

ECON 730: Causal Inference with Panel Data

Lecture 5: Introduction to Difference-in-Differences

Pedro H. C. Sant'Anna

Spring 2026

From Experiments to Observational Studies

Roadmap

■ Lectures 3–4: Causal inference with **randomized** panel experiments

- ▶ Design-based identification; Horvitz–Thompson estimation
- ▶ Known treatment assignment mechanism \Rightarrow clear identification

■ Today: What if treatment is **not randomized**?

■ Our approach:

- ▶ The canonical **2×2 difference-in-differences (DiD)** setup
- ▶ Two groups (treated vs. untreated), two periods (pre vs. post)
- ▶ Replace randomization with **parallel trends** assumption

■ The full journey today:

- ▶ Setup \rightarrow Identification \rightarrow Estimation \rightarrow Inference \rightarrow Application

The Challenge: Selection into Treatment

- In observational studies, units **select into treatment**
 - ▶ States **choose** to expand Medicaid; firms **decide** to adopt new technology
- Simple pre-post or treated-vs.-untreated comparisons are **biased**
 - ▶ Treated units may differ from comparison units *even without treatment*
- **Difference-in-Differences (DiD):** Exploit the **time dimension**
 - ▶ Use pre-treatment periods to account for selection concerns, as long as additional assumptions (Parallel Trends, No-Anticipation) are met
- The most widely used identification strategy in applied microeconomics
 - ▶ See Lecture 1; [Currie, Kleven and Zwiers \(2020\)](#); [Goldsmith-Pinkham \(2024\)](#)

The 2×2 DiD Setup

Running Example: Medicaid Expansion and Mortality

- Baker, Callaway, Cunningham, Goodman-Bacon and Sant'Anna (2025): *A Practitioner's Guide to Difference-in-Differences*
- **Policy:** Affordable Care Act (ACA) Medicaid expansion
 - ▶ 2014: Some states expand eligibility → more residents gain health insurance
 - ▶ Other states never expand (through 2019)
- **Outcome:** County-level mortality rate (ages 20–64), deaths per 100,000
- **Question:** Did Medicaid expansion **reduce** mortality?
- **2×2 Setup:**
 - ▶ Two periods: 2013 (pre) and 2014 (post)
 - ▶ Two groups: States expanding in 2014 vs. never-expanding states
 - ▶ Unit of observation: Counties within states

Data Structure: Two Groups, Two Periods

- **Time periods:** $t \in \{1, 2\}$ (e.g., 2013 and 2014)
- **Treatment group indicator:** $G_i \in \{2, \infty\}$
 - ▶ $G_i = 2$: unit i is first treated at period 2 (expansion states)
 - ▶ $G_i = \infty$: unit i is **never treated** (never-expansion states)
- **Treatment indicator:** $D_{i,t} = \mathbf{1}\{G_i \leq t\}$
 - ▶ $D_{i,1} = 0$ for all units (no one is treated at $t = 1$)
 - ▶ $D_{i,2} = \mathbf{1}\{G_i = 2\}$ (only the treated group at $t = 2$)
- **Key features:**
 - ▶ Treatment is **binary** and **absorbing** (once treated, stay treated)
 - ▶ No one is treated in the first period
 - ▶ This is the **simplest** DiD setup – building block for everything else

Potential Outcomes in the 2×2 Setup

- Recall from Lecture 2: potential outcomes indexed by treatment sequence
- **Specialize to 2×2 :** Only two possible treatment paths
 - ▶ $Y_{i,t}(\infty)$: outcome if unit i is **never** treated (untreated potential outcome)
 - ▶ $Y_{i,t}(2)$: outcome if unit i is **first treated at $t = 2$**
- **SUTVA (Stable Unit Treatment Value Assumption):**
 - ▶ No interference: unit i 's outcome depends only on i 's own treatment path
 - ▶ No hidden versions of treatment
- **Observed outcome:**
$$Y_{i,t} = \mathbf{1}\{G_i = 2\} \cdot Y_{i,t}(2) + \mathbf{1}\{G_i = \infty\} \cdot Y_{i,t}(\infty)$$
- This is the **same** potential outcomes framework from Lectures 2–4, just specialized to two groups and two periods

Target Parameter: The Average Treatment Effect on the Treated

- Parameter of interest: The ATT at period 2

$$ATT = \mathbb{E}[Y_{i,t=2}(2) - Y_{i,t=2}(\infty) \mid G_i = 2]$$

- Interpretation:

- ▶ Average causal effect of treatment **for those who are actually treated**
- ▶ **Not the ATE** – we condition on $G_i = 2$

- In the Medicaid example:

- ▶ Average effect of Medicaid expansion on mortality **in counties that expanded**
- ▶ Not: what would happen if **all** counties expanded

- The fundamental problem: We observe $Y_{i,t=2}(2)$ for the treated group, but we **never observe** $Y_{i,t=2}(\infty)$ for the treated group

- How do we **impute** the missing counterfactual?

The DiD Estimand: A Preview

- The **DiD estimand** takes the form:

$$\theta^{DiD} = \left(\mathbb{E}[Y_{i,t=2}|G_i = 2] - \mathbb{E}[Y_{i,t=1}|G_i = 2] \right) - \left(\mathbb{E}[Y_{i,t=2}|G_i = \infty] - \mathbb{E}[Y_{i,t=1}|G_i = \infty] \right)$$

- Four observable group-period means; treated group's change minus comparison group's change

Two fundamental questions for the rest of this lecture:

1. How do we arrive at this estimand? Why this particular form?
2. Under what assumptions does $\theta^{DiD} = ATT$? Why?

Selection Bias and the Missing Data Problem

The Missing Data Problem: Under SUTVA

- **SUTVA** \Rightarrow each unit reveals outcomes from its own treatment path only
- What do we **observe** vs. what is **missing**?

	Period 1 ($t = 1$)		Period 2 ($t = 2$)	
	$Y_{i,t=1}(\infty)$	$Y_{i,t=1}(2)$	$Y_{i,t=2}(\infty)$	$Y_{i,t=2}(2)$
$G_i = 2$ (Treated)	?	✓	?	✓
$G_i = \infty$ (Comparison)	✓	?	✓	?

- Treated units reveal $Y_{i,t}(2)$; comparison units reveal $Y_{i,t}(\infty)$
- **Problem:** The ATT requires $\mathbb{E}[Y_{i,t=2}(\infty)|G_i = 2]$ – a **missing** cell!
- Can we learn more using **No-Anticipation**?

Filling In: Adding No-Anticipation

- **No-Anticipation** $\Rightarrow Y_{i,t=1}(2) = Y_{i,t=1}(\infty)$ for all i (can be relaxed to hold on average among treated)
- So for treated units at $t = 1$: $Y_{i,t=1} = Y_{i,t=1}(2) = Y_{i,t=1}(\infty)$ – **both** potential outcomes observed!

