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From Experiments to Observational Studies



Roadmap

■ Lectures 3–4: Causal inference with randomized panel experiments
▶ Design‐based identification; Horvitz–Thompson estimation
▶ Known treatment assignment mechanism⇒ clear identification

■ Today: What if treatment is not randomized?

■ Our approach:
▶ The canonical 2×2 difference‐in‐differences (DiD) setup
▶ Two groups (treated vs. untreated), two periods (pre vs. post)
▶ Replace randomization with parallel trends assumption

■ The full journey today:
▶ Setup→ Identification→ Estimation→ Inference→ Application
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The Challenge: Selection into Treatment

■ In observational studies, units select into treatment
▶ States choose to expand Medicaid; firms decide to adopt new technology

■ Simple pre–post or treated‐vs.‐untreated comparisons are biased
▶ Treated units may differ from comparison units even without treatment

■ Difference‐in‐Differences (DiD): Exploit the time dimension
▶ Use pre‐treatment periods to account for selection concerns, as long as additional assumptions (Parallel

Trends, No‐Anticipation) are met

■ The most widely used identification strategy in applied microeconomics
▶ See Lecture 1; Currie, Kleven and Zwiers (2020); Goldsmith‐Pinkham (2024)
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The 2×2 DiD Setup



Running Example: Medicaid Expansion and Mortality

■ Baker, Callaway, Cunningham, Goodman‐Bacon and Sant’Anna (2025): A Practitioner’s Guide to
Difference‐in‐Differences

■ Policy: Affordable Care Act (ACA) Medicaid expansion
▶ 2014: Some states expand eligibility→ more residents gain health insurance
▶ Other states never expand (through 2019)

■ Outcome: County‐level mortality rate (ages 20–64), deaths per 100,000

■ Question: Did Medicaid expansion reduce mortality?

■ 2×2 Setup:
▶ Two periods: 2013 (pre) and 2014 (post)
▶ Two groups: States expanding in 2014 vs. never‐expanding states
▶ Unit of observation: Counties within states
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Data Structure: Two Groups, Two Periods

■ Time periods: t ∈ {1, 2} (e.g., 2013 and 2014)

■ Treatment group indicator: Gi ∈ {2,∞}
▶ Gi = 2: unit i is first treated at period 2 (expansion states)
▶ Gi = ∞: unit i is never treated (never‐expansion states)

■ Treatment indicator: Di,t = 1{Gi ≤ t}
▶ Di,1 = 0 for all units (no one is treated at t = 1)
▶ Di,2 = 1{Gi = 2} (only the treated group at t = 2)

■ Key features:
▶ Treatment is binary and absorbing (once treated, stay treated)
▶ No one is treated in the first period
▶ This is the simplest DiD setup — building block for everything else

4/56



Potential Outcomes in the 2×2 Setup

■ Recall from Lecture 2: potential outcomes indexed by treatment sequence

■ Specialize to 2×2: Only two possible treatment paths
▶ Yi,t(∞): outcome if unit i is never treated (untreated potential outcome)
▶ Yi,t(2): outcome if unit i is first treated at t = 2

■ SUTVA (Stable Unit Treatment Value Assumption):
▶ No interference: unit i’s outcome depends only on i’s own treatment path
▶ No hidden versions of treatment

■ Observed outcome:
Yi,t = 1{Gi = 2} · Yi,t(2) + 1{Gi = ∞} · Yi,t(∞)

■ This is the same potential outcomes framework from Lectures 2–4, just specialized to two
groups and two periods
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Target Parameter: The Average Treatment Effect on the Treated

■ Parameter of interest: The ATT at period 2

ATT = E
[
Yi,t=2(2)− Yi,t=2(∞)

∣∣ Gi = 2
]

■ Interpretation:
▶ Average causal effect of treatment for those who are actually treated
▶ Not the ATE — we condition on Gi = 2

■ In the Medicaid example:
▶ Average effect of Medicaid expansion on mortality in counties that expanded
▶ Not: what would happen if all counties expanded

■ The fundamental problem: We observe Yi,t=2(2) for the treated group, but we never observe
Yi,t=2(∞) for the treated group

■ How do we impute the missing counterfactual?
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The DiD Estimand: A Preview

■ The DiD estimand takes the form:

θDiD =
(
E[Yi,t=2|Gi = 2]− E[Yi,t=1|Gi = 2]

)
−
(
E[Yi,t=2|Gi = ∞]− E[Yi,t=1|Gi = ∞]

)
■ Four observable group‐period means; treated group’s change minus comparison group’s change

Two fundamental questions for the rest of this lecture:
1. How do we arrive at this estimand? Why this particular form?
2. Under what assumptions does θDiD = ATT? Why?
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Selection Bias and the Missing Data Problem



The Missing Data Problem: Under SUTVA

■ SUTVA⇒ each unit reveals outcomes from its own treatment path only

■ What do we observe vs. what is missing?

Period 1 (t = 1) Period 2 (t = 2)

Yi,t=1(∞) Yi,t=1(2) Yi,t=2(∞) Yi,t=2(2)

Gi = 2 (Treated) ? ✓ ? ✓

Gi = ∞ (Comparison) ✓ ? ✓ ?

■ Treated units reveal Yi,t(2); comparison units reveal Yi,t(∞)

■ Problem: The ATT requires E[Yi,t=2(∞)|Gi = 2] — a missing cell!

