≤ t}ATT(g, t)

■ Weighted by group size:

θOW :=
1

κ

T∑
g=2

T∑
t=2

1{g ≤ t}ATT(g, t)P(G = g|G 6= ∞)

Problem
These “overweight” units that have been treated longer (early adopters contribute more)! 60/93



Aggregation Strategy 1:

Cohort Heterogeneity

Focus: Do early vs. late adopters experience different average effects?
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Aggregating ATT(g, t): Cohort Heterogeneity

Average effect for units in group g:

θS(g) =
1

T− g+ 1

T∑
t=g

ATT(g, t)

■ Averages across row for cohort g
■ Shows heterogeneity across cohorts
■ Early vs. late adopters may differ

Cohort‐specific: θS(g = 2)

t = 1 t = 2 t = 3 t = 4 t = 5

g = 2

g = 3

g = 4

g = 5

g = ∞

2,2 2,3 2,4 2,5

3,3 3,4 3,5

4,4 4,5

5,5

θS(2)

Question: “Do early Medicaid expanders benefit more than late expanders?”
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Aggregation Strategy 2:

Calendar Time Heterogeneity

Focus: What is the overall average effect at a specific calendar time?
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Aggregating ATT(g, t): Calendar Time Heterogeneity

Average effect at time t for all treated:

θC(t) =
∑
g≤t

ATT(g, t) · P(G = g|G ≤ t)

■ Averages down column at time t
■ Useful when calendar time matters
■ Weights by group size

Calendar time: θC(t = 4)

t = 1 t = 2 t = 3 t = 4 t = 5

g = 2

g = 3

g = 4

g = 5

g = ∞

2,2 2,3 2,4 2,5

3,3 3,4 3,5

4,4 4,5

5,5

θC(4)

Question: “What was the overall policy average impact among treated in 2020?”
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Aggregation Strategy 3:

Event‐Study / Dynamic Effects

Focus: How do average effects evolve with time since treatment?
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Aggregating ATT(g, t): Event‐Study / Dynamic Effects

Average effect at exposure e = t− g:

θD(e) =
∑

g:g+e≤T

ATT(g, g+ e) · P(G = g|G+ e ≤ T)

■ Averages along diagonal (same e)
■ Weights = group sizes (cohort shares)
■ e = 0: on impact; e = 1, 2, . . .: dynamics

Event‐study: θD(e = 0)

t = 1 t = 2 t = 3 t = 4 t = 5

g = 2

g = 3

g = 4

g = 5

g = ∞

2,2 2,3 2,4 2,5

3,3 3,4 3,5

4,4 4,5

5,5 e = 0

Question: “How does the effect evolve since adoption?” (Wolfers, 2006)
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Event‐Study Plots: How Results Are Typically Presented

Event‐study aggregations θD(e) are plotted
against event time e = t− g:
■ e < 0: Pre‐treatment periods
■ e = 0: Treatment onset
■ e > 0: Post‐treatment periods

Typical features:
■ Confidence intervals shown
■ Reference line at zero
■ Pre‐trends visible for e < 0

e

θD(e)

−4 −3 −2 −1 0 1 2 3

0

Treatment

Pre‐treatment Post‐treatment

Questions: Why are these pre‐treatment parameters zero? Do they need to be zero?
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Aggregation Strategy 4:

Overall Summary (Scalar)

Focus: What is one single number summarizing the entire policy effect?
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Overall Summary Parameters: Scalar Aggregations

Sometimes we want a single number! Further aggregate the intermediate parameters:

■ Overall cohort effect: θOS =

T∑
g=2

θS(g) · P(G = g|G 6= ∞) (weighted avg)

■ Overall calendar‐time effect: θOC =
1

T− 1

T∑
t=2

θC(t) (simple avg)

■ Overall event‐time effect: θOD =
1

T− 1

T−2∑
e=0

θD(e) (simple avg)
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Overall Summary Parameters: Scalar Aggregations (cont.)

Key insight: Different overall parameters answer different questions. θOS , θOC , and θOD need not be
equal!
But we know exactly how they relate to each other via the building blocks ATT(g, t).

