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Motivation: Why Panel Experiments?



Why Study Panel Experiments?

■ Last lecture: Potential outcomes depend on treatment histories, not just current treatment

■ Today: What can we learn when treatments are randomly assigned over time?

■ Panel experiments provide the experimental foundation for understanding:
▶ How to define causal effects when past treatments affect current outcomes
▶ Why standard estimators can fail
▶ What identification looks like under randomization

■ This builds intuition for the observational methods (DiD, etc.) we’ll study later

Main reference: Bojinov, Rambachan and Shephard (2021) — “Panel Experiments and Dynamic
Causal Effects: A Finite Population Perspective”
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The Carryover Problem

■ In panel experiments, we randomly assign treatments over multiple periods

■ Key challenge: Past treatments may affect current outcomes (carryover effects)

■ Examples:
▶ A/B testing at tech companies: User behavior today depends on past experiences
▶ Clinical trials with repeated dosing: Drug effects accumulate over time
▶ Pricing experiments: Past prices affect current demand through learning

■ Standard cross‐sectional methods assume Yit(d) — i.e., the outcome depends only on current
treatment

■ But the truth may be Yit(di,1, di,2, . . . , di,T) — i.e., the outcome depends on the entire history
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Roadmap for Today

1. Framework: Potential outcomes indexed by treatment paths

2. Estimands: Lag‐p dynamic causal effects

3. Identification & Estimation: Sequential randomization + Horvitz‐Thompson

4. Special Cases: RCT, Bernoulli, staggered adoption as illustrations

5. Application: Prisoners’ dilemma experiment

6. Why not Fixed Effects? Bias under carryover + serial correlation

7. Bridge: From experiments to observational data
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Framework: Potential Outcomes with Treatment Paths



Setup: The Potential Outcome Panel

■ Units: i ∈ {1, . . . ,N} observed over periods: t ∈ {1, . . . , T}

■ Treatment: Dit ∈ D assigned to unit i at time t
▶ For binary treatment: D = {0, 1}

■ Treatment path for unit i: The sequence of all treatments up to time T

di,1:T = (di,1, di,2, . . . , di,T) ∈ DT

■ Cross‐sectional assignment at time t: All treatments at period t

d1:N,t = (d1,t, d2,t, . . . , dN,t) ∈ DN
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Potential Outcomes Depend on Treatment Paths

Definition (Potential Outcome)
The potential outcome for unit i at time t along treatment path di,1:T ∈ DT is:

Yit(di,1:T)

■ In principle, Yit can depend on the entire treatment path
■ This allows arbitrary spillovers across time within a unit
■ We assume no interference across units (SUTVA): Yit doesn’t depend on dj,1:T for j ̸= i
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Key Assumption: Non‐Anticipation

Assumption (Non‐Anticipating Potential Outcomes)

For all units i, periods t, and treatment paths di,1:T, d̃i,1:T ∈ DT:

Yit(di,1:T) = Yit(d̃i,1:T) whenever di,1:t = d̃i,1:t

Interpretation:

■ Potential outcomes at time t only depend on treatments up to time t
■ Future treatments don’t affect current outcomes
■ But past and current treatments can have arbitrary effects

Under non‐anticipation: Yit(di,1:t) instead of Yit(di,1:T)

Q:What if treatment is announced in advance?

A: Define the “treatment” as the announcement, not
implementation. Non‐anticipation then holds relative to the announcement date.
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Key Assumption: Non‐Anticipation

Assumption (Non‐Anticipating Potential Outcomes)
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Connection to Lecture 2: Treatment Sequences

Lecture 2 introduced: Yit(di,1:T) where di,1:T = (di,1, . . . , di,T) (Robins)

What’s new in this lecture?

