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Motivation: Application



Application: Reducing Police Misconduct

■ Reducing police misconduct and the use of force is an important policy objective

■ Wood, Tyler and Papachristos (2020a) (PNAS): Randomized rollout of procedural justice training
for Chicago police officers
▶ Emphasized respect, neutrality, and transparency in the exercise of authority

■ Original study found large and significant reductions in complaints/use of force

■ Wood, Tyler, Papachristos, Roth and Sant’Anna (2020b): a re‐analysis using Callaway and
Sant’Anna (2021)’s full‐adjustment approach (β = 1):
▶ No significant impacts on complaints; borderline effects on force; wide CIs

Two natural questions: Is the sampling‐based approach to inference adequate? How should we
optimally use pre‐treatment data when treatment timing is random?
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The Precision Problem: Event Study
Re‐analysis by Wood et al. (2020b) using full baseline adjustment (β = 1):
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Event Study: Complaints (Full Baseline Adjustment)

■ Officers averaged 0.044 complaints/month before training
■ Estimates suggest ≈11% reduction — but confidence intervals are wide
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The Precision Problem: All Outcomes
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■ Wide confidence intervals across all three outcomes
■ Only use of force is (barely) significant

Is this imprecision inherent to the data, or is there a more efficient way to use pre‐treatment
information?
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How should we optimally use pre‐treatment data
when treatment timing is random?

By finding the efficient adjustment weight.

In Roth and Sant’Anna (2023), we introduce a design‐based framework and derive the efficient
estimator for staggered rollout designs.
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Preview of Results

■ Roth and Sant’Anna (2023) introduce a design‐based framework formalizing random treatment
timing

■ Consider a large class of causal parameters aggregating effects across periods and cohorts

■ Solve for the efficient estimator in a class of pre‐treatment adjustment estimators

Key results:
■ SE reductions of 2× or more in Monte Carlo simulations and applications
■ Both t‐based and Fisher Randomization Test inference
■ Implemented in the R package staggered
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Roadmap

1. Framework: Staggered rollout with random treatment timing

2. Special Case: Two‐period model (building intuition)

3. Causal Parameters: Aggregations of ATE(g, t)

4. Class of Estimators: θ̂β = θ̂0 − X̂′β

5. The Efficient Estimator: β∗ and plug‐in version

6. Inference: t‐based CIs and Fisher Randomization Tests

7. R Implementation: The staggered package

8. Application: Police training revisited
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From Experiments to Staggered Designs

■ Lecture 3: We studied randomized experiments with design‐based inference
▶ Known treatment probabilities→ unbiased Horvitz‐Thompson estimation
▶ No use of pre‐treatment data for efficiency

■ This lecture: What if treatment timing is the random variable?
▶ Staggered rollout: units are treated at different times
▶ Pre‐treatment outcomes are available — should we use them?

The core question: In a randomized experiment, should you adjust for baseline covariates? How
much? This is the classical regression adjustment debate (Freedman, 2008; Lin, 2013). Here, the
“covariate” is the pre‐treatment outcome.
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Framework



Framework

■ Finite population: N units, T periods (i = 1, . . . ,N; t = 1, . . . , T)

■ Treatment timing: Unit i first treated at Gi ∈ G ⊂ {1, . . . , T} ∪ {∞}
▶ Gi = ∞: never treated. Treatment is absorbing (no switching on/off)

■ Potential outcomes: Yi,t(g) = outcome for unit i in period t if first treated at g

■ Observed outcomes: Yi,t =
∑

g 1[Gi = g]Yi,t(g)

Design‐based framework: Potential outcomes Yi,t(·) and cohort sizes Ng =
∑

i 1[Gi = g] are fixed;
only the treatment assignment G is stochastic.

Connection to Lecture 2: Same Yi,t(g) notation. Connection to Lecture 3: Same design‐based perspective, but now with absorbing

staggered treatment.
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Design‐Based Uncertainty

Randomization Inference: potential outcomes are fixed; only treatment timing G is permuted

Actual Sample Alternative Sample I Alternative Sample II . . .

Unit Yi,t(2) Yi,t(3) Yi,t(4) Gi Yi,t(2) Yi,t(3) Yi,t(4) Gi Yi,t(2) Yi,t(3) Yi,t(4) Gi . . .

1 ? ? ✓ 4 ? ✓ ? 3 ? ? ✓ 4 . . .