	Period 1 ($t = 1$)		Period 2 ($t = 2$)	
	$Y_{i,t=1}(\infty)$	$Y_{i,t=1}(2)$	$Y_{i,t=2}(\infty)$	$Y_{i,t=2}(2)$
$G_i = 2$ (Treated)	✓*	✓	?	✓
$G_i = \infty$ (Comparison)	✓	—	✓	—

* Same as $Y_{i,t=1}(2)$ under No-Anticipation

- The **one remaining missing cell**: $\mathbb{E}[Y_{i,t=2}(\infty)|G_i = 2]$ – the **counterfactual** for the treated group at $t = 2$

Selection Bias in the Post-Treatment Comparison

- **Naive approach:** Compare treated and comparison at $t = 2$

$$\mathbb{E}[Y_{i,t=2}|G_i = 2] - \mathbb{E}[Y_{i,t=2}|G_i = \infty]$$

$$= \mathbb{E}[Y_{i,t=2}(2)|G_i = 2] - \mathbb{E}[Y_{i,t=2}(\infty)|G_i = \infty]$$

$$= \underbrace{\mathbb{E}[Y_{i,t=2}(2) - Y_{i,t=2}(\infty)|G_i = 2]}_{ATT} + \underbrace{\mathbb{E}[Y_{i,t=2}(\infty)|G_i = 2] - \mathbb{E}[Y_{i,t=2}(\infty)|G_i = \infty]}_{\text{Selection Bias}}$$

- The **selection bias** reflects differences in **untreated potential outcomes** between groups at $t = 2$

Worked Example: Job Training Program

- **Setting:** Job training for disadvantaged workers – workers with lower baseline wages **select into** the program

Unit	Period 1 (Pre)		Period 2 (Post)	
	$Y_{i,t=1}(\infty)$	Wage	$Y_{i,t=2}(\infty)$	$Y_{i,t=2}(2)$
A (Trained)	20	20	22	27
B (Trained)	18	18	20	24
C (Not trained)	30	30	32	—
D (Not trained)	28	28	30	—

- **True ATT** = $\frac{(27-22)+(24-20)}{2} = 4.5$

- **Naive:** $\frac{27+24}{2} - \frac{32+30}{2} = 25.5 - 31 = -5.5$

Selection bias = -10

Selection bias contaminates naive comparisons.

What assumptions let us recover the ATT?

Assumptions: No-Anticipation and Parallel Trends

Assumption: No Anticipation

Our first assumption ensures that future treatment does not contaminate pre-treatment outcomes:

No-Anticipation

For all units i : $Y_{i,t=1}(2) = Y_{i,t=1}(\infty)$. Treatment at $t = 2$ has no effect on outcomes at $t = 1$.

For ATT identification, we only need this on average across treated units: $\mathbb{E}[Y_{i,t=1}(2)|G_i = 2] = \mathbb{E}[Y_{i,t=1}(\infty)|G_i = 2]$

- **Interpretation:** Agents do not change behavior **before** treatment begins
- **When it holds:** Unexpected policy changes; units unaware of future treatment
- **When it fails:** Pre-announced policies → behavioral adjustments before implementation ([Malani and Reif, 2015](#))
- **Notational simplification:** Under No-Anticipation, $Y_{i,t=1} = Y_{i,t=1}(\infty)$ for all units

Assumption: Parallel Trends

Parallel Trends (PT)

$$\mathbb{E}[Y_{i,t=2}(\infty) - Y_{i,t=1}(\infty) \mid G_i = 2] = \mathbb{E}[Y_{i,t=2}(\infty) - Y_{i,t=1}(\infty) \mid G_i = \infty].$$

■ What PT says:

- ▶ In the **absence of treatment**, both groups would have followed the same **trend**
- ▶ Allows for permanent **level** differences between groups

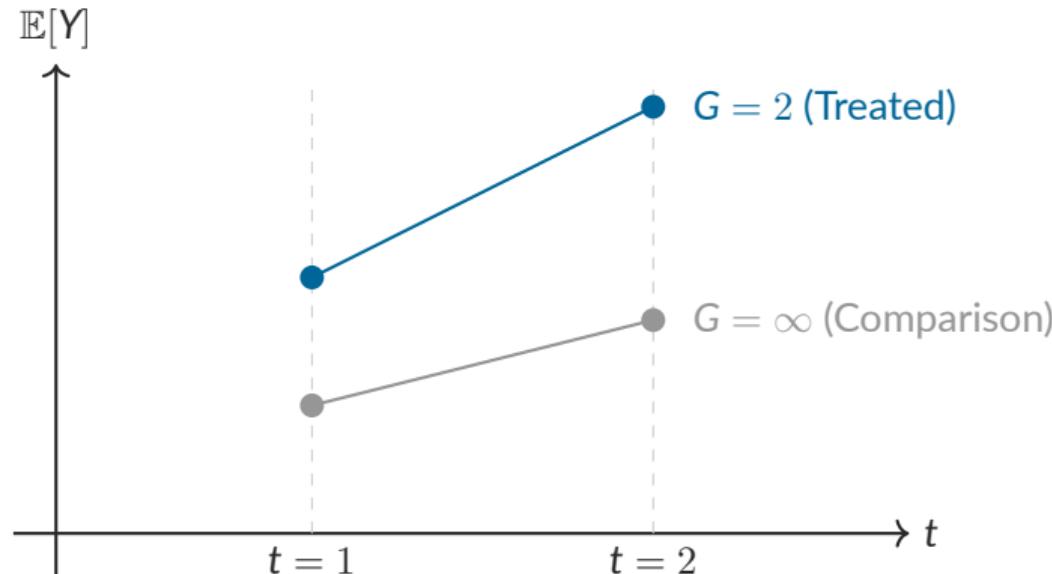
■ What PT does NOT require:

- ▶ Same **levels** of outcomes: $\mathbb{E}[Y_{i,t}(\infty) \mid G_i = 2] \neq \mathbb{E}[Y_{i,t}(\infty) \mid G_i = \infty]$ is fine!
- ▶ Random treatment assignment or no selection into treatment

■ What PT rules out: Differential *time-varying* selection – trends in untreated outcomes differ by group

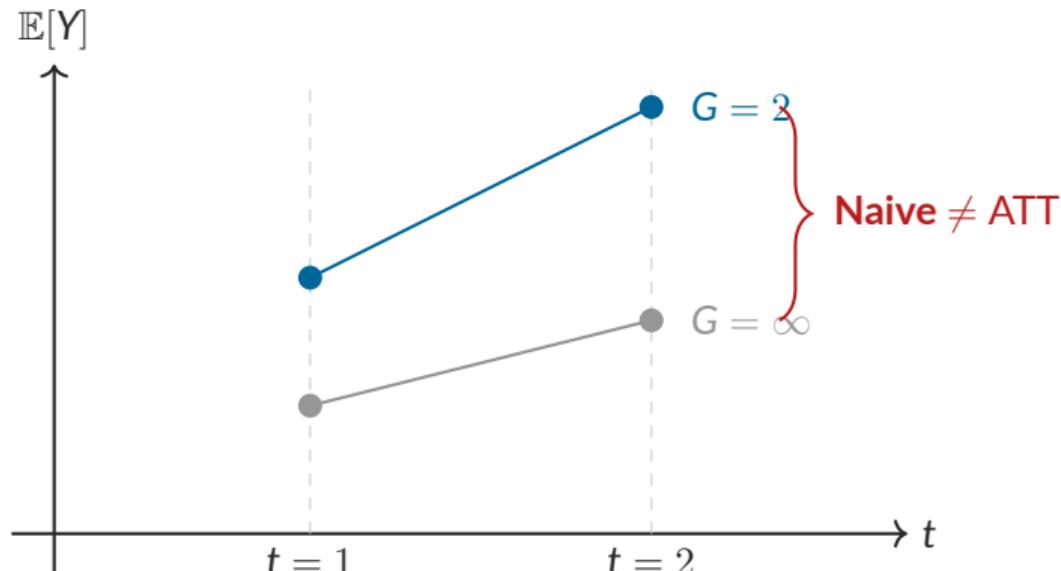
This PT involves counterfactual outcomes \Rightarrow fundamentally untestable. We can assess plausibility using pre-treatment data (in a few lectures).