■ Can we learn more using No‐Anticipation?
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Filling In: Adding No‐Anticipation

■ No‐Anticipation⇒ Yi,t=1(2) = Yi,t=1(∞) for all i (can be relaxed to hold on average among treated)

■ So for treated units at t = 1: Yi,t=1 = Yi,t=1(2) = Yi,t=1(∞) — both potential outcomes observed!

Period 1 (t = 1) Period 2 (t = 2)

Yi,t=1(∞) Yi,t=1(2) Yi,t=2(∞) Yi,t=2(2)

Gi = 2 (Treated) ✓∗ ✓ ? ✓

Gi = ∞ (Comparison) ✓ — ✓ —

∗Same as Yi,t=1(2) under No‐Anticipation

■ The one remaining missing cell: E[Yi,t=2(∞)|Gi = 2] — the counterfactual for the treated group
at t = 2
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Selection Bias in the Post‐Treatment Comparison

■ Naive approach: Compare treated and comparison at t = 2

E[Yi,t=2|Gi = 2]− E[Yi,t=2|Gi = ∞]

= E[Yi,t=2(2)|Gi = 2]− E[Yi,t=2(∞)|Gi = ∞]

= E[Yi,t=2(2)− Yi,t=2(∞)|Gi = 2]︸ ︷︷ ︸
ATT

+E[Yi,t=2(∞)|Gi = 2]− E[Yi,t=2(∞)|Gi = ∞]︸ ︷︷ ︸
Selection Bias

■ The selection bias reflects differences in untreated potential outcomes between groups at t = 2
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Worked Example: Job Training Program

■ Setting: Job training for disadvantaged workers — workers with lower baseline wages select into
the program

Period 1 (Pre) Period 2 (Post)

Unit Yi,t=1(∞) Wage Yi,t=2(∞) Yi,t=2(2)

A (Trained) 20 20 22 27
B (Trained) 18 18 20 24
C (Not trained) 30 30 32 —
D (Not trained) 28 28 30 —

■ True ATT = (27−22)+(24−20)
2 = 4.5

■ Naive: 27+24
2 − 32+30

2 = 25.5− 31 = −5.5 Selection bias = −10
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Selection bias contaminates naive comparisons.

What assumptions let us recover the ATT?



Assumptions: No‐Anticipation and Parallel Trends



Assumption: No Anticipation

Our first assumption ensures that future treatment does not contaminate pre‐treatment outcomes:

No‐Anticipation

For all units i: Yi,t=1(2) = Yi,t=1(∞). Treatment at t = 2 has no effect on outcomes at t = 1.

For ATT identification, we only need this on average across treated units: E[Yi,t=1(2)|Gi = 2] = E[Yi,t=1(∞)|Gi = 2]

■ Interpretation: Agents do not change behavior before treatment begins

■ When it holds: Unexpected policy changes; units unaware of future treatment

■ When it fails: Pre‐announced policies→ behavioral adjustments before implementation (Malani
and Reif, 2015)

■ Notational simplification: Under No‐Anticipation, Yi,t=1 = Yi,t=1(∞) for all units
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Assumption: Parallel Trends

Parallel Trends (PT)

E[Yi,t=2(∞)− Yi,t=1(∞) | Gi = 2] = E[Yi,t=2(∞)− Yi,t=1(∞) | Gi = ∞].

■ What PT says:
▶ In the absence of treatment, both groups would have followed the same trend
▶ Allows for permanent level differences between groups

■ What PT does NOT require:
▶ Same levels of outcomes: E[Yi,t(∞)|Gi = 2] ̸= E[Yi,t(∞)|Gi = ∞] is fine!
▶ Random treatment assignment or no selection into treatment

■ What PT rules out: Differential time‐varying selection — trends in untreated outcomes differ by
group

This PT involves counterfactual outcomes⇒ fundamentally untestable. We can assess plausibility using pre‐treatment data
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Parallel Trends: Graphical Intuition (1/4)

t

E[Y]

t = 1 t = 2

G = ∞ (Comparison)

G = 2 (Treated)

■ Treated group has higher levels and rises more from t = 1 to t = 2

■ But how much of the rise is due to treatment?
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Parallel Trends: Graphical Intuition (2/4)

t

E[Y]

t = 1 t = 2

G = ∞

G = 2

Naive ̸= ATT

■ The naive comparison at t = 2 includes the level difference that existed before treatment

■ This is selection bias + treatment effect, mixed together
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Parallel Trends: Graphical Intuition (3/4)

t

E[Y]

t = 1 t = 2

G = ∞

G = 2

Counterfactual

Level diff

■ Under PT: the treated group’s counterfactual trajectory is parallel to the comparison group

■ The hollow circle is the missing counterfactual E[Yi,t=2(∞)|Gi = 2]
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Parallel Trends: Graphical Intuition (4/4)

t

E[Y]

t = 1 t = 2

G = ∞

G = 2

CF
ATT

■ ATT = (Treated group’s change) − (Comparison group’s change) = Difference‐in‐Differences

■ Think: What would this diagram look like if Parallel Trends fails?
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When Is Parallel Trends Plausible?

■ PT is fundamentally untestable — it concerns counterfactual trends, not observed trends

■ Suggestive evidence: Pre‐treatment trends can provide support
▶ If expansion and non‐expansion states had similar mortality trends before 2014, PT is more credible
▶ But parallel pre‐trends ̸= parallel trends (Roth, 2022; Ghanem, Sant’Anna and Wüthrich, 2026)

■ Potential violations in the Medicaid example:
▶ Opioid crisis differentially affected states — could confound mortality trends
▶ Expansion states may have had different health infrastructure investments

■ Best practice: Argue for PT using institutional knowledge, not just pre‐trend tests. We will
revisit this in future lectures
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Identification of the ATT



Constructive Imputation: Step by Step

Goal: Show that θDiD = ATT under SUTVA + No‐Anticipation + PT.