■ Non‐anticipation: Restricts dependence to treatments up to time t
■ Tractable estimands: Focusing on recent treatment history instead of the full path
■ How experiments help: Known assignment probabilities→ design‐based inference
■ When standard methods fail: Why fixed effects can mislead under carryover

This lecture provides the experimental foundation for treatment path dependence. Later: DiD uses
parallel trends instead of randomization.
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Treatment Path Visualization

Path A: (0, 0, 1, 1, 1, 1)

Path B: (0, 1, 1, 0, 1, 1)

Path C: (0, 0, 0, 0, 0, 0)

Time t
1 2 3 4 5 6

Treated Control

Key insight: Different paths lead to different potential outcomes at t = 6:

Yi6(Path A) ̸= Yi6(Path B) ̸= Yi6(Path C)
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Estimands: Lag‐p Dynamic Causal Effects



Defining Dynamic Causal Effects

A dynamic causal effect compares potential outcomes along different treatment paths:

τit(di,1:t, d̃i,1:t) := Yit(di,1:t)− Yit(d̃i,1:t)

Problem: The number of comparisons grows exponentially with t. Solution: Lag‐p effects.

Definition (Lag‐p Dynamic Causal Effect)

For 0 ≤ p < t and treatment sequences d, d̃ ∈ Dp+1:

τit(d, d̃; p) := Yit(dobsi,1:t−p−1, d)− Yit(dobsi,1:t−p−1, d̃)

where dobsi,1:t−p−1 denotes unit i’s realized path up to period t−p−1.

Note: p < t ensures there are enough past periods. Choosing p: bias‐variance tradeoff (larger p captures more carryover but needs

more data).
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Interpreting Lag‐p Effects

Comparison window (p = 2)

Time
t−5 t−4 t−3 t−2 t−1 t

Fixed at observed: dobsi,1:t−p−1

Path d: (1, 1, 1)

Path d̃: (0, 0, 0)

Lag‐p effect with p = 2, d = (1, 1, 1), d̃ = (0, 0, 0):

τit((1, 1, 1), (0, 0, 0); 2) = Yit(dobsi,1:t−3, 1, 1, 1)− Yit(dobsi,1:t−3, 0, 0, 0)

Effect of treatment in periods t−2, t−1, t vs. control, conditional on the observed earlier path.
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Special Cases: Lag‐0 and Contemporaneous Effects

Lag‐0 dynamic causal effect (p = 0):

τit(d, d̃; 0) = Yit(dobsi,1:t−1, d)− Yit(dobsi,1:t−1, d̃)

■ Compares treatment d vs. d̃ at time t only, holding the entire past fixed
■ If no carryover: reduces to Yit(1)− Yit(0) (standard effect)

Key: The lag‐0 effect is conditional on history. For the same unit, τit(1, 0; 0) can differ depending
on prior treatment status!

Example: Suppose the treatment is a pain medication.

■ If unit i was treated yesterday: tolerance may develop→ smaller τit(1, 0; 0)
■ If unit i was not treated recently: full drug effect→ larger τit(1, 0; 0)
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Average Lag‐p Dynamic Causal Effects

Definition (Average Lag‐p Dynamic Causal Effects)

For p < T and d, d̃ ∈ Dp+1:

Time‐t average (across units): τ̄·t(d, d̃; p) := 1
N
∑N

i=1 τit(d, d̃; p)

Unit‐i average (across time): τ̄i·(d, d̃; p) := 1
T−p

∑T
t=p+1 τit(d, d̃; p)

Total average (across all i, t): τ̄(d, d̃; p) := 1
N(T−p)

∑N
i=1

∑T
t=p+1 τit(d, d̃; p)

Note: Sums start at t = p+ 1 because we need p prior periods. Compare to Lecture 2: ATE(t), unit‐specific, overall ATE.
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Identification and Estimation



The Fundamental Problem of Causal Inference (Revisited)

Recall from Lecture 2: We cannot learn causal effects directly from data without structure.

The fundamental problem:

■ For each unit i at time t, we observe one outcome along the realized path
■ But potential outcomes exist for every possible treatment path di,1:t ∈ Dt

■ With binary treatment and T periods: 2T potential outcomes per unit, observe only 1

What structure can help?

■ In observational settings: parallel trends, selection on observables, etc.
■ In experiments: we know the assignment mechanism

This lecture: Exploit known assignment probabilities from randomization to construct unbiased es‐
timators via inverse probability weighting.
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Assignment Mechanism: Sequential Randomization

What makes this a panel experiment? The assignment mechanism is known.