Parallel Trends: Graphical Intuition (1/4)



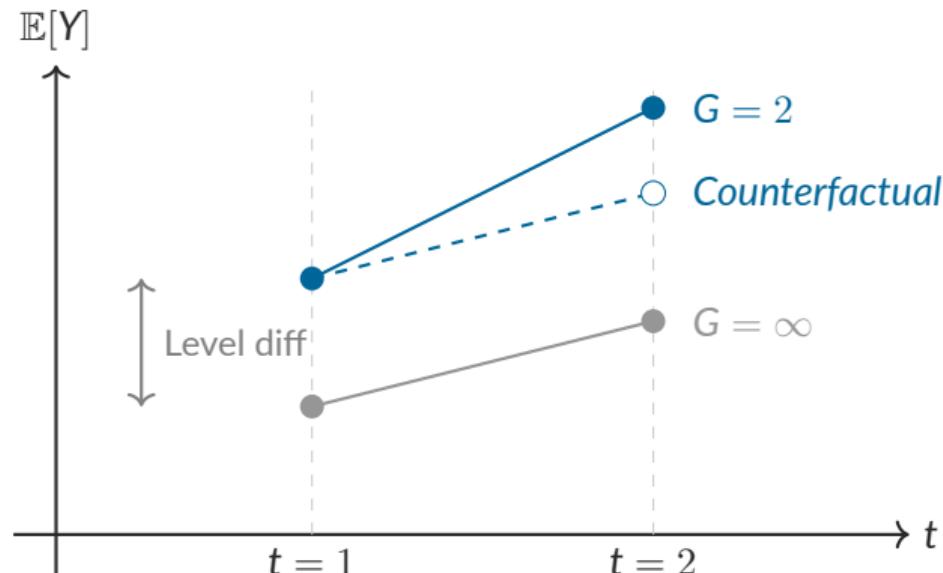
- Treated group has **higher levels** and rises **more** from $t = 1$ to $t = 2$
- But how much of the rise is due to **treatment**?

Parallel Trends: Graphical Intuition (2/4)



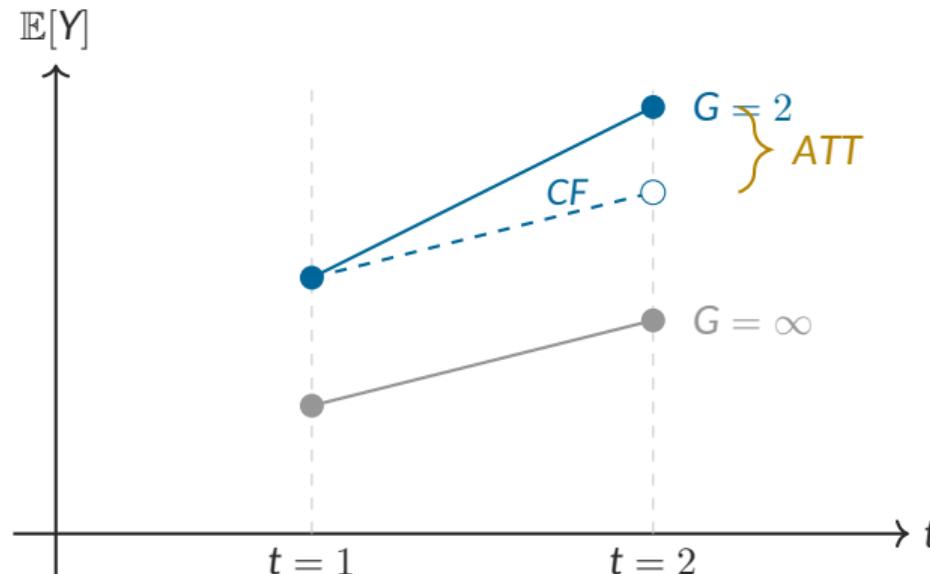
- The naive comparison at $t = 2$ includes the **level difference** that existed before treatment
- This is **selection bias** + treatment effect, mixed together

Parallel Trends: Graphical Intuition (3/4)



- Under PT: the treated group's **counterfactual** trajectory is parallel to the comparison group
- The **hollow circle** is the missing counterfactual $\mathbb{E}[Y_{i,t=2}(\infty) | G_i = 2]$

Parallel Trends: Graphical Intuition (4/4)



- **ATT** = (Treated group's change) – (Comparison group's change) = **Difference-in-Differences**
- **Think:** What would this diagram look like if Parallel Trends **fails**?

When Is Parallel Trends Plausible?

- PT is fundamentally untestable – it concerns **counterfactual** trends, not observed trends
- **Suggestive evidence:** Pre-treatment trends can provide support
 - ▶ If expansion and non-expansion states had similar mortality trends before 2014, PT is more credible
 - ▶ But **parallel pre-trends \neq parallel trends** (Roth, 2022; Ghanem, Sant'Anna and Wüthrich, 2026)
- **Potential violations in the Medicaid example:**
 - ▶ Opioid crisis differentially affected states – could confound mortality trends
 - ▶ Expansion states may have had different health infrastructure investments
- **Best practice:** Argue for PT using institutional knowledge, not just pre-trend tests. We will revisit this in future lectures

Identification of the ATT

Constructive Imputation: Step by Step

Goal: Show that $\theta^{DiD} = ATT$ under SUTVA + No-Anticipation + PT.

Start from the ATT:

$$ATT = \underbrace{\mathbb{E}[Y_{i,t=2}(2)|G_i = 2]}_{\text{observable}} - \underbrace{\mathbb{E}[Y_{i,t=2}(\infty)|G_i = 2]}_{\text{counterfactual}}$$

Use PT to impute the counterfactual:

$$\mathbb{E}[Y_{i,t=2}(\infty)|G_i = 2] = \mathbb{E}[Y_{i,t=1}(\infty)|G_i = 2] + \mathbb{E}[Y_{i,t=2}(\infty)|G_i = \infty] - \mathbb{E}[Y_{i,t=1}(\infty)|G_i = \infty]$$

Under No-Anticipation + SUTVA, all terms are observable:

$$\mathbb{E}[Y_{i,t=2}(\infty)|G_i = 2] = \underbrace{\mathbb{E}[Y_{i,t=1}|G_i = 2]}_{\checkmark \text{ No-Anticipation}} + \underbrace{\mathbb{E}[Y_{i,t=2}|G_i = \infty]}_{\checkmark \text{ all observable}} - \mathbb{E}[Y_{i,t=1}|G_i = \infty]$$

The DiD Identification Result

Theorem (DiD Identification). Under SUTVA, No-Anticipation, and Parallel Trends:

$$ATT = \theta^{DiD} = \left(\mathbb{E}[Y_{i,t=2}|G_i = 2] - \mathbb{E}[Y_{i,t=1}|G_i = 2] \right) - \left(\mathbb{E}[Y_{i,t=2}|G_i = \infty] - \mathbb{E}[Y_{i,t=1}|G_i = \infty] \right)$$

- **Three assumptions** \Rightarrow observable formula with **four population means**
- **Note:** This is an **identification** result, not an estimation result
 - ▶ The formula involves *population* expectations, not sample averages
 - ▶ Estimation comes next

Weighted Expectations: Who Defines the Parameter?

Baker et al. (2025) emphasize: the **weights** define the ATT

Unweighted DiD:

$$ATT = \mathbb{E}[Y_{i,t=2}(2) - Y_{i,t=2}(\infty) | G_i = 2]$$

Population-weighted DiD:

$$ATT_{\omega} = \mathbb{E}_{\omega}[Y_{i,t=2}(2) - Y_{i,t=2}(\infty) | G_i = 2]$$

- Each unit gets **equal** weight
- “Average effect per **county**”

- Weight by population ω_i
- “Average effect per **person**”

Key message: Both are valid ATTs, but they answer **different questions**

- The choice of weights is a **substantive** decision, not a statistical one
- The choice of weights also impacts the PT assumption!

We know **what** to estimate.

Now: **how** to estimate and do inference.

Estimation

The Analogy Principle

- **Identification:** $ATT = f(\text{population means})$
- **Estimation:** Replace population means with sample analogs
- **Notation:**
 - ▶ n : total sample size; n_2 : treated units; n_∞ : comparison units
 - ▶ $\bar{Y}_{g,t} = \frac{1}{n_g} \sum_{i: G_i=g} Y_{i,t}$: sample mean for group $g \in \{2, \infty\}$ at time t
- **The DiD estimator (“DiD-by-hand”):**

$$\hat{\theta}^{\text{DiD}} = (\bar{Y}_{g=2,t=2} - \bar{Y}_{g=2,t=1}) - (\bar{Y}_{g=\infty,t=2} - \bar{Y}_{g=\infty,t=1})$$

- Simply the difference of two **within-group time changes**
- With **panel data**, this simplifies further...