Start from the ATT:

ATT = E[Yi,t=2(2)|Gi = 2]︸ ︷︷ ︸
observable

−E[Yi,t=2(∞)|Gi = 2]︸ ︷︷ ︸
counterfactual

Use PT to impute the counterfactual:

E[Yi,t=2(∞)|Gi = 2] = E[Yi,t=1(∞)|Gi = 2] + E[Yi,t=2(∞)|Gi = ∞]− E[Yi,t=1(∞)|Gi = ∞]

Under No‐Anticipation + SUTVA, all terms are observable:

E[Yi,t=2(∞)|Gi = 2] = E[Yi,t=1|Gi = 2]︸ ︷︷ ︸
✓ No‐Anticipation

+E[Yi,t=2|Gi = ∞]− E[Yi,t=1|Gi = ∞]︸ ︷︷ ︸
✓ all observable
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The DiD Identification Result

Theorem (DiD Identification). Under SUTVA, No‐Anticipation, and Parallel Trends:

ATT = θDiD =
(
E[Yi,t=2|Gi = 2]− E[Yi,t=1|Gi = 2]

)
−
(
E[Yi,t=2|Gi = ∞]− E[Yi,t=1|Gi = ∞]

)

■ Three assumptions⇒ observable formula with four population means

■ Note: This is an identification result, not an estimation result
▶ The formula involves population expectations, not sample averages
▶ Estimation comes next
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Weighted Expectations: Who Defines the Parameter?

Baker et al. (2025) emphasize: the weights define the ATT

Unweighted DiD:

ATT = E[Yi,t=2(2)− Yi,t=2(∞)|Gi = 2]

■ Each unit gets equal weight
■ “Average effect per county”

Population‐weighted DiD:

ATTω = Eω[Yi,t=2(2)− Yi,t=2(∞)|Gi = 2]

■ Weight by population ωi
■ “Average effect per person”

Key message: Both are valid ATTs, but they answer different questions
■ The choice of weights is a substantive decision, not a statistical one
■ The choice of weights also impacts the PT assumption!
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We know what to estimate.

Now: how to estimate and do inference.



Estimation



The Analogy Principle

■ Identification: ATT = f(population means)

■ Estimation: Replace population means with sample analogs

■ Notation:
▶ n: total sample size; n2: treated units; n∞: comparison units
▶ Ȳg,t = 1

ng

∑
i: Gi=g

Yi,t: sample mean for group g ∈ {2,∞} at time t

■ The DiD estimator (“DiD‐by‐hand”):

θ̂DiD =
(
Ȳg=2,t=2 − Ȳg=2,t=1

)
−
(
Ȳg=∞,t=2 − Ȳg=∞,t=1

)
■ Simply the difference of two within‐group time changes

■ With panel data, this simplifies further…
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Panel Data Simplification: First‐Differencing

With panel data (same units in both periods), define ∆Yi = Yi,t=2 − Yi,t=1

The DiD estimator as a two‐sample difference in means:

θ̂DiD = ∆Y2 −∆Y∞ =
1

n2

∑
i:Gi=2

∆Yi −
1

n∞

∑
i:Gi=∞

∆Yi

Two steps:
1. First‐difference⇒ removes time‐invariant unit

effects
2. Compare treated vs. comparison changes

Requires panel data:
■ Same units observed in both periods
■ With repeated cross‐sections, use the

four‐means formula
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Notation: Treatment Indicator for Regressions

■ We use Gi notation consistently for conditioning and parameters:
ATT = E[Yi,t=2(2)− Yi,t=2(∞) | Gi = 2]

■ For regression and influence function formulas, define a binary shorthand:

Di = 1{Gi = 2} =

{
1 if unit i is in the treated group
0 if unit i is in the comparison group

■ Why this convention?
▶ G‐notation generalizes naturally to staggered adoption
▶ Di is convenient in regression equations where we need 0/1 arithmetic

■ Rule: All conditioning, parameters, and potential outcomes use Gi; Di appears only in regression
specifications and influence function formulas
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TWFE Regression

A common way to estimate DiD: Two‐Way Fixed Effects (TWFE) regression

Pooled OLS form:

Yi,t = α0+γ0Di+λ0Tt+βTWFE(Di×Tt)+εi,t

where Tt = 1{t = 2}, Di = 1{Gi = 2}

Unit & time FE form:

Yi,t = αi + λt + βTWFEDi,t + εi,t

where Di,t = 1{Gi ≤ t}

■ Both are equivalent in the 2× 2 case with balanced panel data — same β̂TWFE

■ Key question: Does β̂TWFE = θ̂DiD?

■ Answer: Yes! In the 2×2 case, they are numerically identical
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TWFE = DiD‐by‐Hand: The Equivalence

■ Claim: β̂TWFE = θ̂DiD (exact numerical equality)

■ Proof sketch: OLS solves four moment conditions:

En[εi,t] = 0 ⇒ α̂0 = Ȳg=∞,t=1

En[Di · εi,t] = 0 ⇒ γ̂0 = Ȳg=2,t=1 − Ȳg=∞,t=1

En[Tt · εi,t] = 0 ⇒ λ̂0 = Ȳg=∞,t=2 − Ȳg=∞,t=1

En[(Di · Tt) · εi,t] = 0 ⇒ β̂TWFE = θ̂DiD

■ The four moment conditions uniquely pin down the four group‐time means

■ Bottom line: In the 2×2 case, TWFE regression is just a convenient way to compute the DiD
estimator. Nothing more, nothing less.