Definition (Sequentially Randomized Assignments)
Assignments are sequentially randomized if for all t ∈ {1, . . . , T}:

Pr(D1:N,t|D1:N,1:t−1,Y1:N,1:T) = Pr(D1:N,t|D1:N,1:t−1,Y1:N,1:t−1(D1:N,1:t−1))

Interpretation:

■ Assignment at t can depend on past assignments and past observed outcomes
■ But not on future potential outcomes or counterfactual past outcomes
■ This is the panel analogue of “unconfounded” assignment
■ In words: knowing which outcomes would have been realized under alternative paths provides no
additional information about current assignment

Important: Since we’re in an experiment, assignment probabilities are known to the researcher.
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Individualistic Assignments

Definition (Individualistic Assignment)
Assignments are individualistic for unit i if:

Pr(Dit|D−i,t,F1:N,t−1,T) = Pr(Dit|Di,1:t−1,Yi,1:t−1)

where F1:N,t,T is the filtration generated by treatments and potential outcomes.

Interpretation:

■ Unit i’s assignment depends only on its own past, not on other units
■ Conditional on own history, assignments are independent across units

Example: Bernoulli assignment where Pr(Dit = 1) = q for all i, t independently.

15/43



The Adapted Propensity Score: Definition
Definition (Adapted Propensity Score)
For unit i at time t and treatment sequence d = (dt−p, . . . , dt) ∈ Dp+1:

πi,t−p(d) := Pr(Di,t−p:t = d|Di,1:t−p−1,Yi,1:t−1)

What this measures: Probability of observing path d over periods t−p to t, conditional on the unit’s
past assignment and outcome history. (The subscript t−p denotes the start of the treatment
window.)

Why “adapted”?

■ The propensity score can change over time as information accumulates
■ But since the experiment is designed, we know these probabilities

Assumption (Probabilistic Assignment (Overlap))
There exist constants 0 < cL < cU < 1 such that cL < πi,t−p(d) < cU for all i, t, d
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Computing the Adapted Propensity Score

Step 1: Identify the experimental design (Bernoulli, block, adaptive, etc.)

Step 2: Compute period‐by‐period probabilities. For path d = (dt−p, . . . , dt):

πi,t−p(d) =
t∏

s=t−p
Pr(Dis = ds|history up to s− 1)

Step 3: Apply to specific designs

■ iid Bernoulli with Pr(Dit = 1) = q: πi,t−p(d) = q#{s:ds=1} · (1− q)#{s:ds=0}

■ Example: p = 2, q = 0.5, d = (1, 0, 1): πi,t−2(1, 0, 1) = (0.5)2 · (0.5)1 = 0.125

Key insight: We only need πi,t−p(d) for the observed path — and we know it by design!
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Horvitz‐Thompson Estimator: Building Block
Definition ((i, t)‐th Contribution to Lag‐p Effect Estimator)

For d, d̃ ∈ Dp+1:

τ̂it(d, d̃; p) =
Yit · 1{Di,t−p:t = d}

πi,t−p(d)
−
Yit · 1{Di,t−p:t = d̃}

πi,t−p(d̃)

Intuition:

■ When unit i follows path d: contribute Yit/πi,t−p(d)
■ When unit i follows path d̃: contribute −Yit/πi,t−p(d̃)
■ Otherwise: contribute zero. IPW corrects for different path probabilities

This is an estimation building block. We aggregate these (i, t) contributions into plug‐in averages to
estimate population‐level effects.
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Plug‐in Average Estimators

Definition (Plug‐in Average Estimators)

Time‐t average: ˆ̄τ·t(d, d̃; p) := 1
N
∑N

i=1 τ̂it(d, d̃; p)

Unit‐i average: ˆ̄τi·(d, d̃; p) := 1
T−p

∑T
t=p+1 τ̂it(d, d̃; p)

Total average: ˆ̄τ(d, d̃; p) := 1
N(T−p)

∑N
i=1

∑T
t=p+1 τ̂it(d, d̃; p)

These estimate τ̄·t, τ̄i·, and τ̄ from earlier — unbiased under randomization.
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Key Result: Unbiasedness

Theorem (Bojinov et al. (2021), Theorem 3.1)
Under individualistic and probabilistic assignment:

E[τ̂it(d, d̃; p)|Fi,t−p−1] = τit(d, d̃; p)

The estimation error is a martingale difference sequence through time and conditionally
independent across units.