Panel Data Simplification: First-Differencing

With **panel data** (same units in both periods), define $\Delta Y_i = Y_{i,t=2} - Y_{i,t=1}$

The DiD estimator as a two-sample difference in means:

$$\hat{\theta}^{\text{DiD}} = \overline{\Delta Y}_2 - \overline{\Delta Y}_\infty = \frac{1}{n_2} \sum_{i: G_i=2} \Delta Y_i - \frac{1}{n_\infty} \sum_{i: G_i=\infty} \Delta Y_i$$

Two steps:

1. First-difference \Rightarrow removes **time-invariant** unit effects
2. Compare treated vs. comparison **changes**

Requires panel data:

- Same units observed in both periods
- With repeated cross-sections, use the four-means formula

Notation: Treatment Indicator for Regressions

- We use G_i notation consistently for **conditioning and parameters**:

$$ATT = \mathbb{E}[Y_{i,t=2}(2) - Y_{i,t=2}(\infty) \mid G_i = 2]$$

- For **regression and influence function formulas**, define a binary shorthand:

$$D_i = \mathbf{1}\{G_i = 2\} = \begin{cases} 1 & \text{if unit } i \text{ is in the treated group} \\ 0 & \text{if unit } i \text{ is in the comparison group} \end{cases}$$

- **Why this convention?**

- ▶ G -notation generalizes naturally to staggered adoption
- ▶ D_i is convenient in regression equations where we need 0/1 arithmetic

- **Rule:** All conditioning, parameters, and potential outcomes use G_i ; D_i appears only in regression specifications and influence function formulas

TWFE Regression

A common way to estimate DiD: **Two-Way Fixed Effects (TWFE)** regression

Pooled OLS form:

$$Y_{i,t} = \alpha_0 + \gamma_0 D_i + \lambda_0 T_t + \beta^{TWFE} (D_i \times T_t) + \varepsilon_{i,t}$$

Unit & time FE form:

$$Y_{i,t} = \alpha_i + \lambda_t + \beta^{TWFE} D_{i,t} + \varepsilon_{i,t}$$

$$\text{where } D_{i,t} = \mathbf{1}\{G_i \leq t\}$$

where $T_t = \mathbf{1}\{t = 2\}$, $D_i = \mathbf{1}\{G_i = 2\}$

- Both are equivalent in the 2×2 case with balanced panel data – same $\hat{\beta}^{TWFE}$
- Key question: Does $\hat{\beta}^{TWFE} = \hat{\theta}^{DiD}$?
- Answer: Yes! In the 2×2 case, they are numerically identical

TWFE = DiD-by-Hand: The Equivalence

- **Claim:** $\hat{\beta}^{TWFE} = \hat{\theta}^{DiD}$ (exact numerical equality)
- **Proof sketch:** OLS solves four moment conditions:

$$\begin{aligned}\mathbb{E}_n[\varepsilon_{i,t}] &= 0 & \Rightarrow \hat{\alpha}_0 &= \bar{Y}_{g=\infty, t=1} \\ \mathbb{E}_n[D_i \cdot \varepsilon_{i,t}] &= 0 & \Rightarrow \hat{\gamma}_0 &= \bar{Y}_{g=2, t=1} - \bar{Y}_{g=\infty, t=1} \\ \mathbb{E}_n[T_t \cdot \varepsilon_{i,t}] &= 0 & \Rightarrow \hat{\lambda}_0 &= \bar{Y}_{g=\infty, t=2} - \bar{Y}_{g=\infty, t=1} \\ \mathbb{E}_n[(D_i \cdot T_t) \cdot \varepsilon_{i,t}] &= 0 & \Rightarrow \hat{\beta}^{TWFE} &= \hat{\theta}^{DiD}\end{aligned}$$

- The four moment conditions **uniquely pin down** the four group-time means
- **Bottom line:** In the 2×2 case, TWFE regression is just a **convenient way to compute** the DiD estimator. Nothing more, nothing less.
- **Every student in this class should be able to derive these equivalence results!**
- **Think:** Will this equivalence survive when we move to **staggered adoption**? Why or why not?

Three Equivalent Specifications

Baker et al. (2025): Three OLS specifications, same $\hat{\beta}$

Spec	Regression	Data Used
(1) Pooled OLS	$Y_{i,t} = \alpha + \gamma D_i + \lambda T_t + \beta(D_i \cdot T_t) + \varepsilon_{i,t}$	Panel (2n obs)
(2) First-diff	$\Delta Y_i = \delta + \beta D_i + u_i$	Panel, FD (n obs)
(3) Unit & time FE	$Y_{i,t} = \alpha_i + \lambda_t + \beta D_{i,t} + \varepsilon_{i,t}$	Panel (2n obs)

- All three yield **identical** point estimates for $\hat{\beta}$ in the 2×2 case with balanced panel
- **BUT:** Standard errors differ unless you cluster appropriately!
 - ▶ Spec (1) and (3) have $2n$ observations; Spec (2) has n observations
 - ▶ *Clustering at the unit level* in Specs (1) and (3) reconciles the SEs

OLS: Regression as a Means to an End

- Important conceptual point: The regression is a **computational device**
- In the 2×2 case, OLS does not add any statistical content
 - ▶ Same estimate as computing four means and subtracting
 - ▶ The **interpretation** comes from the DiD identification argument, not from the regression
- Why use regression then?
 - ▶ Convenience: standard software handles SEs and clustering
 - ▶ Reporting: tables with coefficients and SEs are standard in economics
- **Warning for later:** In more complex settings (staggered adoption, heterogeneous effects), TWFE \neq "the" DiD estimator
 - ▶ The 2×2 equivalence is **special** and does not generalize
 - ▶ Recall Lecture 3: FE can be biased under carryover effects. Here, with no carryover in the 2×2 case, TWFE is well-behaved

Empirical Application: Medicaid Expansion

Application: The ACA and County Mortality

- **Data:** County-level mortality rates (ages 20–64), deaths per 100,000
 - ▶ Source: [Baker et al. \(2025\)](#), replication data from [pedrohcgs](#)/JEL-DiD
- **Treatment:** State-level Medicaid expansion under the ACA
 - ▶ 24 states + DC expanded in January 2014
 - ▶ 19 states never expanded (through 2019)
 - ▶ Drop DC and pre-2014 adopters (DE, MA, NY, VT) for clean 2×2
- **2×2 Setup:**
 - ▶ Pre: 2013, Post: 2014
 - ▶ Treated: Counties in states expanding in 2014
 - ▶ Comparison: Counties in never-expanding states
- **Sample:** ~2,300 counties, roughly 900 treated and 1,400 comparison
- **Key feature:** Counties vary enormously in population size – weighting matters!

Simple 2×2 Results: Unweighted vs. Weighted

Baker et al. (2025), Table 2: Simple means and DiD

	Unweighted		Pop-Weighted	
	Pre (2013)	Post (2014)	Pre (2013)	Post (2014)
Treated ($G = 2$)	419.2	428.5	322.7	326.5
Comparison ($G = \infty$)	474.0	483.1	376.4	382.7
Δ Treated		+9.3		+3.7
Δ Comparison		+9.1		+6.3
DiD		+0.1		-2.6

- **Unweighted:** DiD $\approx +0.1$ (SE = 3.7) (essentially zero, “wrong sign”)
- **Population-weighted:** DiD ≈ -2.6 (SE = 1.5) (meaningful reduction in mortality)
- **Why the difference? Different parameters!** “Per county” vs. “per person” ATT

Regression Equivalence: Three Specifications

- All three specifications yield the same point estimate (county-clustered SEs)

	(1) Pooled OLS	(2) First-diff	(3) Unit & time FE
$\hat{\beta}$ (unweighted)	0.1	0.1	0.1
SE (county-clustered)	(3.7)	(3.7)	(3.7)
$\hat{\beta}$ (pop-weighted)	-2.6	-2.6	-2.6
SE (county-clustered)	(1.5)	(1.5)	(1.5)
Observations	$2n$	n	$2n$