Which to report? Depends on your research question:

■ Policy evaluation at specific time? → θC(t) or θOC
■ Compare early vs. late adopters? → θS(g) or θOS
■ Dynamic effects over exposure? → θD(e) or θOD
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Aggregation Strategies: Summary Reference

1. Cohort Heterogeneity θS(g)
Average across calendar times
θS(g) = 1

T−g+1

∑T
t=g ATT(g, t)

▶ Use: Compare early vs. late adopters

2. Calendar Time θC(t)
Average across cohorts
θC(t) =

∑t
g=2 ATT(g, t) · wg(t)

▶ Use: Policy evaluation at time t

3. Event‐Study θD(e)
Average across cohorts at event‐time e
θD(e) =

∑T−e
g=2 ATT(g, g+ e) · wg(e)

▶ Use: Dynamic effects over exposure

4. Overall Average θO

Single scalar summary
Can aggregate any of above further
▶ Use: Simple headline number

Key Insight: All four are valid! They answer different questions. Choose based on whether you
care about: (1) which groups, (2) which time periods, (3) dynamics, or (4) overall summary.
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Are ATT(g, t)’s the Only Building Blocks?

Question for you:

Is ATT(g, t) = E[Yt(g)− Yt(∞)|G = g] the only causal parameter we can define?

Obviously not!
Remember our cross‐sectional parameters? They all extend to (g, t):
■ QTT(g, t, τ) — Quantile effects for cohort g at time t
■ DTT(g, t, y) — Distributional effects
■ CATT(g, t, x) — Heterogeneous effects by covariates

The ATT(g, t) framework is a template — swap in your parameter of interest!
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Beyond ATT(g, t): Other Target Populations

ATT(g, t) always conditions on G = g. But we can target other populations:

■ ATU(g, t) — Effect for the never‐treated:

ATU(g, t) = E[Yt(g)− Yt(∞) | G = ∞]

■ ATE(g, t) — Effect for everyone:

ATE(g, t) = E[Yt(g)− Yt(∞)]

Key point: All compare treatment at g vs. never‐treated (∞).
But who are we averaging over? Treated (G = g), never‐treated (G = ∞), or everyone?
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Beyond ATT(g, t): Different Baselines

Why always compare to never‐treated? We can compare different treatment timings:

■ ATT(g′, g, t | g∗) — Effect of switching from g′ to g, for group g∗:

ATT(g′, g, t | g∗) = E[Yt(g)− Yt(g′) | G = g∗]

Example: What’s the effect of adopting Medicaid in 2014 vs. 2016?

■ Compare Yt(g = 2014) vs. Yt(g′ = 2016), not vs. Yt(∞)

■ This captures the value of earlier vs. later adoption

Takeaway: The potential outcomes framework is flexible! Define the comparison that answers
your research question.
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What Have We Assumed So Far?

A hidden assumption in everything we’ve done:

Once treated, always treated.

(Treatment is absorbing)

Staggered adoption allows:
■ (0, 0, 0, 0) — Never treated
■ (0, 0, 1, 1) — Adopt in period 3
■ (0, 1, 1, 1) — Adopt in period 2
■ (1, 1, 1, 1) — Always treated

Staggered adoption forbids:
■ (0, 1, 0, 0) — Treatment ends
■ (0, 1, 0, 1) — On‐off‐on
■ (1, 0, 1, 0) — Alternating
■ Any sequence with Dt > Dt+1
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But What If Treatment Can Turn Off?

Many real‐world treatments are not absorbing:

■ Democracy — Countries democratize and experience reversals
(Acemoglu, Naidu, Restrepo and Robinson, 2019)

■ Policy adoption — States adopt minimum wages, then repeal them
■ Program participation —Workers enter and exit job training
■ Medical treatments — Patients start and stop medications

The question
How do we define potential outcomes and causal parameters when treatment sequences can be any
pattern of 0s and 1s?
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Potential Outcomes and Causal Parameters with Panel Data
Treatment On/Off



The General Framework: Treatment Sequences (Robins 1986)

Single treatment time and Staggered are special cases of a more general setup:

■ Let Dit ∈ {0, 1} be treatment status for unit i at time t
■ Treatment sequence: d = (d1, d2, . . . , dT) where each dt ∈ {0, 1}
■ Examples with T = 4:

▶ d = (0, 0, 0, 0): Never treated⇒ Gi = ∞
▶ d = (0, 1, 1, 1): Treated starting period 2⇒ Gi = 2 (staggered)
▶ d = (0, 1, 0, 0): Treated period 2 only, then off
▶ d = (0, 1, 0, 1): On, off, on again

Single treatment time: Only (0, . . . , 0, 1, . . . , 1) at fixed g or (0, . . . , 0)
Staggered: Only (0, . . . , 0, 1, . . . , 1) at varying g or (0, . . . , 0)
General: Any sequence d ∈ {0, 1}T
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Potential Outcomes with Treatment Sequences

General notation (encompasses Single treatment time and Staggered):

■ Yit(d) = potential outcome for unit i at time t under sequence d
■ Never‐treated: Yit(∞) = Yit(0, 0, . . . , 0)
■ Observed outcome:

Yit =
∑
d∈D

1{Gi = d}Yit(d)

How our earlier notation fits:

■ Single time/Staggered: Yit(g) = Yit(0, . . . , 0︸ ︷︷ ︸
g−1

, 1, . . . , 1︸ ︷︷ ︸
T−g+1

)

■ The g‐notation is shorthand when treatment never turns off!