■ Every student in this class should be able to derive these equivalence results!

■ Think: Will this equivalence survive when we move to staggered adoption? Why or why not?
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Three Equivalent Specifications

Baker et al. (2025): Three OLS specifications, same β̂

Spec Regression Data Used

(1) Pooled OLS Yi,t = α+ γDi + λTt + β(Di · Tt) + εi,t Panel (2n obs)

(2) First‐diff ∆Yi = δ + βDi + ui Panel, FD (n obs)

(3) Unit & time FE Yi,t = αi + λt + βDi,t + εi,t Panel (2n obs)

■ All three yield identical point estimates for β̂ in the 2×2 case with balanced panel

■ BUT: Standard errors differ unless you cluster appropriately!
▶ Spec (1) and (3) have 2n observations; Spec (2) has n observations
▶ Clustering at the unit level in Specs (1) and (3) reconciles the SEs

29/56



OLS: Regression as a Means to an End

■ Important conceptual point: The regression is a computational device

■ In the 2×2 case, OLS does not add any statistical content
▶ Same estimate as computing four means and subtracting
▶ The interpretation comes from the DiD identification argument, not from the regression

■ Why use regression then?
▶ Convenience: standard software handles SEs and clustering
▶ Reporting: tables with coefficients and SEs are standard in economics

■ Warning for later: In more complex settings (staggered adoption, heterogeneous effects), TWFE
̸= “the” DiD estimator
▶ The 2×2 equivalence is special and does not generalize
▶ Recall Lecture 3: FE can be biased under carryover effects. Here, with no carryover in the 2×2 case,

TWFE is well‐behaved

30/56



Empirical Application: Medicaid Expansion



Application: The ACA and County Mortality

■ Data: County‐level mortality rates (ages 20–64), deaths per 100,000
▶ Source: Baker et al. (2025), replication data from pedrohcgs/JEL-DiD

■ Treatment: State‐level Medicaid expansion under the ACA
▶ 24 states + DC expanded in January 2014
▶ 19 states never expanded (through 2019)
▶ Drop DC and pre‐2014 adopters (DE, MA, NY, VT) for clean 2×2

■ 2×2 Setup:
▶ Pre: 2013, Post: 2014
▶ Treated: Counties in states expanding in 2014
▶ Comparison: Counties in never‐expanding states

■ Sample: ∼2,300 counties, roughly 900 treated and 1,400 comparison

■ Key feature: Counties vary enormously in population size — weighting matters!
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Simple 2×2 Results: Unweighted vs. Weighted

Baker et al. (2025), Table 2: Simple means and DiD

Unweighted Pop‐Weighted

Pre (2013) Post (2014) Pre (2013) Post (2014)

Treated (G = 2) 419.2 428.5 322.7 326.5
Comparison (G = ∞) 474.0 483.1 376.4 382.7

∆ Treated +9.3 +3.7
∆ Comparison +9.1 +6.3

DiD +0.1 −2.6

■ Unweighted: DiD ≈ +0.1 (SE = 3.7) (essentially zero, “wrong sign”)

■ Population‐weighted: DiD ≈ −2.6 (SE = 1.5) (meaningful reduction in mortality)

■ Why the difference? Different parameters! “Per county” vs. “per person” ATT
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Regression Equivalence: Three Specifications

■ All three specifications yield the same point estimate (county‐clustered SEs)

(1) Pooled OLS (2) First‐diff (3) Unit & time FE

β̂ (unweighted) 0.1 0.1 0.1
SE (county‐clustered) (3.7) (3.7) (3.7)

β̂ (pop‐weighted) −2.6 −2.6 −2.6
SE (county‐clustered) (1.5) (1.5) (1.5)

Observations 2n n 2n

■ Point estimates are identical across all three specifications

■ County‐clustered SEs are also identical (as expected from theory)

■ Neither result is statistically significant at conventional levels
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R Code: DiD by Hand vs. Regression

DiD by hand:

# Four group−time means
means <− short_data %>%

group_by(Treat, Post) %>%
summarise(

m = mean(crude_rate_20_64))

# DiD estimate
did_hat <− (means$m[4] − means$m[3]) −

(means$m[2] − means$m[1])

TWFE regression:

library(fixest)

# TWFE with county + year FE
reg <− feols(

crude_rate_20_64 ~ Treat:Post
| county_code + year,
data = short_data,
cluster = ~stateID)

coef(reg) # Same as did_hat!

■ Both approaches give identical estimates

■ short_data: balanced panel with 2013–2014 only (the 2×2 subset)

■ Full replication code: github.com/pedrohcgs/JEL-DiD
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Key Takeaway: Weights Matter

Lesson from the Medicaid application:
■ The choice of weights (unweighted vs. population‐weighted) changes the target parameter

■ Unweighted DiD: θ̂ = +0.1 (“per county” ATT)

■ Weighted DiD: θ̂ = −2.6 (“per person” ATT)

■ Both are valid, but they answer different questions

■ Why this matters going forward:
▶ When we add covariates, conditioning variables implicitly change weights
▶ Different estimators (regression adjustment, IPW, doubly robust) target the same parameter but may use

different implicit weights

■ Researcher’s responsibility: Be explicit about what parameter you are estimating
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We have seen DiD work in practice.

Now: what are its statistical properties?



Influence Functions and Asymptotic Theory



Why Influence Functions?

Having seen DiD work in practice, we now formalize the statistical properties of the estimator.