- Point estimates are **identical** across all three specifications
- County-clustered SEs are also identical (as expected from theory)
- Neither result is statistically significant at conventional levels

R Code: DiD by Hand vs. Regression

DiD by hand:

```
# Four group-time means
means <- short_data %>%
  group_by(Treat, Post) %>%
  summarise(
    m = mean(crude_rate_20_64))

# DiD estimate
did_hat <- (means$m[4] - means$m[3]) -
  (means$m[2] - means$m[1])
```

TWFE regression:

```
library(fixest)

# TWFE with county + year FE
reg <- feols(
  crude_rate_20_64 ~ Treat:Post
  | county_code + year,
  data = short_data,
  cluster = ~stateID)

coef(reg) # Same as did_hat!
```

- Both approaches give **identical** estimates
- `short_data`: balanced panel with 2013–2014 only (the 2×2 subset)
- Full replication code: github.com/pedrohcgs/JEL-DiD

Key Takeaway: Weights Matter

Lesson from the Medicaid application:

- The choice of weights (unweighted vs. population-weighted) changes the **target parameter**
- Unweighted DiD: $\hat{\theta} = +0.1$ ("per county" ATT)
- Weighted DiD: $\hat{\theta} = -2.6$ ("per person" ATT)
- Both are **valid**, but they answer **different questions**

■ Why this matters going forward:

- ▶ When we add **covariates**, conditioning variables implicitly change weights
- ▶ Different estimators (regression adjustment, IPW, doubly robust) target the same parameter but may use different implicit weights

■ Researcher's responsibility:

Be explicit about what parameter you are estimating

We have seen DiD work in practice.

Now: what are its statistical properties?

Influence Functions and Asymptotic Theory

Why Influence Functions?

Having seen DiD work in practice, we now formalize the statistical properties of the estimator.

- We have an estimator $\hat{\theta}^{\text{DiD}}$. What are its **large-sample properties**?
- **Goals:** Consistency, asymptotic normality, variance estimation, and valid bootstrap inference
- **Influence functions** provide a **unified** approach:
 - ▶ Decompose the estimator as a **sum of iid terms** (+ remainder)
 - ▶ The influence function ψ_i captures unit i 's contribution to the estimator
 - ▶ Variance of the IF = asymptotic variance of $\hat{\theta}^{\text{DiD}}$
- This framework generalizes naturally to **more complex estimators** (covariates, staggered designs) in later lectures

Panel Data Sampling Scheme

Panel Data Sampling

We observe an iid random sample $\{Z_i\}_{i=1}^n$ where $Z_i = (Y_{i,t=1}, Y_{i,t=2}, G_i)$ is drawn from the joint distribution of $(Y_{i,t=1}, Y_{i,t=2}, G_i)$.

- The **same n units** are observed in both periods ($t = 1$ and $t = 2$)
- **Key:** Units are iid across i , but $Y_{i,t=1}$ and $Y_{i,t=2}$ are **not** independent within unit
- This allows us to compute $\Delta Y_i = Y_{i,t=2} - Y_{i,t=1}$ for each unit
- Let $D_i = \mathbf{1}\{G_i = 2\}$ and $p = \Pr(G_i = 2) \in (0, 1)$
- **Notation:** $\mathbb{E}_n[f(Z_i)] = \frac{1}{n} \sum_{i=1}^n f(Z_i)$ denotes the sample average

The DiD Estimator as a Function of Means

- Write the DiD estimator using empirical expectations:

$$\hat{\theta}^{DiD} = \frac{\mathbb{E}_n[\Delta Y_i \cdot D_i]}{\mathbb{E}_n[D_i]} - \frac{\mathbb{E}_n[\Delta Y_i \cdot (1 - D_i)]}{\mathbb{E}_n[1 - D_i]}$$

- This is a **smooth function of sample means**: $\hat{\theta}^{DiD} = g(\mathbb{E}_n[\mathbf{m}(Z_i)])$
- where $\mathbf{m}(Z_i) = (\Delta Y_i \cdot D_i, D_i, \Delta Y_i \cdot (1 - D_i), 1 - D_i)'$
- **By the Law of Large Numbers**: $\mathbb{E}_n[\mathbf{m}(Z_i)] \xrightarrow{p} \mathbb{E}[\mathbf{m}(Z_i)]$
- **By the Continuous Mapping Theorem**: $\hat{\theta}^{DiD} = g(\mathbb{E}_n[\mathbf{m}(Z_i)]) \xrightarrow{p} g(\mathbb{E}[\mathbf{m}(Z_i)]) = \theta^{DiD}$
- ⇒ **Consistency** follows from LLN + CMT

Asymptotic Normality: Setup

- Apply the **delta method** to $g(\mathbb{E}_n[\mathbf{m}(Z_i)])$:

$$\sqrt{n}(\hat{\theta}^{DiD} - \theta^{DiD}) = \sqrt{n} \cdot \nabla g(\mu)' (\mathbb{E}_n[\mathbf{m}(Z_i)] - \mu) + o_p(1)$$

where $\mu = \mathbb{E}[\mathbf{m}(Z_i)]$

- By the CLT:

$$\sqrt{n}(\mathbb{E}_n[\mathbf{m}(Z_i)] - \mu) \xrightarrow{d} N(\mathbf{0}, \text{Var}(\mathbf{m}(Z_i)))$$

- Combining (Slutsky):

$$\sqrt{n}(\hat{\theta}^{DiD} - \theta^{DiD}) \xrightarrow{d} N(0, \nabla g(\mu)' \text{Var}(\mathbf{m}(Z_i)) \nabla g(\mu))$$

- This can be written more compactly using the **influence function**...

The Influence Function: Panel Data Case

Panel data IF. Under the panel data sampling scheme:

$$\psi_i^p = \underbrace{\frac{D_i}{p}}_{w_1(D_i)} (\Delta Y_i - \mu_{\Delta,2}) - \underbrace{\frac{1-D_i}{1-p}}_{w_0(D_i)} (\Delta Y_i - \mu_{\Delta,\infty})$$

where $p = \Pr(G_i = 2)$, $\mu_{\Delta,g} = \mathbb{E}[\Delta Y_i | G_i = g]$ for $g \in \{2, \infty\}$.

- **Key property:** $\sqrt{n}(\widehat{\theta}^{DiD} - \theta^{DiD}) = \frac{1}{\sqrt{n}} \sum_{i=1}^n \psi_i^p + o_p(1)$
- **Asymptotic variance:** $V_p = \text{Var}(\psi_i^p)$
- Full derivation in the appendix

Computing the IF: Medicaid Example

Suppose: $p = 0.4$, $\mu_{\Delta,2} = -4.0$, $\mu_{\Delta,\infty} = -1.4$

- **Expansion county** with $\Delta Y_i = -6.5$:

$$\psi_i^p = \frac{1}{0.4}(-6.5 - (-4.0)) - 0 = -6.25$$

This county “pulls” the estimate toward a larger mortality reduction

- **Non-expansion county** with $\Delta Y_i = -0.5$:

$$\psi_i^p = 0 - \frac{1}{0.6}(-0.5 - (-1.4)) = -1.5$$

Its mortality fell less than average \Rightarrow supports the treatment effect

- **Takeaway:** The IF assigns each unit a signed “credit” for the overall estimate

Understanding the Influence Function

- **Two terms:** treated group's contribution and comparison group's contribution
- Each term is a **demeaned** quantity, weighted by group proportion
- $\mathbb{E}[\psi_i^p] = 0$ by construction – the IF is centered
- **Intuition for the weights:**
 - ▶ D_i/p : up-weights treated units (rarer group gets more weight)
 - ▶ $(1 - D_i)/(1 - p)$: up-weights comparison units
- **Why this matters:** The IF gives us everything for inference – consistency, asymptotic normality, variance estimation, and bootstrap validity all follow from this representation

Asymptotic Normality Result

Theorem. Under the panel data sampling scheme, SUTVA, No-Anticipation, and $\text{Var}(\Delta Y_i | G_i = g) < \infty$:

$$\sqrt{n}(\hat{\theta}^{\text{DiD}} - \theta^{\text{DiD}}) \xrightarrow{d} N(0, V_p)$$

where $V_p = \text{Var}(\psi_i^p) = \frac{\sigma_{\Delta,2}^2}{p} + \frac{\sigma_{\Delta,\infty}^2}{1-p}$

- $\sigma_{\Delta,g}^2 = \text{Var}(\Delta Y_i | G_i = g)$: within-group variance of the first-differenced outcome
- **Intuition:** Two components – treated group uncertainty ($\sigma_{\Delta,2}^2/p$) and comparison group uncertainty ($\sigma_{\Delta,\infty}^2/(1-p)$)
- **Design matters:** p small \Rightarrow first term dominates \Rightarrow large variance. Minimized at $p \approx 0.5$ (balanced design)
- **Think:** If only 5% of counties expanded, what does this formula say about **power**?