Key insight: Robins notation handles ALL cases—Single treatment time and Staggered are special
cases where sequences have a simple structure.
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The General Building Block: ATT(d, t)

Building Block causal parameter:

ATT(d, t) = E[Yt(d)− Yt(∞) | G = d]

■ Effect of sequence d vs. never‐treated
■ Among units that actually followed sequence d
■ At time t

Connection to what we learned:

■ Single treatment time: ATT(d, t) → ATT(t) (one treated group)
■ Staggered: ATT(d, t) → ATT(g, t) (groups indexed by g)
■ General: ATT(d, t) for each unique sequence d

With T periods: up to 2T−1 potential treatment sequences!
Not all of them need to exist, though, i.e., some d may have zero probability.
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Most General Case: Treatment Can Turn On and Off

When treatment can turn on AND off:

■ Full sequence d = (d1, . . . , dT) may matter
■ We cannot simplify to just “when first treated” (Gstart)
■ Doing so can hide important treatment effect heterogeneity

Example: Democracy & Growth (Acemoglu et al., 2019)

■ Countries can democratize and revert to autocracy
■ Different sequences have different meanings:

▶ (0, 1, 1, 1): Stable emoryblueracy since period 2
▶ (0, 1, 0, 0): Brief democratic episode, then reversal
▶ (0, 1, 0, 1): Democratize, revert, re‐democratize

■ These may have very different effects on GDP!
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Visualizing Treatment On/Off: Democracy Example

t
t=1 t=2 t=3 t=4 t=5

Country A
(0, 1, 1, 1, 1)

Country B
(0, 1, 0, 0, 0)

Country C
(0, 1, 0, 1, 1)

Democracy

Autocracy

All three countries first democratized at the same time (Gstart = 2)

Same Gstart, very different histories!
Grouping by “when first treated” lumps together stable democracies, brief episodes, and on‐off
patterns. (Illustrative example)
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The Explosion of Parameters

With T periods (no one treated in t = 1): 2T−1 possible treatment sequences

Example with T = 4:
Staggered adoption:
■ 3 treated groups: G ∈ {2, 3, 4}
■ 6 post‐treatment (g, t) pairs
■ ⇒ 6 parameters

Treatment on/off:
■ 7 treated sequences
■ 17 post‐treatment (d, t) pairs
■ ⇒ 17 parameters!

The practical challenge
■ Estimating 17+ parameters with precision is hard
■ Communicating treatment effect heterogeneity across sequences is even harder
■ Natural instinct: aggregate — but how?
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Aggregation Challenge: What Does “Event‐Study” Mean?

Common approach: Aggregate by “time since first treated” (e = t− gstart)

Define ÃTT(gstart, t) = weighted average of ATT(d, t) across all sequences d that start treatment at
gstart.

Democracy example: What does ÃTT(gstart = 2, t = 4) aggregate?

■ (0, 1, 1, 1): Stable emoryblueracy for 3 periods
■ (0, 1, 1, 0): Democratic for 2 periods, then reverted
■ (0, 1, 0, 0): Democratic for 1 period only
■ (0, 1, 0, 1): Democratic, reverted, re‐democratized

The interpretation problem

ÃTT(gstart, t) mixes units with very different treatment histories!
At t = 4, some countries had 3 years of emoryblueracy, others had 1, others had 2 with a gap.
This is hard to rationalize if democratization affects GDP not only contemporaneously but also via duration and persistence,
i.e, in the presence of carryover effects. 83/93



Event‐Study Aggregation: θ̃D(e)

■ Several papers discuss “staggerizing” treatment using Gstart (Deryugina, Heutel, Miller, Molitor
and Reif, 2019; Sun and Abraham, 2021; de Chaisemartin and D’Haultfœuille, 2024):

θ̃D(e) =
∑
gstart

w(gstart; e) · ÃTT(gstart, gstart + e)

where w(gstart; e) = P(Gstart = gstart | Gstart + e ≤ T) is the cohort share among units first‐treated at least e
periods ago.

■ Unfortunately, θ̃D(e) does NOT represent an average effect w.r.t. length of exposure.
■ Why not?

