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Motivation: Application



Application: Reducing Police Misconduct

Reducing police misconduct and the use of force is an important policy objective

Wood, Tyler and Papachristos (2020a) (PNAS): Randomized rollout of procedural justice training
for Chicago police officers
Emphasized respect, neutrality, and transparency in the exercise of authority

Original study found large and significant reductions in complaints/use of force

Wood, Tyler, Papachristos, Roth and Sant’/Anna (2020b): a re-analysis using Callaway and
Sant’Anna (2021)’s full-adjustment approach (3 = 1):
No significant impacts on complaints; borderline effects on force; wide Cls

Two natural questions: Is the sampling-based approach to inference adequate? How should we
optimally use pre-treatment data when treatment timing is random?
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The Precision Problem: Event Study

Re-analysis by Wood et al. (2020b) using full baseline adjustment (3 = 1):

Event Study: Complaints (Full Baseline Adjustment)
Baseline: 0.044 complaints per officer-month | 95% Cls
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Estimated Effect
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Officers averaged 0.044 complaints/month before training
Estimates suggest ~11% reduction — but confidence intervals are wide
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The Precision Problem: All Outcomes

Full Baseline Adjustment: All Outcomes (Simple Estimand)
Point estimates and 95% confidence inervals

Estimated Effect

Wide confidence intervals across all three outcomes
Only use of force is (barely) significant

Is this imprecision inherent to the data, or is there a more efficient way to use pre-treatment
information?
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How should we optimally use pre-treatment data
when treatment timing is random?

By finding the efficient adjustment weight.

In Roth and Sant’Anna (2023), we introduce a design-based framework and derive the efficient
estimator for staggered rollout designs.

4/44



Preview of Results

Roth and Sant’Anna (2023) introduce a design-based framework formalizing random treatment
timing

Consider a large class of causal parameters aggregating effects across periods and cohorts

Solve for the efficient estimator in a class of pre-treatment adjustment estimators

Key results:
SE reductions of 2x or more in Monte Carlo simulations and applications
Both t-based and Fisher Randomization Test inference

Implemented in the R package staggered
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1. Framework: Staggered rollout with random treatment timing
2. Special Case: Two-period model (building intuition)

3. Causal Parameters: Aggregations of ATE(g,t)

4. Class of Estimators: 5 = 6, — X'

5. The Efficient Estimator: 8* and plug-in version

6. Inference: t-based Cls and Fisher Randomization Tests

7. R Implementation: The staggered package

8. Application: Police training revisited
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From Experiments to Staggered Designs

Lecture 3: We studied randomized experiments with design-based inference

Known treatment probabilities — unbiased Horvitz-Thompson estimation
No use of pre-treatment data for efficiency

This lecture: What if treatment timing is the random variable?

Staggered rollout: units are treated at different times
Pre-treatment outcomes are available — should we use them?

The core question: In a randomized experiment, should you adjust for baseline covariates? How
much? This is the classical regression adjustment debate (Freedman, 2008; Lin, 2013). Here, the
“covariate” is the pre-treatment outcome.
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Framework



Framework

Finite population: N units, T periods (i=1,...,N;t=1,...,T)

Treatment timing: Unit i first treated at G; € G C {1,..., T} U {oo}
G; = oo: never treated. Treatment is absorbing (no switching on/off)

Potential outcomes: Y;(g) = outcome for unit i in period t if first treated at g
Observed outcomes: Y;; = Zg 1[G; =g Yi(9)

Design-based framework: Potential outcomes Y;(-) and cohort sizes Ng = > . 1[G; = g] are fixed;
only the treatment assignment G is stochastic.