■ We have an estimator θ̂DiD. What are its large‐sample properties?

■ Goals: Consistency, asymptotic normality, variance estimation, and valid bootstrap inference

■ Influence functions provide a unified approach:
▶ Decompose the estimator as a sum of iid terms (+ remainder)
▶ The influence function ψi captures unit i’s contribution to the estimator
▶ Variance of the IF = asymptotic variance of θ̂DiD

■ This framework generalizes naturally tomore complex estimators (covariates, staggered designs)
in later lectures
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Panel Data Sampling Scheme

Panel Data Sampling

We observe an iid random sample {Zi}ni=1 where Zi = (Yi,t=1,Yi,t=2,Gi) is drawn from the joint
distribution of (Yi,t=1,Yi,t=2,Gi).

■ The same n units are observed in both periods (t = 1 and t = 2)

■ Key: Units are iid across i, but Yi,t=1 and Yi,t=2 are not independent within unit

■ This allows us to compute ∆Yi = Yi,t=2 − Yi,t=1 for each unit

■ Let Di = 1{Gi = 2} and p = Pr(Gi = 2) ∈ (0, 1)

■ Notation: En[f(Zi)] = 1
n
∑n

i=1 f(Zi) denotes the sample average
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The DiD Estimator as a Function of Means

■ Write the DiD estimator using empirical expectations:

θ̂DiD =
En[∆Yi · Di]

En[Di]
− En[∆Yi · (1− Di)]

En[1− Di]

■ This is a smooth function of sample means: θ̂DiD = g(En[m(Zi)])

■ where m(Zi) = (∆Yi · Di, Di, ∆Yi · (1− Di), 1− Di)′

■ By the Law of Large Numbers: En[m(Zi)]
p−→ E[m(Zi)]

■ By the Continuous Mapping Theorem: θ̂DiD = g(En[m(Zi)])
p−→ g(E[m(Zi)]) = θDiD

⇒ Consistency follows from LLN + CMT
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Asymptotic Normality: Setup

■ Apply the delta method to g(En[m(Zi)]):
√
n(θ̂DiD − θDiD) =

√
n · ∇g(µ)′

(
En[m(Zi)]− µ

)
+ op(1)

where µ = E[m(Zi)]

■ By the CLT: √
n
(
En[m(Zi)]− µ

) d−→ N(0,Var(m(Zi)))

■ Combining (Slutsky):
√
n(θ̂DiD − θDiD)

d−→ N
(
0, ∇g(µ)′Var(m(Zi))∇g(µ)

)
■ This can be written more compactly using the influence function…
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The Influence Function: Panel Data Case

Panel data IF. Under the panel data sampling scheme:

ψpi =
Di
p︸︷︷︸

w1(Di)

(
∆Yi − µ∆,2

)
− 1− Di

1− p︸ ︷︷ ︸
w0(Di)

(
∆Yi − µ∆,∞

)

where p = Pr(Gi = 2), µ∆,g = E[∆Yi|Gi = g] for g ∈ {2,∞}.

■ Key property:
√
n(θ̂DiD − θDiD) = 1√

n
∑n

i=1 ψ
p
i + op(1)

■ Asymptotic variance: Vp = Var(ψpi )

■ Full derivation in the appendix
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Computing the IF: Medicaid Example

Suppose: p = 0.4, µ∆,2 = −4.0, µ∆,∞ = −1.4

■ Expansion county with ∆Yi = −6.5:

ψpi =
1
0.4 (−6.5− (−4.0))− 0 = −6.25

This county “pulls” the estimate toward a larger mortality reduction

■ Non‐expansion county with ∆Yi = −0.5:

ψpi = 0− 1
0.6 (−0.5− (−1.4)) = −1.5

Its mortality fell less than average⇒ supports the treatment effect

■ Takeaway: The IF assigns each unit a signed “credit” for the overall estimate
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Understanding the Influence Function

■ Two terms: treated group’s contribution and comparison group’s contribution

■ Each term is a demeaned quantity, weighted by group proportion

■ E[ψpi ] = 0 by construction — the IF is centered

■ Intuition for the weights:
▶ Di/p: up‐weights treated units (rarer group gets more weight)
▶ (1− Di)/(1− p): up‐weights comparison units

■ Why this matters: The IF gives us everything for inference — consistency, asymptotic normality,
variance estimation, and bootstrap validity all follow from this representation
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Asymptotic Normality Result

Theorem. Under the panel data sampling scheme, SUTVA, No‐Anticipation, and Var(∆Yi|Gi =
g) <∞:

√
n
(
θ̂DiD − θDiD

) d−→ N(0,Vp)

where Vp = Var(ψpi ) =
σ2
∆,2

p +
σ2
∆,∞
1−p

■ σ2
∆,g = Var(∆Yi|Gi = g): within‐group variance of the first‐differenced outcome

■ Intuition: Two components — treated group uncertainty (σ2
∆,2/p) and comparison group

uncertainty (σ2
∆,∞/(1− p))

■ Design matters: p small⇒ first term dominates⇒ large variance. Minimized at p ≈ 0.5 (balanced
design)

■ Think: If only 5% of counties expanded, what does this formula say about power?
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Repeated Cross‐Sections: Brief Overview

■ With repeated cross‐sections (RCS), different units sampled at t = 1 and t = 2

▶ Let Ti = 1{unit i sampled at t = 2} (distinct from Tt in TWFE regression)

■ Cannot first‐difference⇒ must estimate four means separately

■ The IF has four components instead of two:

ψrci = w1(Di, Ti) · (Yi − µ2,Ti)− w0(Di, Ti) · (Yi − µ∞,Ti)

where each weight depends on both group and period membership
■ Requires additional assumption: Stationarity of group composition

▶ Pr(Gi = 2|Ti = 1) = Pr(Gi = 2|Ti = 2) (no compositional changes)

■ Panel is strictly more efficient than RCS — panel exploits within‐unit correlation
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Inference: Standard Errors and Clustering



How to Conduct Inference

■ Given:
√
n(θ̂DiD − θDiD)

d−→ N(0,Vp)

■ Variance estimation (analogy principle):

V̂p =
1

n

n∑
i=1

(
ψ̂pi
)2

where ψ̂pi replaces population quantities with sample analogs

■ Standard error: ŜE =

√
V̂p/n

■ Confidence interval: θ̂DiD ± zα/2 · ŜE

■ t‐statistic: t = θ̂DiD/ŜE. Reject H0 : θDiD = 0 if |t| > zα/2

■ But wait: Should we cluster the standard errors?
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Why Cluster Standard Errors?

■ DiD‐by‐hand operates on n units (first‐differenced panel)
▶ Natural degrees of freedom: n independent observations

■ TWFE regression uses 2n observations (n units × 2 periods)
▶ Without clustering: SE formula assumes 2n independent observations
▶ Artificially inflates sample size by a factor of 2!

■ Clustering at the unit level accounts for within‐unit correlation
▶ Two observations from the same unit are not independent
▶ Corrected SE matches the DiD‐by‐hand SE

■ Bertrand, Duflo and Mullainathan (2004): Ignoring clustering in DiD leads to massive
over‐rejection (up to 40% rejection at 5% nominal level)
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Multiplier Bootstrap Using Influence Functions

■ Key advantage of IF‐based inference: The multiplier bootstrap

■ Idea: Perturb the IF with random weights instead of resampling data

θ̂∗,b = θ̂DiD +
1

n

n∑
i=1

U(b)
i · ψ̂pi

where U(b)
i ∼ N(0, 1) are iid random weights

■ No re‐estimation needed: Each bootstrap draw is a simple weighted sum
▶ Extremely fast compared to traditional bootstrap (which re‐estimates θ̂ each time)

■ For cluster‐level inference: Draw U(b)
s at the cluster level

▶ All units in cluster s share the same weight U(b)
s

▶ This preserves the within‐cluster correlation structure
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Bootstrap Algorithm

Multiplier Bootstrap for DiD (Cluster‐Robust)
1. Compute θ̂DiD and the influence function ψ̂pi for each unit i
2. For b = 1, . . . ,B (e.g., B = 999):
2.1 Draw U(b)

s ∼ N(0, 1) for each cluster s = 1, . . . , S
2.2 Assign U(b)

i = U(b)
s(i) for all units i in cluster s

2.3 Compute: T∗,b = 1√
n

∑n
i=1 U

(b)
i · ψ̂pi

3. Compute bootstrap critical value: cα = quantile1−α(|T∗,1|, . . . , |T∗,B|)
4. Reject H0 : θDiD = 0 if |

√
n · θ̂DiD| > cα

■ Bootstrap CIs can also be constructed from quantiles of θ̂∗,b = θ̂DiD + T∗,b/
√
n

■ Rademacher weights (U(b)
s ∈ {−1,+1} with equal probability) also valid and sometimes preferred

for few clusters
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The Few‐Clusters Problem

■ Standard cluster‐robust inference relies on S→ ∞ (number of clusters)

■ Problem: In many DiD applications, S is small (e.g., 50 states, 10 provinces)
▶ CLT approximation may be poor with few clusters
▶ Cluster‐robust SEs can be severely biased downward

■ Approaches in the literature:
▶ Donald and Lang (2007): t‐distribution with S− 2 degrees of freedom (assumes homoskedasticity)
▶ Conley and Taber (2011): Large untreated group to inform inference (fixed S1, growing S0)
▶ Ferman and Pinto (2019): Allow for heteroskedasticity across clusters

■ No silver bullet: Each approach requires additional assumptions; this is an active area of research
(see Alvarez, Ferman and Wüthrich, 2025, for a recent survey)
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Panel Data vs. Repeated Cross‐Sections



We have assumed panel data. But what if we do not have
it?

What changes with repeated cross‐sections?



Repeated Cross‐Section (RCS) Sampling Scheme

Repeated Cross‐Section Sampling

Period t data {(Yi,t,Gi)} is an iid sample from FY,G|T=t. Observations across periods are inde‐
pendent.

■ Different units sampled at t = 1 and t = 2

■ Requires additional assumption: Stationarity of group composition
▶ Pr(Gi = 2|Ti = 1) = Pr(Gi = 2|Ti = 2)

▶ Violation: compositional changes (Sant’Anna and Xu, 2026)

■ IF has four components: one per group‐period cell

■ Examples: CPS microdata, Census data, polling data before/after events
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Comparison: Panel vs. Repeated Cross‐Sections

Panel Data
■ Same units both periods

■ Can first‐difference

■ 2 IF components

■ More efficient

■ Risk: attrition, survivorship bias

Repeated Cross‐Sections
■ Different units each period

■ Must estimate 4 means

■ 4 IF components

■ Less efficient

■ Risk: compositional changes

■ Key result: Panel data is strictly more efficient than RCS

■ Intuition: Panel exploits within‐unit correlation⇒ Var(∆Yi|Gi) can be much smaller than
Var(Yi,t=2|Gi) + Var(Yi,t=1|Gi)