Implications:

■ The estimator is unbiased for the true lag‐p dynamic causal effect
■ Unbiasedness is over the randomization distribution (design‐based)
■ No assumptions on the outcome model needed!

Variance: Can be conservatively estimated from the data. Plug‐in averages are also unbiased.
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What Does Design‐Based Unbiasedness Mean?
Setup: N = 4, binary treatment, Bernoulli(0.5), at period t (Fi,t−p−1 realized). 24 = 16 possible
assignments.

D1t D2t D3t D4t ˆ̄τ·t

0 0 0 1 some number
...

...
1 1 1 0 some number

“Unbiased” = average of ˆ̄τ·t over all 16 assignments equals τ̄·t.

Design‐based ̸= model‐based. Potential outcomes are fixed; only assignments are random. We
average over the randomization distribution, not over hypothetical repeated samples.

Full panel: Total randomization space is 2NT, but unbiasedness works period by period (Theorem 3.1 conditions
on Fi,t−p−1), then aggregates via iterated expectations.
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Inference: Finite Population CLTs
Theorem (Bojinov et al. (2021), Theorem 3.2)
Under individualistic, probabilistic assignment with bounded potential outcomes:
Time‐t specific CLT (as N→ ∞):

√
N{ˆ̄τ·t(d, d̃; p)− τ̄·t(d, d̃; p)}

σ·t

d−→ N(0, 1)

Unit‐i specific CLT (as T→ ∞):
√
T− p{ˆ̄τi·(d, d̃; p)− τ̄i·(d, d̃; p)}

σi·

d−→ N(0, 1)

Total average CLT (as NT→ ∞):√
N(T− p){ˆ̄τ(d, d̃; p)− τ̄(d, d̃; p)}

σ

d−→ N(0, 1)
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Inference: Key Points

Key implications:

■ Time‐specific inference (N→ ∞): Test effects at a given period across units
■ Unit‐specific inference (T→ ∞): Test effects for a given unit across time
■ Total average inference (NT→ ∞): Pool across both dimensions

Practical considerations:

■ Variance can be conservatively estimated from the data
■ Enables valid confidence intervals and hypothesis tests

Two testing approaches:

1. Conservative tests: CLT + variance upper bound→ tests weak null H0 : τ̄ = 0 (average effect is
zero)

2. Randomization tests: Exact tests under sharp null τit = 0 for all (i, t) (no unit has any effect)
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Randomization Tests: The Idea

Under the sharp null H0 : τit(d, d̃; p) = 0 for all (i, t):

1. We can impute all missing potential outcomes: if no unit has any effect, then Yit(d) = Yit(d̃) for
all paths→ observed outcome = counterfactual outcome

2. Compute the HT test statistic for every possible assignment, not just the one that occurred
3. p‐value = fraction of possible assignments producing a test statistic as extreme as the one
observed

Advantages:

■ Exact: No asymptotic approximation needed — valid in finite samples
■ Follows directly from Fisher’s classical randomization inference

Limitation: The sharp null (τit = 0 for every unit at every time) is stronger than the weak null
(τ̄ = 0, the average is zero). The CLT‐based conservative test handles the weak null.
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Identification and Estimation
Illustrative Special Cases



Special Case 1: Single Treatment Date (RCT)

Setup: N units, T = 3 periods. Period t=1 is pre‐treatment. Treatment randomized at t=2 only:
Pr(Di2 = 1) = q. No treatment at t=1 or t=3.

All units share the same pre‐treatment path, so dobsi,1 = 0 for everyone.

■ Lag‐0 effect at t = 2: τi2(1, 0; 0) = Yi2(0, 1)− Yi2(0, 0) ⇒ Standard ATE
■ Lag‐1 effect at t = 3: τi3(1, 0; 1) = Yi3(0, 1, 0)− Yi3(0, 0, 0) ⇒ Carryover effect

Adapted propensity score: πi,2(1) = q, πi,2(0) = 1− q — known by design.

Absorbing variant: If once treated, always treated: paths become (0, 0, 0) and (0, 1, 1). Then lag‐1 at
t=3 is Yi3(0, 1, 1)− Yi3(0, 0, 0) — conflating contemporaneous and carryover. This is the staggered
adoption challenge.