Connection to Lecture 2: Same Y; (g) notation. Connection to Lecture 3: Same design-based perspective, but now with absorbing
staggered treatment.
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Design-Based Uncertainty

Randomization Inference: potential outcomes are fixed; only treatment timing G is permuted

Actual Sample Alternative Sample | Alternative Sample Il
Unit Yie(2) Yie(3) Yir(4) G Yit(2) Yie(3) Yii4) G Yit(2)  Yie(3) Yii4) G
1 ? ? v 4 ? v ? 3 ? ? v 4
2 v ? ? 2 ? v ? 3 ? v ? 3
3 ? ? v 4 ? ? v 4 v ? ? 2
4 ? v ? 3 v ? ? 2 ? ? v 4
N v ? ? 2 v ? ? 2 ? ? v 3

Potential outcomes are the same across samples. Only G; (and hence which POs we observe) changes. Contrast with sampling-based

inference, where different units are drawn.
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Assumption 1: Random Treatment Timing

Random Treatment Timing

Let G = (Gy,...,Gy). Then:

Pr(G=3) = M if Z [g; = 8] = Nq for all g, and zero otherwise.

Interpretation: Any permutation of treatment timing preserving cohort sizes is equally likely

Examples of plausible random timing:
By design: randomized rollout of police training (Wood et al., 2020a)
Quasi-random: timing of parental deaths (Druedahl and Martinello, 2022), health shocks (Fadlon and
Nielsen, 2021), office closings (Deshpande and Li, 2019), stimulus payments (Parker, Souleles, Johnson
and McClelland, 2013)
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Assumption 2: No Anticipation

No Anticipation

For all units i, periods t, and treatment dates g,g’ > t:

Yit(8) = Vit(g')

Interpretation: Outcomes before treatment do not depend on when treatment will start

Connection to Lecture 3: Same no-anticipation assumption. Under this assumption, we write
Yi +(c0) for the “untreated” potential outcome

Caveat: May fail if treatment timing is announced in advance (Malani and Reif, 2015)
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Assessing Random Treatment Timing

Random treatment timing is a strong assumption — how can we assess its plausibility?

Key idea: Under random treatment timing + no anticipation, pre-treatment outcomes should be
balanced across cohorts (just like covariate balance in RCTs!)

Roth and Sant’Anna (2023) propose pre-tests to assess plausibility of random treatment timing
Balance checks implemented in R package staggered

If random treatment timing fails, weaker assumptions (covered in later lectures) can still justify

causal inference — but without the efficiency gains derived here

Bottom line: Random treatment timing provides additional structure beyond basic unconfound-
edness. When plausible, it enables more efficient estimation. Balance checks help assess its

credibility.
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Special Case: Two-Period Model




Two-Period Model: Building Intuition

Setup: T =2, G = {2,00}. Some units treated in period 2, rest never treated.

Under randomization + no anticipation, this is analogous to a cross-sectional randomized
experiment:

Outcome: Yi=Yito (post-treatment outcome)
Covariate: Xi=Yj;—; =Yit—1(c0) (pre-treatment outcome)
Treatment: D; =1[G; = 2] (treatment indicator)

We use the two-period case as a running example to build intuition before moving to the general
staggered case.
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Two-Period: Target Parameter and Estimator Class

Target: 0 = % Z,N:l[Y;,Q(Q) — Yi2(c0)] Class of estimators:
Os = (Ya2 — Yaos) =B (Y12 — Y1o0)

Post-treatment diff Pre-treatment diff

where \753 = Ng_1 > Gi=g Y; s is the period-s sample mean for cohort g, and 3 € R.

B =0: No adjustment (difference-in-means) ignores pre-treatment data

g=1 Full baseline adjustment subtracts entire pre-treatment diff

B e (0,1): Partial adjustment intermediate correction

B <0orf>1: Extrapolation also allowed; optimal 3* may lie here

Isomorphic to regression adjustment in experiments (Freedman, 2008; Lin, 2013). The pre-
treatment outcome Y; ; serves as the covariate.
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Causal Parameters



Building Block: Average Treatment Effects

The average effect of switching treatment timing from g’ to g at period t:

1 N
Ttgg — N Z[Yi,t(g) - Yi,t(g/)]

Il
-

General Scalar Estimand

6= E Ot gg’ Tt gg’
t

8,8’

where a; g € R are known weights with a; g¢ = 0 if t < min(g,g’).