■ Unbalanced panels: Some units observed once, some twice — use panel structure where
available, but gains depend on strength of within‐unit correlation
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Taking Stock



What We Accomplished Today

Key takeaways from the 2×2 DiD framework:
1. Identification: SUTVA + No‐Anticipation + Parallel Trends⇒ DiD identifies the ATT

using four observable group‐time means
2. Estimation: DiD‐by‐hand and TWFE regression are numerically identical in the 2×2 case

— regression is just a convenient computational device
3. Inference: Influence functions provide consistency, asymptotic normality, and variance

estimation. Always cluster at least at the unit level; ideally at the treatment‐assignment
level

4. Weights matter: The choice of weights (unweighted vs. population‐weighted) defines a
different target parameter

54/56



References i

References

Alvarez, Luis, Bruno Ferman, and Kaspar Wüthrich, “Inference with Few Treated Units,” 2025.
arXiv:2504.19841.

Baker, Andrew, Brantly Callaway, Scott Cunningham, Andrew Goodman‐Bacon, and Pedro H. C. Sant’Anna,
“Difference‐in‐Differences Designs: A Practitioner’s Guide,” Journal of Economic Literature, 2025, Forthcoming.

Bertrand, Marianne, Esther Duflo, and Sendhil Mullainathan, “How Much Should We Trust
Differences‐In‐Differences Estimates?,” Quarterly Journal of Economics, 2004, 119 (1), 249–275.

Conley, Timothy G. and Christopher R. Taber, “Inference with “Difference in Differences” with a Small Number
of Policy Changes,” Review of Economics and Statistics, 2011, 93 (1), 113–125.

Currie, Janet, Henrik Kleven, and Esmée Zwiers, “Technology and Big Data Are Changing Economics: Mining
Text to Track Methods,” AEA Papers and Proceedings, 2020, 110, 42–48.

55/56



References ii

Donald, Stephen G. and Kevin Lang, “Inference with Difference‐in‐Differences and Other Panel Data,” Review of
Economics and Statistics, 2007, 89 (2), 221–233.

Ferman, Bruno and Cristine Pinto, “Inference in Differences‐in‐Differences with Few Treated Groups and
Heteroskedasticity,” The Review of Economics and Statistics, 2019, 101 (3), 452–467.

Ghanem, Dalia, Pedro H. C. Sant’Anna, and Kaspar Wüthrich, “When Should Pre‐trends Be Parallel?,” AEA
Papers and Proceedings, 2026, 116, forthcoming.

Goldsmith‐Pinkham, Paul, “Tracking the Credibility Revolution across Fields,” arXiv:2405.20604, 2024.

Malani, Anup and Julian Reif, “Interpreting Pre‐Trends as Anticipation: Impact on Estimated Treatment Effects
from Tort Reform,” Journal of Public Economics, 2015, 124, 1–17.

Roth, Jonathan, “Pre‐test with Caution: Event‐study Estimates After Testing for Parallel Trends,” American
Economic Review: Insights, 2022, 4 (3), 305–322.

Sant’Anna, Pedro H. C. and Qi Xu, “Difference‐in‐Differences with Compositional Changes,”Working Paper,
2026.

56/56



Appendix



Appendix: Panel Data — Consistency (Detailed)

■ Setup: Zi = (Yi,t=1,Yi,t=2,Gi) iid, Di = 1{Gi = 2}, ∆Yi = Yi,t=2 − Yi,t=1

■ Define population quantities:

µ1 = E[∆Yi · Di], p = E[Di]
µ0 = E[∆Yi · (1− Di)], 1− p = E[1− Di]

■ The DiD estimand: θDiD = µ1

p − µ0

1−p

■ Sample analogs:
θ̂DiD =

En[∆Yi · Di]
En[Di]

− En[∆Yi · (1− Di)]
En[1− Di]

■ By LLN: En[∆Yi · Di]
p−→ µ1, etc.

■ By CMT (continuous mapping theorem): θ̂DiD p−→ θDiD □



Appendix: Panel Data — Asymptotic Linearity (1/3)

■ Goal: Show
√
n(θ̂DiD − θDiD) = 1√

n
∑n

i=1 ψ
p
i + op(1)

■ Step 1: Write the estimator as a function of sample means.
Let µ̂1 = En[∆YiDi], p̂ = En[Di], µ̂0 = En[∆Yi(1− Di)], q̂ = En[1− Di]

θ̂DiD =
µ̂1

p̂
− µ̂0

q̂
■ Step 2: Linearize each ratio. For the first term:

µ̂1

p̂
− µ1

p
=
µ̂1p− µ1p̂
p̂ · p

=
(µ̂1 − µ1)p− µ1(p̂− p)

p̂ · p

=
1

p
(
µ̂1 − µ1

)
− µ1

p2
(p̂− p) + op(n−1/2)

where the last step uses p̂ p−→ p > 0.



Appendix: Panel Data — Asymptotic Linearity (2/3)

■ Step 3: Similarly for the second ratio:

µ̂0

q̂
− µ0

1− p
=

1

1− p
(µ̂0 − µ0) +

µ0

(1− p)2
(p̂− p) + op(n−1/2)

■ Step 4: Combine:

θ̂DiD − θDiD =
1

p
(µ̂1 − µ1)−

µ∆,2

p
(p̂− p)

− 1

1− p
(µ̂0 − µ0)−

µ∆,∞

1− p
(p̂− p) + op(n−1/2)

where µ∆,2 = µ1/p = E[∆Yi|Gi = 2] and µ∆,∞ = µ0/(1− p) = E[∆Yi|Gi = ∞].