Key insight: Even in a simple RCT with follow‐up, a naïve “treatment effect” conflates contempora‐
neous and lagged effects. The lag‐p framework separates them cleanly.
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Special Case 2: iid Bernoulli Assignment

Setup: Each unit independently assigned Dit = 1 with probability q at every period.

■ Treatment paths: All 2T paths are possible, each with known probability
■ Adapted propensity score for path d = (dt−p, . . . , dt) ∈ Dp+1:

πi,t−p(d) = qk · (1− q)p+1−k, k = #{s : ds = 1}

■ Same for all units and all time periods — no dependence on history
■ HT estimator: IPW corrects for different path probabilities; naïve mean comparison would not

Notable feature: No serial correlation in treatment — successive treatments are independent:
Cov(Dit,Dis) = 0 for s ̸= t. We will see why this independence property matters when we discuss
fixed effects estimators.
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Special Case 3: Staggered Adoption

Setup: Treatment is absorbing — once treated, always treated. Units adopt at different times
g ∈ {1, . . . , T}.

■ Treatment paths collapse to: (0, . . . , 0, 1, . . . , 1) with switch point g
■ Lag‐p effect for unit treated at g, evaluated at t ≥ g+ p (unit must have been treated for at least
p+1 consecutive periods):
Compares “treated for p+1 consecutive periods” vs. “not yet treated”

■ Connection to Lecture 2: Closely related to ATT(g, t) — the group‐time treatment effect
■ Adapted propensity score: Pr(adopt at g | not yet adopted by g−1) — the hazard of adoption

Notable feature: Treatment is perfectly serially correlated once adopted — if Dit = 1, then
Dis = 1 for all s > t. Contrast with iid Bernoulli above!

We’ll see why this serial correlation structure matters for FE estimators.
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HT Estimator: A Worked Example
Setup: N = 4 units, period t = 2, Bernoulli(0.5), lag‐0 effect ˆ̄τ·2(1, 0; 0).

Unit i Di2 Yi2 HT contribution: Yi2·1{Di2=1}
πi2(1)

− Yi2·1{Di2=0}
πi2(0)

1 1 8 8/0.5 = 16

2 0 3 −3/0.5 = −6

3 1 6 6/0.5 = 12

4 0 2 −2/0.5 = −4

ˆ̄τ·2 = 1
4 (16− 6 + 12− 4) = 4.5

Check: With equal propensity scores (πi2(1) = 0.5 for all i), HT = difference in means:
Ȳtreated − Ȳcontrol = 7− 2.5 = 4.5 ✓

What if propensity scores are unequal? Does simple mean comparison still work?

28/43



Why IPWMatters: Unequal Propensity Scores
Same units, but now an adaptive design: propensity scores vary across units.

Unit i Di2 Yi2 πi2(Di2) HT contribution

1 1 8 0.8 8/0.8 = 10

2 0 3 0.7 −3/0.7 = −4.29

3 1 6 0.3 6/0.3 = 20

4 0 2 0.4 −2/0.4 = −5

ˆ̄τHT·2 = 1
4 (10− 4.29 + 20− 5) = 5.18

Naïve difference in means: Ȳtreated − Ȳcontrol = 7− 2.5 = 4.5 ̸= 5.18

Why the difference? Unit 3 (Di2 = 1, π = 0.3) was unlikely to be treated — its outcome is more
“informative” about treatment effects and gets upweighted. Naïve means ignore this, producing
bias.
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Application: Prisoners’ Dilemma Experiment



Application: Rational Cooperation in Games

Setting: Andreoni and Samuelson (2006) study cooperative behavior in a twice‐repeated prisoners’
dilemma.

Design: N = 110 participants, T = 20 rounds, randomly matched into pairs each round. Outcome:
cooperation in period 1 of the game.

Treatment (Dit ∈ {0, 1}): The payoff structure parameter λ is randomly varied each round.

■ Dit = 1 (high λ): Payoffs reward patience — cooperation is rational
■ Dit = 0 (low λ): Payoffs reward immediacy — defection is tempting

Treatment is randomly assigned each round⇒ Bernoulli‐like design. But past game structures
may affect current behavior through learning — exactly the carryover concern.
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Results: Dynamic Causal Effects in the Experiment

Lag‐p

p = 0 p = 1 p = 2 p = 3

Point estimate ˆ̄τ †(1, 0; p) 0.285 0.058 0.134 0.089
Conservative p‐value 0.000 0.226 0.013 0.126
Randomization p‐value 0.000 0.263 0.012 0.114

†: Overall average HT estimator ˆ̄τ as defined earlier, pooling across all units and rounds. Conservative tests use CLT;

randomization tests simulate under sharp null.