Connection to Lecture 2: 7; 4., = ATE(g,t) is the group-time treatment effect. All aggregation

parameters from Lecture 2 are special cases of 4.
15/44



Aggregation Parameters

Simple weighted average: ¢°mPle — m >t g<t Ng - ATE(g, 1)
Calendar-time aggregate: 0°@endr — 15~ 6. where 6; = m > g<t Ng - ATE(g, 1)

Cohort aggregate: <" = -3, N, where 0y = -5 > (ATE(g, t)

87#00 Ng

Event-study (lag I): 6F° = m > ggri<7Ng - ATE(g,8+1)

These are the same aggregation parameters from Lecture 2 (Callaway and Sant’/Anna, 2021). Here we apply them to the

design-based finite-population setting.

16/44



Class of Estimators




The Class of Estimators

Estimator Class

Let Yig = Ng' 3:1[G; = g] Yj be the sample mean for cohort g at period t, and 7 g¢ = Yig— Yig'-

Plug-in estimator: 0, = Zt,g’g, Gt gg' Tt.gg’
General class:
s =0y — X'

where X is an M-vector of pre-treatment comparisons: X Z(t’g’g 3.9/ >t b’t 9 Tty

Under no anticipation, ]E[f(] = 0. The vector X compares cohorts before either was treated — any
pre-treatment difference is “noise” from randomization.
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Existing Estimators as Special Cases

Callaway and Sant’Anna (2021): For estimating ATE(g, t) using never-treated:

g = (Vg—Yio) — (Vo153 Yo 1)

fo: post-treatment diff X: pre-treatment diff
This is 95 with 8 = 1: full baseline adjustment using period g—1 as the pre-treatment reference.

Other estimators in the class:

Sun and Abraham (2021): Last-treated cohort as comparison (3 = 1)
de Chaisemartin and D’Haultfeeuille (2020): Equivalent to CS for instantaneous event-study

(B=1)
TWEFE: Also in the class (Athey and Imbens, 2021), but with potentially negative weights

Key observation: All existing approaches use 3 = 1 (or fixed). None optimize over !
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The Efficient Estimator




Unbiasedness: All 5 Work

Proposition (Unbiasedness — Lemma 2.1)

Under Assumptions 1 (Random Treatment Timing) and 2 (No Anticipation):

E[fs] =6 forall 3 e RM

Proof sketch:

1. Under randomization: E[Ys] = Efin[Y;+(8)], s0 E[fg] = 6

2. Under no anticipation: E[X] = 0 (comparing cohorts pre-treatment)
3. Therefore: E[f3] = E[f] —E[X/8=60—-0=0 O

Since all 3 give unbiased estimators, we are free to choose S to minimize variance.
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The Efficient g*

Proposition 2.1: The variance of 93 is uniquely minimized at:

B* = Var[X]~! Cov[X, 6]

Proof: This is just OLS! We are minimizing
Var[fy — X'3] = Var|[(6y — 8) — (X — 0)'5]

over 3. The solution is the best linear predictor of 0o given X.

Intuition: Adjust more for pre-treatment differences when they are more predictive of post-treatment
differences. The optimal 8* balances full adjustment (8 = 1) and no adjustment (3 = 0).
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Key Property: 5* Depends Only on Estimable Quantities

Joint variance structure: X
var [P0} = Voo Veox
X Vo, Vx

Sg = Varin[Yi(g)]: finite-population variance for cohort g — estimable
Sy = Varsin[> 4 Ag gYi(g)]: cross-PO variance — not estimable

where the components involve:

Critical insight: g* = v;lvx,gn depends only on S, (estimable!), not on Sy. This is because Vx
and Vy g, involve only within-cohort covariances.

We estimate Sg with the within-cohort sample covariance Sg = (Ng — 1)~ 3°,1[G; = g](Y; — Yg)(Y; — Yg)'.
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Two-Period Efficient 5*: Intuition

In the two-period case:
* NOO N2

where fq is the regression coefficient from regressing Y; »(g) on Y;; (plus constant).