2 ✓ ? ? 2 ? ✓ ? 3 ? ✓ ? 3 . . .

3 ? ? ✓ 4 ? ? ✓ 4 ✓ ? ? 2 . . .

4 ? ✓ ? 3 ✓ ? ? 2 ? ? ✓ 4 . . .
...

...
...

...
...

...
...

...
...

...
...

...
... . . .

N ✓ ? ? 2 ✓ ? ? 2 ? ? ✓ 3 . . .

Potential outcomes are the same across samples. Only Gi (and hence which POs we observe) changes. Contrast with sampling‐based

inference, where different units are drawn.
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Assumption 1: Random Treatment Timing

Random Treatment Timing

Let G = (G1, . . . ,GN). Then:

Pr(G = g̃) =
∏

g∈G Ng!

N!
if
∑
i

1[g̃i = g] = Ng for all g, and zero otherwise.

■ Interpretation: Any permutation of treatment timing preserving cohort sizes is equally likely

■ Examples of plausible random timing:
▶ By design: randomized rollout of police training (Wood et al., 2020a)
▶ Quasi‐random: timing of parental deaths (Druedahl and Martinello, 2022), health shocks (Fadlon and
Nielsen, 2021), office closings (Deshpande and Li, 2019), stimulus payments (Parker, Souleles, Johnson
and McClelland, 2013)
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Assumption 2: No Anticipation

No Anticipation

For all units i, periods t, and treatment dates g, g′ > t:

Yi,t(g) = Yi,t(g′)

■ Interpretation: Outcomes before treatment do not depend on when treatment will start

■ Connection to Lecture 3: Same no‐anticipation assumption. Under this assumption, we write
Yi,t(∞) for the “untreated” potential outcome

■ Caveat: May fail if treatment timing is announced in advance (Malani and Reif, 2015)
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Assessing Random Treatment Timing

■ Random treatment timing is a strong assumption — how can we assess its plausibility?

■ Key idea: Under random treatment timing + no anticipation, pre‐treatment outcomes should be
balanced across cohorts (just like covariate balance in RCTs!)

■ Roth and Sant’Anna (2023) propose pre‐tests to assess plausibility of random treatment timing
▶ Balance checks implemented in R package staggered

■ If random treatment timing fails, weaker assumptions (covered in later lectures) can still justify
causal inference — but without the efficiency gains derived here

Bottom line: Random treatment timing provides additional structure beyond basic unconfound‐
edness. When plausible, it enables more efficient estimation. Balance checks help assess its
credibility.
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Special Case: Two‐Period Model



Two‐Period Model: Building Intuition

■ Setup: T = 2, G = {2,∞}. Some units treated in period 2, rest never treated.

■ Under randomization + no anticipation, this is analogous to a cross‐sectional randomized
experiment:

Outcome: Yi = Yi,t=2 (post‐treatment outcome)

Covariate: Xi = Yi,t=1 ≡ Yi,t=1(∞) (pre‐treatment outcome)

Treatment: Di = 1[Gi = 2] (treatment indicator)

We use the two‐period case as a running example to build intuition before moving to the general
staggered case.

13/44



Two‐Period: Target Parameter and Estimator Class

Target: θ = 1
N
∑N

i=1[Yi,2(2)− Yi,2(∞)] Class of estimators:

θ̂β = (Ȳ22 − Ȳ2∞)︸ ︷︷ ︸
Post‐treatment diff

−β (Ȳ12 − Ȳ1∞)︸ ︷︷ ︸
Pre‐treatment diff

where Ȳsg = N−1
g

∑
i: Gi=g Yi,s is the period‐s sample mean for cohort g, and β ∈ R.

β = 0: No adjustment (difference‐in‐means) ignores pre‐treatment data
β = 1: Full baseline adjustment subtracts entire pre‐treatment diff
β ∈ (0, 1): Partial adjustment intermediate correction
β < 0 or β > 1: Extrapolation also allowed; optimal β∗ may lie here

Isomorphic to regression adjustment in experiments (Freedman, 2008; Lin, 2013). The pre‐
treatment outcome Yi,1 serves as the covariate.
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Causal Parameters



Building Block: Average Treatment Effects

The average effect of switching treatment timing from g′ to g at period t:

τt,gg′ =
1

N

N∑
i=1

[
Yi,t(g)− Yi,t(g′)

]
General Scalar Estimand

θ =
∑
t,g,g′

at,gg′ τt,gg′

where at,gg′ ∈ R are known weights with at,gg′ = 0 if t < min(g, g′).