Repeated Cross-Sections: Brief Overview

- With **repeated cross-sections (RCS)**, different units sampled at $t = 1$ and $t = 2$
 - ▶ Let $T_i = \mathbf{1}\{\text{unit } i \text{ sampled at } t = 2\}$ (distinct from T_t in TWFE regression)
- Cannot first-difference \Rightarrow must estimate **four means** separately
- The IF has **four components** instead of two:

$$\psi_i^{rc} = w_1(D_i, T_i) \cdot (Y_i - \mu_{2,T_i}) - w_0(D_i, T_i) \cdot (Y_i - \mu_{\infty, T_i})$$

where each weight depends on both group **and** period membership

- **Requires additional assumption:** Stationarity of group composition
 - ▶ $\Pr(G_i = 2|T_i = 1) = \Pr(G_i = 2|T_i = 2)$ (no compositional changes)
- Panel is **strictly more efficient** than RCS – panel exploits within-unit correlation

Inference: Standard Errors and Clustering

How to Conduct Inference

- Given: $\sqrt{n}(\widehat{\theta}^{DiD} - \theta^{DiD}) \xrightarrow{d} N(0, V_p)$
- Variance estimation (analogy principle):

$$\widehat{V}_p = \frac{1}{n} \sum_{i=1}^n (\widehat{\psi}_i^p)^2$$

where $\widehat{\psi}_i^p$ replaces population quantities with sample analogs

- Standard error: $\widehat{SE} = \sqrt{\widehat{V}_p/n}$
- Confidence interval: $\widehat{\theta}^{DiD} \pm z_{\alpha/2} \cdot \widehat{SE}$
- t-statistic: $t = \widehat{\theta}^{DiD} / \widehat{SE}$. Reject $H_0 : \theta^{DiD} = 0$ if $|t| > z_{\alpha/2}$
- But wait: Should we **cluster** the standard errors?

Why Cluster Standard Errors?

- **DiD-by-hand** operates on n units (first-differenced panel)
 - ▶ Natural degrees of freedom: n independent observations
- **TWFE regression** uses $2n$ observations (n units \times 2 periods)
 - ▶ Without clustering: SE formula assumes $2n$ independent observations
 - ▶ **Artificially inflates sample size by a factor of 2!**
- **Clustering at the unit level** accounts for within-unit correlation
 - ▶ Two observations from the same unit are *not* independent
 - ▶ Corrected SE matches the DiD-by-hand SE
- **Bertrand, Duflo and Mullainathan (2004):** Ignoring clustering in DiD leads to massive over-rejection (up to 40% rejection at 5% nominal level)

Multiplier Bootstrap Using Influence Functions

- **Key advantage of IF-based inference:** The multiplier bootstrap
- **Idea:** Perturb the IF with random weights instead of resampling data

$$\widehat{\theta}^{*,b} = \widehat{\theta}^{\text{DiD}} + \frac{1}{n} \sum_{i=1}^n U_i^{(b)} \cdot \widehat{\psi}_i^p$$

where $U_i^{(b)} \sim N(0, 1)$ are iid random weights

- **No re-estimation needed:** Each bootstrap draw is a simple weighted sum
 - ▶ Extremely fast compared to traditional bootstrap (which re-estimates $\widehat{\theta}$ each time)
- **For cluster-level inference:** Draw $U_s^{(b)}$ at the cluster level
 - ▶ All units in cluster s share the same weight $U_s^{(b)}$
 - ▶ This preserves the within-cluster correlation structure

Bootstrap Algorithm

Multiplier Bootstrap for DiD (Cluster-Robust)

1. Compute $\widehat{\theta}^{\text{DiD}}$ and the influence function $\widehat{\psi}_i^p$ for each unit i
2. For $b = 1, \dots, B$ (e.g., $B = 999$):
 - 2.1 Draw $U_s^{(b)} \sim N(0, 1)$ for each cluster $s = 1, \dots, S$
 - 2.2 Assign $U_i^{(b)} = U_{s(i)}^{(b)}$ for all units i in cluster s
 - 2.3 Compute: $T^{*,b} = \frac{1}{\sqrt{n}} \sum_{i=1}^n U_i^{(b)} \cdot \widehat{\psi}_i^p$
3. Compute bootstrap critical value: $c_\alpha = \text{quantile}_{1-\alpha}(|T^{*,1}|, \dots, |T^{*,B}|)$
4. Reject $H_0 : \theta^{\text{DiD}} = 0$ if $|\sqrt{n} \cdot \widehat{\theta}^{\text{DiD}}| > c_\alpha$

- Bootstrap CIs can also be constructed from quantiles of $\widehat{\theta}^{*,b} = \widehat{\theta}^{\text{DiD}} + T^{*,b} / \sqrt{n}$
- Rademacher weights ($U_s^{(b)} \in \{-1, +1\}$ with equal probability) also valid and sometimes preferred for few clusters

The Few-Clusters Problem

- Standard cluster-robust inference relies on $S \rightarrow \infty$ (number of clusters)
- Problem: In many DiD applications, S is small (e.g., 50 states, 10 provinces)
 - ▶ CLT approximation may be poor with few clusters
 - ▶ Cluster-robust SEs can be severely biased downward
- Approaches in the literature:
 - ▶ Donald and Lang (2007): ***t-distribution*** with $S - 2$ degrees of freedom (assumes homoskedasticity)
 - ▶ Conley and Taber (2011): **Large untreated group** to inform inference (fixed S_1 , growing S_0)
 - ▶ Ferman and Pinto (2019): Allow for **heteroskedasticity** across clusters
- No silver bullet: Each approach requires additional assumptions; this is an active area of research (see [Alvarez, Ferman and Wüthrich, 2025](#), for a recent survey)

Panel Data vs. Repeated Cross-Sections

We have assumed **panel data**. But what if we do not have it?

What changes with **repeated cross-sections**?

Repeated Cross-Section (RCS) Sampling Scheme

Repeated Cross-Section Sampling

Period t data $\{(Y_{i,t}, G_i)\}$ is an iid sample from $F_{Y,G|T=t}$. Observations across periods are independent.