■ Note: p̂− p = En[Di]− p and µ̂1 − µ1 = En[∆YiDi]− µ1



Appendix: Panel Data — Asymptotic Linearity (3/3)

■ Step 5: Express as average of iid terms. Each sample mean is an average:

θ̂DiD − θDiD =
1

n

n∑
i=1

[
Di∆Yi − µ1

p
− µ∆,2(Di − p)

p

− (1− Di)∆Yi − µ0

1− p
− µ∆,∞(Di − p)

1− p

]
+ op(n−1/2)

■ Step 6: Simplify the treated group term:
Di∆Yi − µ1

p
− µ∆,2(Di − p)

p
=
Di(∆Yi − µ∆,2)

p
■ Similarly for the comparison term. Thus:

θ̂DiD − θDiD =
1

n

n∑
i=1

[
Di
p
(∆Yi − µ∆,2)−

1− Di
1− p

(∆Yi − µ∆,∞)

]
︸ ︷︷ ︸

ψpi

+op(n−1/2)



Appendix: Panel Data — Asymptotic Variance

■ From the IF representation:
√
n(θ̂DiD − θDiD) = 1√

n
∑n

i=1 ψ
p
i + op(1)

■ By CLT: 1√
n
∑n

i=1 ψ
p
i
d−→ N(0,Var(ψpi ))

■ Computing Var(ψpi ):

Vp = Var
(
Di
p
(∆Yi − µ∆,2)−

1− Di
1− p

(∆Yi − µ∆,∞)

)
=

1

p2
Var(Di(∆Yi − µ∆,2)) +

1

(1− p)2
Var((1− Di)(∆Yi − µ∆,∞))

(cross‐term is zero since Di(1− Di) = 0)

■ Simplifying: Var(Di(∆Yi − µ∆,2)) = p · σ2
∆,2 where σ2

∆,2 = Var(∆Yi|Gi = 2)

Vp =
σ2
∆,2

p
+
σ2
∆,∞

1− p



Appendix: Variance Estimation

■ Plug‐in estimator: Replace population quantities with sample analogs

ψ̂pi =
Di
p̂
(∆Yi −∆Y2)−

1− Di
1− p̂

(∆Yi −∆Y∞)

■ Variance estimate:

V̂p =
1

n

n∑
i=1

(ψ̂pi )
2

■ By LLN: V̂p
p−→ Vp

■ Standard error: ŜE(θ̂DiD) =
√
V̂p/n

■ Alternative: Direct plug‐in

V̂altp =
σ̂2
∆,2

p̂
+
σ̂2
∆,∞

1− p̂
where σ̂2

∆,g =
1
ng

∑
i:Gi=g(∆Yi −∆Yg)2



Appendix: RCS — Influence Function Derivation (1/2)

■ RCS data: Zi = (Yi,Gi, Ti), Di = 1{Gi = 2}, Ti = 1{sampled at t = 2} (distinct from Tt in regression)

■ Cannot first‐difference. The DiD estimand uses four conditional means:

θDiD = (µ2,2 − µ2,1)− (µ∞,2 − µ∞,1)

where µg,t = E[Yi|Gi = g, Ti = t]
■ Under stationarity: Pr(Gi = 2|Ti = t) is constant across t

■ Linearization: Apply the delta method to each of the four ratios

■ The IF takes the form:

ψrci =
DiTi
p · λ

(Yi − µ2,2)−
Di(1− Ti)
p · (1− λ)

(Yi − µ2,1)

− (1− Di)Ti
(1− p) · λ

(Yi − µ∞,2) +
(1− Di)(1− Ti)
(1− p)(1− λ)

(Yi − µ∞,1)

where λ = Pr(Ti = 1) and µg,t = E[Yi|Gi = g, Ti = t]



Appendix: RCS — Influence Function Derivation (2/2)

■ Asymptotic variance: Vrc = Var(ψrci )

■ Since (Di, Ti) ∈ {0, 1}2 creates four disjoint groups, cross‐products vanish:

Vrc =
σ2
2,2

p · λ
+

σ2
2,1

p · (1− λ)
+

σ2
∞,2

(1− p) · λ
+

σ2
∞,1

(1− p)(1− λ)

where σ2
g,t = Var(Yi|Gi = g, Ti = t)

■ Comparison with panel:

Vp =
σ2
∆,2

p
+
σ2
∆,∞

1− p
< Vrc

Two sources of RCS inefficiency:
(i) Cannot exploit within‐unit correlation: σ2

∆,g = σ2
g,2 + σ2

g,1 − 2Cov(Yi,2,Yi,1|Gi = g)
(ii) Must split sample across periods: each cell has ≤ n observations (factors 1/λ, 1/(1− λ))

■ Conclusion: Panel data is strictly more efficient than RCS for DiD (Vp < Vrc always)



Appendix: Optimal Sample Allocation for RCS

■ Question: Given a total budget of n observations, how should we split between t = 1 and t = 2

in an RCS?

■ Let λ = n2/(n1 + n2) be the fraction sampled at t = 2

■ The asymptotic variance is:

Vrc(λ) =
1

λ

(
σ2
2,2

p
+
σ2
∞,2

1− p

)
+

1

1− λ

(
σ2
2,1

p
+
σ2
∞,1

1− p

)
■ Optimal allocation:

λ∗ =

√
A2√

A1 +
√
A2

where At =
σ2
2,t
p +

σ2
∞,t

1−p

■ Practical implication: If the outcome is more variable in the post‐period (e.g., due to treatment
effect heterogeneity), sample more observations in the post‐period
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