Scenario 5* Optimal estimator
Yi2(8) uncorrelated with Y; ; ~0 No adjustment
High autocorrelation (55 ~ 1) ~1 Full adjustment
Intermediate autocorrelation € (0,1) Partial adjustment
Mean reversion (g < 0) <0 Reverse adjustment
Low autocorrelation + heterogeneity > 1 Over-adjustment

Connection to experiments: This is exactly the Lin (2013) result for covariate adjustment in random-
ized experiments, with Y;; as the “covariate.” e



Connection: From Lecture 3 to Lecture 4

Lecture 3: Design-based Horvitz-Thompson estimation
Known propensity scores — unbiased estimation via IPW
No covariate adjustment

Lecture 4: Design-based estimation with covariate adjustment

Pre-treatment outcomes serve as “covariates”
0y is a Horvitz-Thompson-type estimator

f(’ﬁ is the covariate adjustment

Choosing 5 optimally — efficient estimation

Bridge: Lecture 3 established that HT-type estimators are unbiased under randomization. This lec-
ture asks: among all unbiased estimators, which is most precise?
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Plug-In Estimator




The Plug-In Efficient Estimator

Problem: 5* depends on unknown Sy = Varg;,[Yi(g)]
Solution: Replace Sy with sample analogue 33, compute ﬂ*

Plug-in estimator: é@* =0y — f(/B*

Regularity Conditions

As N — oo: (i) Cohort shares converge: Ng/N — pg € (0,1); (i) Variances S; have positive
definite limits; (iii) Lindeberg condition holds.

Proposition 2.2: \FN(GAB* —0) 4, N(0,02). No efficiency loss from estimating 3* — the plug-in
achieves the same asymptotic variance as the oracle.
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Inference




Variance Estimation and t-Based Inference

Challenge: The variance of 9};* contains Sy = Vargi, [Zg AgvgY,-(g)], which depends on covariances
of potential outcomes never observed together

Conservative approach: Neyman-style variance estimator

lgnores Sy (treats it as zero), replaces Sy with S,
Conservative: overestimates variance — valid but wide Cls

Less conservative: Roth and Sant’Anna (2023) show how to estimate the part of Sy explained by
X

Tighter Cls while remaining conservative
t-based Cl: 93* +21_ a2 &**/W, where 62, converges to an upper bound on the true variance.
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What about Fisher Randomization Tests?
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Fisher Randomization Tests

Under random treatment timing, we can construct permutation tests:

1. Compute the studentized test statistict = @B*/sAe
2. For each permutation 7 of G, compute t™
3. p-value = Pr.(|t™| > |tobs]|)

Proposition 2.3: The studentized FRT is:

1. Exact under sharp null (H3: Yi(g) = Yi(g') for all i, g, 3’)
2. Asymptotically valid under weak null (HY: 6 = 0)

Studentization is essential! Without it, FRTs may not have correct size for the weak null (Wu
and Ding, 2020; Zhao and Ding, 2020).
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Visualizing Fisher Randomization Tests

Under the null, the observed assignment is “just another permutation”

Procedure: (1) Compute Tops from actual data  (2) Re-shuffle treatment — recompute T™  (3) p-value
— #{‘TW‘%‘Tobs‘}

Fisher Randomization Test: Permutation Distribution

Unstudentized statistic | N = 200 (40 treated, 160 control)
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Why Studentization Matters

Sharp null (H3):  Yi(3) = Yi(g') foralli,g,g’ — FRTis exact
Weaknull (HY): 6=0 — FRT may over-reject!

FRT Rejection Rates Under the Weak Null
Average effect = 0, heterogeneous effects (sd = 3) | 2000 simulations

Rejection Rate

Unstudentized Studentized
FRT FRT

Under heterogeneous effects, unstudentized FRTs have severe size distortions. Studentization re-
stores correct size (Wu and Ding, 2020; Zhao and Ding, 2020). Simulation: frt_simulatiozr? R



FRT for Callaway and Sant’Anna Estimators

The randomization-based approach can also be applied to Callaway and Sant’Anna (2021)
estimators

Recall: CS is a special case with 5 =1
Thus, one can use FRTs to conduct “design-based” inference with CS estimators

Rambachan and Roth (2025): FRT results are likely conservative even without full random timing

Practical implication: Even if you use CS estimators (under weaker assumptions discussed in later
lectures), you can supplement with FRT-based p-values when random timing is plausible. The
staggered package implements this.