- **Different units** sampled at $t = 1$ and $t = 2$
- **Requires additional assumption:** Stationarity of group composition
 - ▶ $\Pr(G_i = 2|T_i = 1) = \Pr(G_i = 2|T_i = 2)$
 - ▶ Violation: **compositional changes** (Sant'Anna and Xu, 2026)
- **IF has four components:** one per group-period cell
- **Examples:** CPS microdata, Census data, polling data before/after events

Comparison: Panel vs. Repeated Cross-Sections

Panel Data

- Same units both periods
- Can first-difference
- 2 IF components
- More **efficient**
- Risk: attrition, survivorship bias
- **Key result:** Panel data is **strictly more efficient** than RCS
- **Intuition:** Panel exploits within-unit correlation $\Rightarrow \text{Var}(\Delta Y_i|G_i)$ can be much smaller than $\text{Var}(Y_{i,t=2}|G_i) + \text{Var}(Y_{i,t=1}|G_i)$
- **Unbalanced panels:** Some units observed once, some twice – use panel structure where available, but gains depend on strength of within-unit correlation

Repeated Cross-Sections

- Different units each period
- Must estimate 4 means
- 4 IF components
- Less **efficient**
- Risk: compositional changes

Taking Stock

What We Accomplished Today

Key takeaways from the 2×2 DiD framework:

1. **Identification:** SUTVA + No-Anticipation + Parallel Trends \Rightarrow DiD identifies the ATT using four observable group-time means
2. **Estimation:** DiD-by-hand and TWFE regression are **numerically identical** in the 2×2 case – regression is just a convenient computational device
3. **Inference:** Influence functions provide consistency, asymptotic normality, and variance estimation. **Always cluster** at least at the unit level; ideally at the treatment-assignment level
4. **Weights matter:** The choice of weights (unweighted vs. population-weighted) defines a **different** target parameter

References

Alvarez, Luis, Bruno Ferman, and Kaspar Wüthrich, “Inference with Few Treated Units,” 2025. arXiv:2504.19841.

Baker, Andrew, Brantly Callaway, Scott Cunningham, Andrew Goodman-Bacon, and Pedro H. C. Sant'Anna, “Difference-in-Differences Designs: A Practitioner’s Guide,” *Journal of Economic Literature*, 2025, *Forthcoming*.

Bertrand, Marianne, Esther Duflo, and Sendhil Mullainathan, “How Much Should We Trust Differences-In-Differences Estimates?,” *Quarterly Journal of Economics*, 2004, 119 (1), 249–275.

Conley, Timothy G. and Christopher R. Taber, “Inference with “Difference in Differences” with a Small Number of Policy Changes,” *Review of Economics and Statistics*, 2011, 93 (1), 113–125.

Currie, Janet, Henrik Kleven, and Esmée Zwiers, “Technology and Big Data Are Changing Economics: Mining Text to Track Methods,” *AEA Papers and Proceedings*, 2020, 110, 42–48.

References ii

Donald, Stephen G. and Kevin Lang, "Inference with Difference-in-Differences and Other Panel Data," *Review of Economics and Statistics*, 2007, 89 (2), 221–233.

Ferman, Bruno and Cristine Pinto, "Inference in Differences-in-Differences with Few Treated Groups and Heteroskedasticity," *The Review of Economics and Statistics*, 2019, 101 (3), 452–467.

Ghanem, Dalia, Pedro H. C. Sant'Anna, and Kaspar Wüthrich, "When Should Pre-trends Be Parallel?," *AEA Papers and Proceedings*, 2026, 116, forthcoming.

Goldsmith-Pinkham, Paul, "Tracking the Credibility Revolution across Fields," *arXiv:2405.20604*, 2024.

Malani, Anup and Julian Reif, "Interpreting Pre-Trends as Anticipation: Impact on Estimated Treatment Effects from Tort Reform," *Journal of Public Economics*, 2015, 124, 1–17.

Roth, Jonathan, "Pre-test with Caution: Event-study Estimates After Testing for Parallel Trends," *American Economic Review: Insights*, 2022, 4 (3), 305–322.

Sant'Anna, Pedro H. C. and Qi Xu, "Difference-in-Differences with Compositional Changes," *Working Paper*, 2026.

Appendix

Appendix: Panel Data – Consistency (Detailed)

■ **Setup:** $Z_i = (Y_{i,t=1}, Y_{i,t=2}, G_i)$ iid, $D_i = \mathbf{1}\{G_i = 2\}$, $\Delta Y_i = Y_{i,t=2} - Y_{i,t=1}$

■ Define population quantities:

$$\mu_1 = \mathbb{E}[\Delta Y_i \cdot D_i], \quad p = \mathbb{E}[D_i]$$

$$\mu_0 = \mathbb{E}[\Delta Y_i \cdot (1 - D_i)], \quad 1 - p = \mathbb{E}[1 - D_i]$$

■ The DiD estimand: $\theta^{DiD} = \frac{\mu_1}{p} - \frac{\mu_0}{1-p}$

■ **Sample analogs:**

$$\hat{\theta}^{DiD} = \frac{\mathbb{E}_n[\Delta Y_i \cdot D_i]}{\mathbb{E}_n[D_i]} - \frac{\mathbb{E}_n[\Delta Y_i \cdot (1 - D_i)]}{\mathbb{E}_n[1 - D_i]}$$

■ By **LLN**: $\mathbb{E}_n[\Delta Y_i \cdot D_i] \xrightarrow{p} \mu_1$, etc.

■ By **CMT** (continuous mapping theorem): $\hat{\theta}^{DiD} \xrightarrow{p} \theta^{DiD}$ \square

Appendix: Panel Data – Asymptotic Linearity (1/3)

■ **Goal:** Show $\sqrt{n}(\hat{\theta}^{DiD} - \theta^{DiD}) = \frac{1}{\sqrt{n}} \sum_{i=1}^n \psi_i^p + o_p(1)$

■ **Step 1:** Write the estimator as a function of sample means.

Let $\hat{\mu}_1 = \mathbb{E}_n[\Delta Y_i D_i]$, $\hat{p} = \mathbb{E}_n[D_i]$, $\hat{\mu}_0 = \mathbb{E}_n[\Delta Y_i (1 - D_i)]$, $\hat{q} = \mathbb{E}_n[1 - D_i]$

$$\hat{\theta}^{DiD} = \frac{\hat{\mu}_1}{\hat{p}} - \frac{\hat{\mu}_0}{\hat{q}}$$

■ **Step 2:** Linearize each ratio. For the first term:

$$\begin{aligned} \frac{\hat{\mu}_1}{\hat{p}} - \frac{\mu_1}{p} &= \frac{\hat{\mu}_1 p - \mu_1 \hat{p}}{\hat{p} \cdot p} \\ &= \frac{(\hat{\mu}_1 - \mu_1)p - \mu_1(\hat{p} - p)}{\hat{p} \cdot p} \\ &= \frac{1}{p}(\hat{\mu}_1 - \mu_1) - \frac{\mu_1}{p^2}(\hat{p} - p) + o_p(n^{-1/2}) \end{aligned}$$

where the last step uses $\hat{p} \xrightarrow{p} p > 0$.

Appendix: Panel Data – Asymptotic Linearity (2/3)

- **Step 3:** Similarly for the second ratio:

$$\frac{\hat{\mu}_0}{\hat{q}} - \frac{\mu_0}{1-p} = \frac{1}{1-p}(\hat{\mu}_0 - \mu_0) + \frac{\mu_0}{(1-p)^2}(\hat{p} - p) + o_p(n^{-1/2})$$

- **Step 4:** Combine:

$$\begin{aligned}\hat{\theta}^{DiD} - \theta^{DiD} &= \frac{1}{p}(\hat{\mu}_1 - \mu_1) - \frac{\mu_{\Delta,2}}{p}(\hat{p} - p) \\ &\quad - \frac{1}{1-p}(\hat{\mu}_0 - \mu_0) - \frac{\mu_{\Delta,\infty}}{1-p}(\hat{p} - p) + o_p(n^{-1/2})\end{aligned}$$

where $\mu_{\Delta,2} = \mu_1/p = \mathbb{E}[\Delta Y_i | G_i = 2]$ and $\mu_{\Delta,\infty} = \mu_0/(1-p) = \mathbb{E}[\Delta Y_i | G_i = \infty]$.