Connection to Lecture 2: τt,g∞ = ATE(g, t) is the group‐time treatment effect. All aggregation
parameters from Lecture 2 are special cases of θ.
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Aggregation Parameters

Simple weighted average: θsimple = 1∑
t
∑

g≤t Ng

∑
t
∑

g≤t Ng · ATE(g, t)

Calendar‐time aggregate: θcalendar = 1
T
∑

t θt, where θt =
1∑

g≤t Ng

∑
g≤t Ng · ATE(g, t)

Cohort aggregate: θcohort = 1∑
g ̸=∞ Ng

∑
g̸=∞ Ng θg, where θg = 1

T−g+1

∑
t≥g ATE(g, t)

Event‐study (lag l): θESl = 1∑
g:g+l≤T Ng

∑
g:g+l≤T Ng · ATE(g, g+l)

These are the same aggregation parameters from Lecture 2 (Callaway and Sant’Anna, 2021). Here we apply them to the

design‐based finite‐population setting.
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Class of Estimators



The Class of Estimators

Estimator Class

Let Ȳtg = N−1
g
∑

i 1[Gi = g]Yi,t be the sample mean for cohort g at period t, and τ̂t,gg′ = Ȳtg− Ȳtg′ .
Plug‐in estimator: θ̂0 =

∑
t,g,g′ at,gg′ τ̂t,gg′

General class:
θ̂β = θ̂0 − X̂′β

where X̂ is anM‐vector of pre‐treatment comparisons: X̂j =
∑

(t,g,g′):g,g′>t b
j
t,gg′ τ̂t,gg′

Under no anticipation, E[X̂] = 0. The vector X̂ compares cohorts before either was treated — any
pre‐treatment difference is “noise” from randomization.
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Existing Estimators as Special Cases

Callaway and Sant’Anna (2021): For estimating ATE(g, t) using never‐treated:

τ̂CSt,g = (Ȳtg − Ȳt∞)︸ ︷︷ ︸
θ̂0: post‐treatment diff

− (Ȳg−1,g − Ȳg−1,∞)︸ ︷︷ ︸
X̂: pre‐treatment diff

This is θ̂β with β = 1: full baseline adjustment using period g−1 as the pre‐treatment reference.

Other estimators in the class:

■ Sun and Abraham (2021): Last‐treated cohort as comparison (β = 1)
■ de Chaisemartin and D’Haultfœuille (2020): Equivalent to CS for instantaneous event‐study
(β = 1)

■ TWFE: Also in the class (Athey and Imbens, 2021), but with potentially negative weights

Key observation: All existing approaches use β = 1 (or fixed). None optimize over β!
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The Efficient Estimator



Unbiasedness: All β Work

Proposition (Unbiasedness — Lemma 2.1)
Under Assumptions 1 (Random Treatment Timing) and 2 (No Anticipation):

E[θ̂β ] = θ for all β ∈ RM

Proof sketch:

1. Under randomization: E[Ȳtg] = Efin[Yi,t(g)], so E[θ̂0] = θ

2. Under no anticipation: E[X̂] = 0 (comparing cohorts pre‐treatment)
3. Therefore: E[θ̂β ] = E[θ̂0]− E[X̂]′β = θ − 0 = θ □

Since all β give unbiased estimators, we are free to choose β to minimize variance.
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The Efficient β∗

Proposition 2.1: The variance of θ̂β is uniquely minimized at:

β∗ = Var[X̂]−1 Cov[X̂, θ̂0]

Proof: This is just OLS! We are minimizing

Var[θ̂0 − X̂′β] = Var
[
(θ̂0 − θ)− (X̂− 0)′β

]
over β. The solution is the best linear predictor of θ̂0 given X̂.

Intuition: Adjustmore for pre‐treatment differenceswhen they aremore predictive of post‐treatment
differences. The optimal β∗ balances full adjustment (β = 1) and no adjustment (β = 0).
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Key Property: β∗ Depends Only on Estimable Quantities

Joint variance structure:

Var

(
θ̂0
X̂

)
=

(
Vθ0 Vθ0,X

VX,θ0 VX

)
where the components involve:

■ Sg = Varfin[Yi(g)]: finite‐population variance for cohort g — estimable
■ Sθ = Varfin

[∑
g Aθ,gYi(g)

]
: cross‐PO variance — not estimable

Critical insight: β∗ = V−1
X VX,θ0 depends only on Sg (estimable!), not on Sθ . This is because VX

and VX,θ0 involve only within‐cohort covariances.