30/44



R Implementation




R Package: staggered

Installation: install.packages("staggered")

Main functions:

staggered (): Efficient estimator (Roth and Sant’Anna, 2023)
staggered_cs(): Callaway and Sant’/Anna (2021) estimator
staggered_sa(): Sun and Abraham (2021) estimator

Built-in dataset: pj_officer_level_balanced (police training application)

library(staggered)
data(pj_officer_level_balanced)

# 5,537 officers, 72 periods, 47 cohorts
# Variables: uid, period, first_trained,
# complaints, sustained, force
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Basic Usage: Efficient Estimator

# Simple average treatment effect
staggered(df = pj_officer_level_balanced,

i = "uid", t = "period",
g = "first_trained", y = "complaints",
estimand = "simple")

Output: Returns estimate, se, se_neyman

# With Fisher Randomization Test
staggered(df = pj_officer_level_balanced,

i = "uid", t = "period",
g = "first_trained", y = "complaints",
estimand = "simple",

compute_fisher = TRUE,
num_fisher_permutations = 500)

Additional output: fisher_pval (permutation p-value)
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Multiple Estimands

# Calendar—time wetghted average
staggered(df = pj_officer_level_balanced,

i = "uid", t = "period",
g = "first_trained", y = "complaints",
estimand = "calendar")

# Cohort-weighted average
staggered(..., estimand = "cohort")

# Event-study: effects at lags O through 11
staggered(df = pj_officer_level_balanced,

i = "uid", t = "period",
g = "first_trained", y = "complaints",
estimand = "eventstudy",

eventTime = 0:11)

Event-study returns one row per event time, each with its own estimate and SE.
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Comparing Estimators

# Efficient estimator (Roth & Sant'Anna)

res_eff <- staggered(df = pj_officer_level_balanced,
i = "uid", t = "period", g = "first_trained",
y = "complaints", estimand = "simple")

# Callaway & Sant'Anna (2021)

res_cs <- staggered_cs(df = pj_officer_level_balanced,
i = "uid", t = "period", g = "first_trained",
y = "complaints", estimand = "simple")

# Sun & Abraham (2021)

res_sa <- staggered_sa(df = pj_officer_level_balanced,
i = "uid", t = "period", g = "first_trained",
y = "complaints", estimand = "simple")

# Unadjusted (no pre—treatment adjustment)

res_unadj <- staggered(df = pj_officer_level_balanced,
i = "uid", t = "period", g = "first_trained",
y = "complaints", estimand = "simple",
beta = 1le-16, use_DiD_AO = TRUE)
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Application: Police Training Revisited




Application: Procedural Justice Training

Setting: Wood et al. (2020a) — randomized rollout of procedural justice training to Chicago
police officers

Data: 5,537 officers, 72 monthly periods, 47 treatment cohorts (cohort sizes: 3-575)
Outcomes:
Complaints against officers

Sustained complaints
Officer use of force

Treatment timing: Randomized by design — random treatment timing holds

Comparison: Efficient estimator vs. Callaway-Sant’Anna vs. Sun-Abraham
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Application Results: Complaints

Comparison of Estimators: Complaints (Simple Estimand)
Point estimates with 95% Cls. SE ratios relative to efficient estimator.

SE ratio: 8.18

0.025
B
tal
£
i}
°
2 [ ]
©
E ratic X SE ratio: 1.04
@
W 0,000 === ------ E 77777777777777777777777777777777777777777777777777
-0.025
Roth & Sant'/Anna Callaway & Sun & Unadjusted
(Efficient) Sant’Anna Abraham (No Adjustment)

SE ratios annotated above each Cl. Large gains over CS and SA; modest gains over unadjusted (3 = 0) — efficiency gains vary by
application.
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Application Results: Efficiency Gains Across Estimands

Standard Error Ratios: Efficiency Gains
Values > 1 indicate the efficient estimator has smaller SEs

SE Ratio (Alternative / Efficient)

Calendar Cohort Simple
Estimand

M cseficient [l saseficient Jll unadjusted / Efficient

SE ratios > 1 indicate the efficient estimator has smaller standard errors.
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Application Results: All Outcomes

Estimator Comparison: All Outcomes (Simple Estimand)
Point estimates and 95% Cls. SE ratios relative to efficient estimator.