▶ We aggregate across treatment paths with different exposure patterns
▶ At “e = 2”, some units were treated twice, others only once
▶ “Event time” e doesn’t correspond to actual treatment duration!

■ Democracy: “2 years since first democratized” includes stable democracies AND countries that
reverted.
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Comparing Event‐Studies: Staggered vs. On/Off

Staggered Adoption

e

θD(e)

0

e = 0

‐3 ‐2 ‐1 0 1 2 3

✓ Clear interpretation
e = 2 means 2 periods of treatment

Treatment On/Off

e

θ̃D(e)

0

e = 0

‐3 ‐2 ‐1 0 1 2 3

?
?

?

× Unclear interpretation

e = 2 mixes different exposures

With treatment on/off, event‐study coefficients aggregate incomparable treatment histories.
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What Can We Do?

■ Several papers discuss potential ways to move forward in this setting (de Chaisemartin and
D’Haultfœuille, 2020; Imai, Kim and Wang, 2023; de Chaisemartin and D’Haultfœuille, 2024;
Chiu, Lan, Liu and Xu, 2024; Liu, Wang and Xu, 2024)

■ These solutions often involve restricting treatment effect dynamics by imposing
limited/no‐carryover conditions:
▶ No‐carryover: Yit(d) = Yit(dt) — only current treatment matters
▶ Limited carryover: Yit(d) = Yit(dt−L, . . . , dt) — only recent L periods matter

■ These assumptions rule out long‐run treatment effect dynamics

Key insight: The Robins (1986) framework handles treatment on/off, but aggregation and in‐
terpretation become much harder without restricting how past treatments affect current out‐
comes.
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Beyond Binary Treatments

■ Everything discussed generalizes to multi‐valued and continuous treatments

■ In staggered adoption, potential outcomes indexed by (g, d):
▶ g = when treatment starts; d = dosage/intensity

■ The potential outcomes framework extends naturally:
▶ Binary: Yit(g, d) with d ∈ {0, 1}
▶ Multi‐valued: Yit(g, d) with d ∈ {0, 1, 2, . . .}
▶ Continuous: Yit(g, d) with d ∈ D ⊆ R

■ Same principles for causal parameters and aggregations apply

■ See Callaway, Goodman‐Bacon and Sant’Anna (2024) for details
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Example: MinimumWage and Employment

Setting: States adopt different minimum wage levels at different times

t
t=1 t=2 t=3 t=4 t=5 t=6

State A
g=3, d=$15

$15

State B
g=3, d=$12

$12

State C
g=5, d=$10

$10

State D
g=∞, d=$7

$7 (federal baseline)

Causal parameters: ATT(g, d, t) — effect of adopting wage d at time g, measured at t

■ Compare Yit(g, d) vs. Yit(∞) (federal minimum baseline)
■ Same g, different d (A vs. B)⇒ dose‐response (Illustrative)
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Summary: Key Takeaways

1. Potential outcomes provide a unified framework for defining causal effects in panel data

2. Treatment timing matters: Single treatment time→ Staggered adoption→ Treatment on/off

3. Building blocks: ATT(g, t) parameters capture group‐time specific effects

4. Aggregation: Cohort θS(g), calendar time θC(t), and event‐study θD(e) answer different questions

5. Flexibility vs. tractability: More general treatment patterns are hard to learn and aggregate
absent additional assumptions (e.g., limited/no‐carryover)

6. The framework is a template: Extends to QTT, DTT, CATT, ATU, ATE, and continuous treatments
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Decision Guide: What’s Your Treatment Pattern?

Can treatment
turn off?

Multiple
treatment times?

Need long‐run
dynamics?

Single Time
ATT(t)

Staggered
ATT(g, t)

On/Off
ATT(d, t)

w/ carryover restrictions

Full Robins
ATT(d, t)

No Yes

No Yes No Yes

Start with your empirical setting, then choose the appropriate framework!
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Suggested Exercise

Choose an empirical panel data paper and analyze its causal framework:

1. What is the treatment? Is it binary, multi‐valued, or continuous?

2. What treatment pattern applies? Single treatment time, staggered adoption, or on/off?

3. What are the potential outcomes? Write them out explicitly.

4. What causal parameter is the paper targeting? ATT(g, t)? An aggregation?

5. Could the paper benefit from alternative parameters (e.g., event‐study, heterogeneity by
covariates)?

This exercise builds intuition for connecting empirical questions to the potential outcomes framework.
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Questions?

Next: Randomizing Treatment Sequences
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