We estimate Sg with the within‐cohort sample covariance Ŝg = (Ng − 1)−1
∑

i 1[Gi = g](Yi − Ȳg)(Yi − Ȳg)′.
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Two‐Period Efficient β∗: Intuition

In the two‐period case:
β∗ =

N∞

N
β∞ +

N2

N
β2

where βg is the regression coefficient from regressing Yi,2(g) on Yi,1 (plus constant).

Scenario β∗ Optimal estimator

Yi,2(g) uncorrelated with Yi,1 ≈ 0 No adjustment
High autocorrelation (βg ≈ 1) ≈ 1 Full adjustment
Intermediate autocorrelation ∈ (0, 1) Partial adjustment

Mean reversion (βg < 0) < 0 Reverse adjustment
Low autocorrelation + heterogeneity > 1 Over‐adjustment

Connection to experiments: This is exactly the Lin (2013) result for covariate adjustment in random‐
ized experiments, with Yi,1 as the “covariate.”
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Connection: From Lecture 3 to Lecture 4

■ Lecture 3: Design‐based Horvitz‐Thompson estimation
▶ Known propensity scores→ unbiased estimation via IPW
▶ No covariate adjustment

■ Lecture 4: Design‐based estimation with covariate adjustment
▶ Pre‐treatment outcomes serve as “covariates”
▶ θ̂0 is a Horvitz‐Thompson‐type estimator
▶ X̂′β is the covariate adjustment
▶ Choosing β∗ optimally→ efficient estimation

Bridge: Lecture 3 established that HT‐type estimators are unbiased under randomization. This lec‐
ture asks: among all unbiased estimators, which is most precise?
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Plug‐In Estimator



The Plug‐In Efficient Estimator

■ Problem: β∗ depends on unknown Sg = Varfin[Yi(g)]

■ Solution: Replace Sg with sample analogue Ŝg, compute β̂∗

■ Plug‐in estimator: θ̂β̂∗ = θ̂0 − X̂′β̂∗

Regularity Conditions

As N → ∞: (i) Cohort shares converge: Ng/N → pg ∈ (0, 1); (ii) Variances Sg have positive
definite limits; (iii) Lindeberg condition holds.

Proposition 2.2:
√
N(θ̂β̂∗−θ)

d−→ N (0, σ2
∗). No efficiency loss from estimating β∗ — the plug‐in

achieves the same asymptotic variance as the oracle.
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Inference



Variance Estimation and t‐Based Inference

■ Challenge: The variance of θ̂β∗ contains Sθ = Varfin
[∑

g Aθ,gYi(g)
]
, which depends on covariances

of potential outcomes never observed together

■ Conservative approach: Neyman‐style variance estimator
▶ Ignores Sθ (treats it as zero), replaces Sg with Ŝg
▶ Conservative: overestimates variance→ valid but wide CIs

■ Less conservative: Roth and Sant’Anna (2023) show how to estimate the part of Sθ explained by
X̂
▶ Tighter CIs while remaining conservative

t‐based CI: θ̂β̂∗ ± z1−α/2 · σ̂∗∗/
√
N, where σ̂2

∗∗ converges to an upper bound on the true variance.
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What about Fisher Randomization Tests?

26/44



Fisher Randomization Tests

Under random treatment timing, we can construct permutation tests:

1. Compute the studentized test statistic t = θ̂β̂∗/ŝe
2. For each permutation π of G, compute tπ

3. p‐value = Prπ(|tπ| ≥ |tobs|)

Proposition 2.3: The studentized FRT is:
1. Exact under sharp null (HS

0: Yi(g) = Yi(g′) for all i, g, g′)
2. Asymptotically valid under weak null (HW

0 : θ = 0)

Studentization is essential! Without it, FRTs may not have correct size for the weak null (Wu
and Ding, 2020; Zhao and Ding, 2020).
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Visualizing Fisher Randomization Tests
■ Illustration with simulated synthetic data

■ Under the null, the observed assignment is “just another permutation”

■ Procedure: (1) Compute Tobs from actual data (2) Re‐shuffle treatment→ recompute Tπ (3) p‐value
= #{|Tπ|≥|Tobs|}
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Fisher Randomization Test: Permutation Distribution
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Why Studentization Matters
Simulation with synthetic data.
Sharp null (HS

0): Yi(g) = Yi(g′) for all i, g, g′ → FRT is exact
Weak null (HW

0 ): θ = 0 → FRT may over‐reject!