SE: 8.18x
0.04
SE: 29.43x
.. 002
3
F=3
i}
°
% SE: 1.00x
£ @ ----------Tp g -f--mmm- -
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£:1.05x
-0.02
- E 41x
_0.04 SE:2.72x
Complaints Sustained Use of
Complaints Force

@ Efficient @ Callaway-SantAnna @ Sun-Abraham -@ Unadjusted

Efficiency gains vary across outcomes. Largest gains for sustained complaints; modest for use of force. SE ratios annotated above
each Cl.
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Event Study: Complaints

Event Study: Complaints
Efficient vs. Callaway-Sant/Anna estimators
0.010

0.005

0.005

Estimated Effect

-0.010

5 6 7 8 9 10 11
Months Since Training

-®- Callaway-Sant‘Anna -@ Efficient
Efficient estimator (blue) produces tighter Cls at every event time, enabling sharper inference about dynamic treatment effects.
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Can we assess the validity of the assumptions?

40/44



Balance Checks for Random Treatment Timing

Under random treatment timing, pre-treatment outcomes should be balanced across cohorts

Test Hy : E[X] = 0 (pre-treatment differences are mean-zero)

Roth and Sant’Anna (2023): Propose balance checks implemented in staggered

Results from police training data:

Balanced on complaints and sustained complaints (main sample)
Imbalanced when including pilot participants/special units (known to violate randomization)
Pre-treatment event-study: no significant anticipation effects

Balance checks provide evidence for or against the random timing assumption — analogous to co-
variate balance checks in RCTs.
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Take-Away




Take-Away Message

1. When treatment timing is random, estimators that use fixed adjustment weights (5 = 0 or
B = 1) “leave money on the table”

2. Roth and Sant’Anna (2023) show how to use additional information to “collect the
money”
3. Estimators and inference easily implemented in R via the staggered package

4. Recommendation: Use when treatment timing is (quasi-)random

Other procedures remain valid under weaker assumptions (covered in upcoming lectures)
Efficiency gains come from exploiting the additional structure of random timing

Next lecture: Observational panel data — when treatment timing is not random.
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Summary of Key Results

Result Statement

Unbiasedness éﬁ is unbiased for 6 for any 3 (Lemma 2.1)

Efficiency * = Var[X]~'Cov[X, fo] minimizes variance (Prop. 2.1)

Feasibility Plug-in 8* achieves same asymptotic variance as oracle (Prop. 2.2)
Inference Studentized FRT: exact under sharp null, valid under weak null (Prop. 2.3)
Nesting =0, 8=1, CS, SA all special cases with fixed /3

Gains SE reductions of 1.4-8.4x in application
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Appendix




Monte Carlo: Two-Period Design

DGP: Draw Y,(OO) ~ N(O, E,,); set Y,"Q(?) = Y,'yz(OO) + ’Y(Yi’Q(OO) - Eﬁn[Y,',Q(OO)])

~v € {0,0.5}: treatment effect heterogeneity; p € {0,0.5,0.99}: autocorrelation
N2 = N = N/2,N € {25,1000}

Comparison: Plug-in efficient vs. full adjustment (3 = 1) vs. no adjustment (3 = 0)
Key findings:

All estimators unbiased; coverage ~ 95%
p = 0.99: full adjustment optimal (3* ~ 1); p = 0: no adjustment optimal (3* =~ 0)
Intermediate p: plug-in can be 1.7 x more precise than full adjustment
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Monte Carlo: Staggered Design (Calibrated to Application)

Setup: Calibrated to police training data (72 periods, 48 cohorts, 7,785 officers). Sharp null: Yj(g) =
observed outcome for all g.

Comparison: Plug-in efficient vs. Callaway-Sant’Anna vs. Sun-Abraham
Key findings:
Plug-in: approximately unbiased, 93-96% coverage; FRT size ~ 5%

Efficiency gains vs. CS: SE ratio 1.39-1.85 (equivalent to 3.4 x the sample size)
Efficiency gains vs. SA: SE ratio 3.0-6.86

Substantial efficiency gains are achievable in realistic staggered designs when treatment tim-
ing is random.
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