Findings:

■ Strong contemporaneous effect (p = 0): Treatment increases cooperation by 28.5 pp
■ Suggestive lag‐2 effects (p = 2): Past structures affect behavior (p‐value = 0.012)

Interpretation: The lag‐2 effect suggests learning dynamics — players update beliefs based on past
experiences. This carryover would bias naïve FE regressions.
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Why Not Fixed Effects?



A Natural Question

We’ve established that Horvitz‐Thompson estimators are unbiased.

But practitioners often use simpler fixed effects estimators.

Do they work under carryover effects?

Spoiler: In general, no. FE estimators can be substantially biased when there are carryover effects
and serial correlation in treatment assignment.
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The Appeal of Fixed Effects

Common practice: Run OLS with unit fixed effects:

Yit = αi + βDit + ϵit

Why it seems reasonable:

■ Controls for time‐invariant unit heterogeneity (αi)
■ β̂ should capture the “treatment effect”
■ Simple, widely available in standard software

Question: Does the unit FE estimator β̂UFE recover a meaningful causal effect when there are car‐
ryover effects?

Answer: In general, no — and the bias can be substantial.

33/43



Linear Potential Outcome Panel Model

Definition (Bojinov et al. (2021), Definition 7)
A linear potential outcome panel satisfies:

Yit(di,1:t) = βit,0dit + βit,1di,t−1 + · · ·+ βit,t−1di,1 + ϵit

Interpretation:

■ βit,0: Contemporaneous effect — effect of current treatment on current outcome
■ βit,s for s > 0: Carryover effect — effect of treatment s periods ago
■ ϵit = Yit(0): Potential outcome under never‐treated path

This is a structural model for potential outcomes that separates contemporaneous from carry‐
over effects. It nests the no‐carryover case (βit,s = 0 for s > 0).
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The Unit Fixed Effects (UFE) Estimator

Definition: The unit fixed effects (UFE) estimator is:

β̂UFE =

∑N
i=1

∑T
t=1 ỸitD̃it∑N

i=1

∑T
t=1 D̃2

it

where Ãit = Ait − Āi· denotes the within‐unit deviation from unit i’s time average.

Equivalently: OLS coefficient from regressing Yit on Dit with unit fixed effects:

Yit = αi + βDit + errorit

UFE uses within‐unit variation in treatment over time to identify effects. It removes time‐invariant
unit heterogeneity.
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Bias of the Unit Fixed Effects Estimator
Proposition (Bojinov et al. (2021), Proposition 4.1)
Under a linear potential outcome panel, as N→ ∞:

β̂UFE
p−→

∑T
t=1 κ̃D,β,t,t∑T
t=1 σ̃

2
D,t︸ ︷︷ ︸

Target

+

∑T
t=1

∑t−1
s=1 κ̃D,β,t,s∑T

t=1 σ̃
2
D,t︸ ︷︷ ︸

Carryover Bias

+

∑T
t=1 δ̃t∑T
t=1 σ̃

2
D,t︸ ︷︷ ︸

Specification Error

(Each quantity defined on the next slide.)

Three components:

1. Target: A variance‐weighted average of contemporaneous effects βit,0
2. Carryover bias: Arises when past treatment affects outcomes and treatment is serially correlated
3. Specification error: Arises if untreated potential outcomes Yit(0) vary over time

UFE is unbiased only when both carryover bias and specification error are zero.
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Unpacking Proposition 4.1: The Key Quantities

Within‐unit deviation: D̃it = Dit − D̄i·, where D̄i· = T−1
∑T

t=1 Dit

Treatment variation: σ̃2
D,t = limN→∞ N−1

∑
i Var(D̃it)

How much within‐unit treatment variation exists at time t?

Effect–correlation interaction: κ̃D,β,t,s = limN→∞ N−1
∑

i βit,s · Cov(D̃it, D̃is)

How much does carryover from period s “leak” into the period‐t estimate?