- Note: $\hat{p} - p = \mathbb{E}_n[D_i] - p$ and $\hat{\mu}_1 - \mu_1 = \mathbb{E}_n[\Delta Y_i D_i] - \mu_1$

Appendix: Panel Data – Asymptotic Linearity (3/3)

- **Step 5:** Express as average of iid terms. Each sample mean is an average:

$$\begin{aligned}\widehat{\theta}^{DiD} - \theta^{DiD} &= \frac{1}{n} \sum_{i=1}^n \left[\frac{D_i \Delta Y_i - \mu_1}{p} - \frac{\mu_{\Delta,2}(D_i - p)}{p} \right. \\ &\quad \left. - \frac{(1 - D_i) \Delta Y_i - \mu_0}{1 - p} - \frac{\mu_{\Delta,\infty}(D_i - p)}{1 - p} \right] + o_p(n^{-1/2})\end{aligned}$$

- **Step 6:** Simplify the treated group term:

$$\frac{D_i \Delta Y_i - \mu_1}{p} - \frac{\mu_{\Delta,2}(D_i - p)}{p} = \frac{D_i(\Delta Y_i - \mu_{\Delta,2})}{p}$$

- Similarly for the comparison term. Thus:

$$\widehat{\theta}^{DiD} - \theta^{DiD} = \frac{1}{n} \sum_{i=1}^n \underbrace{\left[\frac{D_i}{p}(\Delta Y_i - \mu_{\Delta,2}) - \frac{1 - D_i}{1 - p}(\Delta Y_i - \mu_{\Delta,\infty}) \right]}_{\psi_i^p} + o_p(n^{-1/2})$$

Appendix: Panel Data – Asymptotic Variance

■ From the IF representation: $\sqrt{n}(\widehat{\theta}^{\text{DiD}} - \theta^{\text{DiD}}) = \frac{1}{\sqrt{n}} \sum_{i=1}^n \psi_i^p + o_p(1)$

■ By CLT: $\frac{1}{\sqrt{n}} \sum_{i=1}^n \psi_i^p \xrightarrow{d} N(0, \text{Var}(\psi_i^p))$

■ Computing $\text{Var}(\psi_i^p)$:

$$\begin{aligned} V_p &= \text{Var} \left(\frac{D_i}{p} (\Delta Y_i - \mu_{\Delta,2}) - \frac{1-D_i}{1-p} (\Delta Y_i - \mu_{\Delta,\infty}) \right) \\ &= \frac{1}{p^2} \text{Var}(D_i(\Delta Y_i - \mu_{\Delta,2})) + \frac{1}{(1-p)^2} \text{Var}((1-D_i)(\Delta Y_i - \mu_{\Delta,\infty})) \end{aligned}$$

(cross-term is zero since $D_i(1-D_i) = 0$)

■ Simplifying: $\text{Var}(D_i(\Delta Y_i - \mu_{\Delta,2})) = p \cdot \sigma_{\Delta,2}^2$ where $\sigma_{\Delta,2}^2 = \text{Var}(\Delta Y_i | G_i = 2)$

$$V_p = \frac{\sigma_{\Delta,2}^2}{p} + \frac{\sigma_{\Delta,\infty}^2}{1-p}$$

Appendix: Variance Estimation

- **Plug-in estimator:** Replace population quantities with sample analogs

$$\hat{\psi}_i^p = \frac{D_i}{\hat{p}}(\Delta Y_i - \bar{\Delta Y}_2) - \frac{1 - D_i}{1 - \hat{p}}(\Delta Y_i - \bar{\Delta Y}_\infty)$$

- **Variance estimate:**

$$\hat{V}_p = \frac{1}{n} \sum_{i=1}^n (\hat{\psi}_i^p)^2$$

- By LLN: $\hat{V}_p \xrightarrow{p} V_p$
- **Standard error:** $\widehat{SE}(\hat{\theta}^{DiD}) = \sqrt{\hat{V}_p/n}$
- **Alternative:** Direct plug-in

$$\hat{V}_p^{alt} = \frac{\hat{\sigma}_{\Delta,2}^2}{\hat{p}} + \frac{\hat{\sigma}_{\Delta,\infty}^2}{1 - \hat{p}}$$

where $\hat{\sigma}_{\Delta,g}^2 = \frac{1}{n_g} \sum_{i: G_i=g} (\Delta Y_i - \bar{\Delta Y}_g)^2$

Appendix: RCS – Influence Function Derivation (1/2)

- **RCS data:** $Z_i = (Y_i, G_i, T_i)$, $D_i = \mathbf{1}\{G_i = 2\}$, $T_i = \mathbf{1}\{\text{sampled at } t = 2\}$ (distinct from T_t in regression)
- Cannot first-difference. The DiD estimand uses four conditional means:

$$\theta^{\text{DiD}} = (\mu_{2,2} - \mu_{2,1}) - (\mu_{\infty,2} - \mu_{\infty,1})$$

- where $\mu_{g,t} = \mathbb{E}[Y_i | G_i = g, T_i = t]$
- Under **stationarity**: $\Pr(G_i = 2 | T_i = t)$ is constant across t
- **Linearization:** Apply the delta method to each of the four ratios
- The IF takes the form:

$$\begin{aligned}\psi_i^{rc} = & \frac{D_i T_i}{p \cdot \lambda} (Y_i - \mu_{2,2}) - \frac{D_i (1 - T_i)}{p \cdot (1 - \lambda)} (Y_i - \mu_{2,1}) \\ & - \frac{(1 - D_i) T_i}{(1 - p) \cdot \lambda} (Y_i - \mu_{\infty,2}) + \frac{(1 - D_i)(1 - T_i)}{(1 - p)(1 - \lambda)} (Y_i - \mu_{\infty,1})\end{aligned}$$

where $\lambda = \Pr(T_i = 1)$ and $\mu_{g,t} = \mathbb{E}[Y_i | G_i = g, T_i = t]$

Appendix: RCS – Influence Function Derivation (2/2)

- **Asymptotic variance:** $V_{rc} = \text{Var}(\psi_i^{rc})$
- Since $(D_i, T_i) \in \{0, 1\}^2$ creates four disjoint groups, cross-products vanish:

$$V_{rc} = \frac{\sigma_{2,2}^2}{p \cdot \lambda} + \frac{\sigma_{2,1}^2}{p \cdot (1 - \lambda)} + \frac{\sigma_{\infty,2}^2}{(1 - p) \cdot \lambda} + \frac{\sigma_{\infty,1}^2}{(1 - p)(1 - \lambda)}$$

where $\sigma_{g,t}^2 = \text{Var}(Y_i | G_i = g, T_i = t)$

- **Comparison with panel:**

$$V_p = \frac{\sigma_{\Delta,2}^2}{p} + \frac{\sigma_{\Delta,\infty}^2}{1 - p} < V_{rc}$$

Two sources of RCS inefficiency:

- (i) Cannot exploit within-unit correlation: $\sigma_{\Delta,g}^2 = \sigma_{g,2}^2 + \sigma_{g,1}^2 - 2\text{Cov}(Y_{i,2}, Y_{i,1} | G_i = g)$
- (ii) Must split sample across periods: each cell has $\leq n$ observations (factors $1/\lambda, 1/(1 - \lambda)$)

- **Conclusion:** Panel data is **strictly more efficient** than RCS for DiD ($V_p < V_{rc}$ always)

Appendix: Optimal Sample Allocation for RCS

- **Question:** Given a total budget of n observations, how should we split between $t = 1$ and $t = 2$ in an RCS?
- Let $\lambda = n_2/(n_1 + n_2)$ be the fraction sampled at $t = 2$
- The asymptotic variance is:

$$V_{rc}(\lambda) = \frac{1}{\lambda} \left(\frac{\sigma_{2,2}^2}{p} + \frac{\sigma_{\infty,2}^2}{1-p} \right) + \frac{1}{1-\lambda} \left(\frac{\sigma_{2,1}^2}{p} + \frac{\sigma_{\infty,1}^2}{1-p} \right)$$

- **Optimal allocation:**

$$\lambda^* = \frac{\sqrt{A_2}}{\sqrt{A_1} + \sqrt{A_2}}$$

where $A_t = \frac{\sigma_{2,t}^2}{p} + \frac{\sigma_{\infty,t}^2}{1-p}$

- **Practical implication:** If the outcome is more variable in the post-period (e.g., due to treatment effect heterogeneity), sample more observations in the post-period