Nominal size = 5%
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FRT Rejection Rates Under the Weak Null

Under heterogeneous effects, unstudentized FRTs have severe size distortions. Studentization re‐
stores correct size (Wu and Ding, 2020; Zhao and Ding, 2020). Simulation: frt_simulation.R
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FRT for Callaway and Sant’Anna Estimators

■ The randomization‐based approach can also be applied to Callaway and Sant’Anna (2021)
estimators

■ Recall: CS is a special case with β = 1

■ Thus, one can use FRTs to conduct “design‐based” inference with CS estimators

■ Rambachan and Roth (2025): FRT results are likely conservative even without full random timing

Practical implication: Even if you use CS estimators (under weaker assumptions discussed in later
lectures), you can supplement with FRT‐based p‐values when random timing is plausible. The
staggered package implements this.
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R Implementation



R Package: staggered

Installation: install.packages("staggered")

Main functions:

■ staggered(): Efficient estimator (Roth and Sant’Anna, 2023)
■ staggered_cs(): Callaway and Sant’Anna (2021) estimator
■ staggered_sa(): Sun and Abraham (2021) estimator

Built‐in dataset: pj_officer_level_balanced (police training application)
library(staggered)
data(pj_officer_level_balanced)
# 5,537 officers, 72 periods, 47 cohorts
# Variables: uid, period, first_trained,
# complaints, sustained, force
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Basic Usage: Efficient Estimator

# Simple average treatment effect
staggered(df = pj_officer_level_balanced,

i = "uid", t = "period",
g = "first_trained", y = "complaints",
estimand = "simple")

Output: Returns estimate, se, se_neyman

# With Fisher Randomization Test
staggered(df = pj_officer_level_balanced,

i = "uid", t = "period",
g = "first_trained", y = "complaints",
estimand = "simple",
compute_fisher = TRUE,
num_fisher_permutations = 500)

Additional output: fisher_pval (permutation p‐value)
32/44



Multiple Estimands

# Calendar−time weighted average
staggered(df = pj_officer_level_balanced,

i = "uid", t = "period",
g = "first_trained", y = "complaints",
estimand = "calendar")

# Cohort−weighted average
staggered(..., estimand = "cohort")

# Event−study: effects at lags 0 through 11
staggered(df = pj_officer_level_balanced,

i = "uid", t = "period",
g = "first_trained", y = "complaints",
estimand = "eventstudy",
eventTime = 0:11)

Event‐study returns one row per event time, each with its own estimate and SE.
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Comparing Estimators
# Efficient estimator (Roth & Sant'Anna)
res_eff <− staggered(df = pj_officer_level_balanced,

i = "uid", t = "period", g = "first_trained",
y = "complaints", estimand = "simple")

# Callaway & Sant'Anna (2021)
res_cs <− staggered_cs(df = pj_officer_level_balanced,

i = "uid", t = "period", g = "first_trained",
y = "complaints", estimand = "simple")

# Sun & Abraham (2021)
res_sa <− staggered_sa(df = pj_officer_level_balanced,

i = "uid", t = "period", g = "first_trained",
y = "complaints", estimand = "simple")

# Unadjusted (no pre−treatment adjustment)
res_unadj <− staggered(df = pj_officer_level_balanced,

i = "uid", t = "period", g = "first_trained",
y = "complaints", estimand = "simple",
beta = 1e−16, use_DiD_A0 = TRUE)
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Application: Police Training Revisited



Application: Procedural Justice Training

■ Setting: Wood et al. (2020a) — randomized rollout of procedural justice training to Chicago
police officers

■ Data: 5,537 officers, 72 monthly periods, 47 treatment cohorts (cohort sizes: 3–575)

■ Outcomes:
▶ Complaints against officers
▶ Sustained complaints
▶ Officer use of force

■ Treatment timing: Randomized by design→ random treatment timing holds

Comparison: Efficient estimator vs. Callaway‐Sant’Anna vs. Sun‐Abraham
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Application Results: Complaints

SE ratio: 1.86

SE ratio: 8.18

SE ratio: 1.04

−0.025

0.000

0.025

Roth & Sant'Anna
(Efficient)

Callaway &
Sant'Anna

Sun &
Abraham

Unadjusted
(No Adjustment)

E
st

im
at

ed
 E

ffe
ct

Point estimates with 95% CIs. SE ratios relative to efficient estimator.