Specification error: δ̃t captures time‐varying untreated outcomes

Vanishes if Yit(0) is time‐invariant (conditional on unit FE)

The critical insight: Carryover bias =
∑

s<t βit,s · Cov(D̃it, D̃is). This is the product of carryover
effects and serial correlation in treatment. If either is zero, the bias vanishes.
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Discussion: What Target Parameter?
Even without carryover or specification error, UFE estimates:∑T

t=1 κ̃D,β,t,t∑T
t=1 σ̃

2
D,t

=

∑
t

(
N−1

∑
i βit,0 · Var(D̃it)

)
∑

t

(
N−1

∑
i Var(D̃it)

)
→Weights ∝ Var(D̃it): Units/periods with more treatment variation get more weight.

Key questions:

■ Are these weights policy‐relevant? Do we care more about (i, t) with high treatment variation?
■ What if effects are heterogeneous (βit,0 varies)? Weighted average ̸= simple avg.
■ How does this compare to equally‐weighted averages from Horvitz‐Thompson?

Takeaway: Unbiasedness requires specifying the target. UFE is unbiased for a particular
weighted average — but weights come from design, not policy.
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When Does UFE Bias Matter?

Carryover bias ∝ (carryover effects) × (serial correlation in treatment)

Serial Correlation in Dit
No (iid Bernoulli) Yes (staggered)

No Carryover (βit,s = 0 for s > 0) Unbiased Unbiased
Carryover Present (βit,s ̸= 0) Unbiased BIASED

Surprising: Under iid Bernoulli, UFE is unbiased even with carryover! Why? Cov(D̃it, D̃is) = 0 for
s ̸= t, so the carryover bias term vanishes.

Why staggered = guaranteed bias: Under staggered adoption, Dit = 1 for all t ≥ gi ⇒
Cov(D̃it, D̃is) > 0 for post‐adoption periods. Any βit,s ̸= 0 makes the bias non‐zero.
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Two‐Way Fixed Effects: Same Issue
TWFE: Yit = αi + λt + βDit + errorit
Proposition (Bojinov et al. (2021), Proposition 4.2)
TWFE has the same three‐component bias structure as UFE, with different weights.

Important distinction from DiD literature:

■ Staggered DiD issues (Goodman‐Bacon, 2021; Sun and Abraham, 2021; Borusyak, Jaravel and
Spiess, 2024; Imai and Kim, 2021): arise even without carryover, under PT assumptions

■ Here: bias arises specifically because of carryover effects

Athey and Imbens (2021) also take a design‐based approach to staggered adoption, but don’t focus on carryover effects.

Takeaway: When carryover effects are possible, use Horvitz‐Thompson estimators — not unit FE or
TWFE.
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From Experiments to Observational Data
So far: Propensity scores known by design⇒ Horvitz‐Thompson is unbiased.

What if we don’t run the experiment? Blackwell and Glynn (2018) address this using the same
framework:

■ Same potential outcomes indexed by treatment histories: Yit(di,1:t)
■ Same estimands: Contemporaneous effect↔ lag‐0; Lagged effects↔ lag‐p
■ Key difference: Identification via sequential ignorability (selection on observables) — propensity
scores must be estimated, not known

Blackwell and Glynn’s key insight: With time‐varying covariates affected by past treatment,
standard regression cannot consistently estimate lagged effects (post‐treatment bias). Solutions exist
(inverse probability weighting, structural models) — see Blackwell and Glynn (2018) for details.

Limitation: Sequential ignorability cannot handle time‐constant unmeasured confounders ⇒
motivates DiD and parallel trends.
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Key Takeaways

What’s unique to this lecture:

1. Lag‐p effects: Tractable treatment path comparisons nesting familiar settings
2. Design‐based identification: Known propensity scores→ unbiased HT estimation
3. Finite population CLTs: Valid inference without outcome model assumptions
4. FE bias: Bias ∝ (carryover) × (serial correlation) — guaranteed under staggered adoption
5. Roadmap: Experiments→ selection on observables (Blackwell and Glynn, 2018)→ DiD (parallel
trends)

Main message: When carryover effects are possible, don’t default to TWFE. DiD provides an alter‐
native that handles unmeasured time‐constant confounders.

Next lecture: Efficient Estimation with Staggered Designs.
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