Comparison of Estimators: Complaints (Simple Estimand)

SE ratios annotated above each CI. Large gains over CS and SA; modest gains over unadjusted (β = 0) — efficiency gains vary by

application.
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Application Results: Efficiency Gains Across Estimands
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Application Results: All Outcomes

SE: 1.86x
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Estimator Comparison: All Outcomes (Simple Estimand)

Efficiency gains vary across outcomes. Largest gains for sustained complaints; modest for use of force. SE ratios annotated above

each CI.
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Event Study: Complaints
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Efficient estimator (blue) produces tighter CIs at every event time, enabling sharper inference about dynamic treatment effects.
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Can we assess the validity of the assumptions?
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Balance Checks for Random Treatment Timing

■ Under random treatment timing, pre‐treatment outcomes should be balanced across cohorts

■ Test H0 : E[X̂] = 0 (pre‐treatment differences are mean‐zero)

■ Roth and Sant’Anna (2023): Propose balance checks implemented in staggered

Results from police training data:

■ Balanced on complaints and sustained complaints (main sample)
■ Imbalanced when including pilot participants/special units (known to violate randomization)
■ Pre‐treatment event‐study: no significant anticipation effects

Balance checks provide evidence for or against the random timing assumption — analogous to co‐
variate balance checks in RCTs.

41/44



Take‐Away



Take‐Away Message

1. When treatment timing is random, estimators that use fixed adjustment weights (β = 0 or
β = 1) “leave money on the table”

2. Roth and Sant’Anna (2023) show how to use additional information to “collect the
money”

3. Estimators and inference easily implemented in R via the staggered package

4. Recommendation: Use when treatment timing is (quasi‐)random
▶ Other procedures remain valid under weaker assumptions (covered in upcoming lectures)
▶ Efficiency gains come from exploiting the additional structure of random timing

Next lecture: Observational panel data — when treatment timing is not random.
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Summary of Key Results

Result Statement

Unbiasedness θ̂β is unbiased for θ for any β (Lemma 2.1)

Efficiency β∗ = Var[X̂]−1Cov[X̂, θ̂0] minimizes variance (Prop. 2.1)

Feasibility Plug‐in β̂∗ achieves same asymptotic variance as oracle (Prop. 2.2)

Inference Studentized FRT: exact under sharp null, valid under weak null (Prop. 2.3)

Nesting β=0, β=1, CS, SA all special cases with fixed β

Gains SE reductions of 1.4–8.4× in application
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Appendix



Monte Carlo: Two‐Period Design

DGP: Draw Yi(∞) ∼ N (0,Σρ); set Yi,2(2) = Yi,2(∞) + γ(Yi,2(∞)− Efin[Yi,2(∞)])

■ γ ∈ {0, 0.5}: treatment effect heterogeneity; ρ ∈ {0, 0.5, 0.99}: autocorrelation
■ N2 = N∞ = N/2, N ∈ {25, 1000}

Comparison: Plug‐in efficient vs. full adjustment (β = 1) vs. no adjustment (β = 0)

Key findings:

■ All estimators unbiased; coverage ≈ 95%
■ ρ = 0.99: full adjustment optimal (β∗ ≈ 1); ρ = 0: no adjustment optimal (β∗ ≈ 0)
■ Intermediate ρ: plug‐in can be 1.7×more precise than full adjustment
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Monte Carlo: Staggered Design (Calibrated to Application)

Setup: Calibrated to police training data (72 periods, 48 cohorts, 7,785 officers). Sharp null: Yit(g) =
observed outcome for all g.

Comparison: Plug‐in efficient vs. Callaway‐Sant’Anna vs. Sun‐Abraham

Key findings:

■ Plug‐in: approximately unbiased, 93–96% coverage; FRT size ≈ 5%
■ Efficiency gains vs. CS: SE ratio 1.39–1.85 (equivalent to 3.4× the sample size)
■ Efficiency gains vs. SA: SE ratio 3.0–6.86

Substantial efficiency gains are achievable in realistic staggered designs when treatment tim‐
ing is random.
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