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From Experiments to Observational Studies



Roadmap

Lectures 3-4: Causal inference with randomized panel experiments

Design-based identification; Horvitz-Thompson estimation
Known treatment assignment mechanism = clear identification

Today: What if treatment is not randomized?

Our approach:

The canonical 2 x 2 difference-in-differences (DiD) setup
Two groups (treated vs. untreated), two periods (pre vs. post)
Replace randomization with parallel trends assumption

The full journey today:

Setup — Ildentification — Estimation — Inference — Application
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The Challenge: Selection into Treatment

In observational studies, units select into treatment
States choose to expand Medicaid; firms decide to adopt new technology

Simple pre-post or treated-vs.-untreated comparisons are biased

Treated units may differ from comparison units even without treatment

Difference-in-Differences (DiD): Exploit the time dimension

Use pre-treatment periods to account for selection concerns, as long as additional assumptions (Parallel
Trends, No-Anticipation) are met

The most widely used identification strategy in applied microeconomics
See Lecture 1; Currie, Kleven and Zwiers (2020); Goldsmith-Pinkham (2024)
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The 2x2 DiD Setup



Running Example: Medicaid Expansion and Mortality

Baker, Callaway, Cunningham, Goodman-Bacon and Sant’Anna (2025): A Practitioner’s Guide to
Difference-in-Differences

Policy: Affordable Care Act (ACA) Medicaid expansion
2014: Some states expand eligibility — more residents gain health insurance
Other states never expand (through 2019)

Outcome: County-level mortality rate (ages 20-64), deaths per 100,000
Question: Did Medicaid expansion reduce mortality?

2x2 Setup:
Two periods: 2013 (pre) and 2014 (post)
Two groups: States expanding in 2014 vs. never-expanding states
Unit of observation: Counties within states
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Data Structure: Two Groups, Two Periods

Time periods: t € {1,2}

Treatment group indicator: G; € {2, 0}

G; = 2: unit i is first treated at period 2
G; = oo: unit i is never treated

Treatment indicator: D;; = 1{G; < t}
Di1 = 0 for all units
D,'72 = I{G,' = 2}

Key features:

Treatment is binary and absorbing (once treated, stay treated)
No one is treated in the first period
This is the simplest DiD setup — building block for everything else
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Potential Outcomes in the 2x2 Setup

Recall from Lecture 2: potential outcomes indexed by treatment sequence

Specialize to 2x2: Only two possible treatment paths
Y; ¢(oc0): outcome if unit i is never treated
Yi:(2): outcome if unitiis first treated at t = 2

SUTVA (Stable Unit Treatment Value Assumption):
No interference: unit i's outcome depends only on i's own treatment path
No hidden versions of treatment

Observed outcome:
Yi,t = I{Gi = 2} . Yi,t(2> + I{G,' = OO} . Y,‘J(OO)

This is the same potential outcomes framework from Lectures 2-4, just specialized to two
groups and two periods
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Target Parameter: The Average Treatment Effect on the Treated

Parameter of interest: The ATT at period 2
ATT = E[Y;;—2(2) — Yit=2(c0) | G; = 2]

Interpretation:
Average causal effect of treatment for those who are actually treated
Not the ATE — we condition on G; = 2

In the Medicaid example:
Average effect of Medicaid expansion on mortality in counties that expanded
Not: what would happen if all counties expanded

The fundamental problem: We observe Y; ;_,(2) for the treated group, but we never observe
Yit—2(c0) for the treated group

How do we impute the missing counterfactual?
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The DiD Estimand: A Preview

The DiD estimand takes the form:

4P — (E[Yi,tzzyci = 2] — E[V;1|Gi = 2]) - (E[v,,t:g\ci = 00] — E[Yi1_1|G; = oo])

Four observable group-period means; treated group’s change minus comparison group’s change

Two fundamental questions for the rest of this lecture:
1. How do we arrive at this estimand? Why this particular form?

2. Under what assumptions does PP = ATT? Why?
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Selection Bias and the Missing Data Problem



The Missing Data Problem: Under SUTVA

SUTVA = each unit reveals outcomes from its own treatment path only

What do we observe vs. what is missing?

Period 1 (t = 1) Period 2 (t = 2)
Yit=1(00) Vit=1(2) VYit=a(o0) VYit=2(2)
G; = 2 (Treated) ? v ? v
G; = oo (Comparison) v ? v ?

Treated units reveal Y;+(2); comparison units reveal Y; (c0)
Problem: The ATT requires E[Y ;—2(00)|G; = 2] — a missing cell!
Can we learn more using No-Anticipation?
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Filling In: Adding No-Anticipation

No-Anticipation = Y;—1(2) = Yjt=1(oc0) forall i

So for treated units at t = 1: Yj -1 = Y =1(2) = Yj=1(c0) — both potential outcomes observed!

Period 1 (t = 1) Period 2 (t = 2)

Yit=1(00) Vit=1(2) VYit=a(o0) VYit=2(2)
G; = 2 (Treated) V& v ? v
G; = oo (Comparison) v — v -

*Same as Y; ;—; (2) under No-Anticipation

The one remaining missing cell: E[Y; (—(c0)|G; = 2] — the counterfactual for the treated group
att =2

9/56



Selection Bias in the Post-Treatment Comparison

Naive approach: Compare treated and comparison att = 2
E[Yi =2|Gi = 2] — E[Y] t=2|Gj = ]
= E[Yi+=2(2)|G; = 2] — E[Yj t=2(00)|G; = o0}

= E[Y,t 2( ) — Y,‘7t:2(OC)|G,‘ = 2} +E[Y,"t:2(00)|G,' = 2] — E[Y,"tZQ(OO”G,' = OC}

ATT Selection Bias

The selection bias reflects differences in untreated potential outcomes between groups att = 2
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Worked Example: Job Training Program

Setting: Job training for disadvantaged workers — workers with lower baseline wages select into
the program

Period 1 (Pre) Period 2 (Post)
Unit Yit=1(c0) Wage Yii—a(c0) Yii=2(2)
A (Trained) 20 20 22 27
B (Trained) 18 18 20 24
C (Not trained) 30 30 32 —
D (Not trained) 28 28 30 —
True ATT = GT=2211(4220) _ 5
Naive: 2724 — 32430 — 955 — 31 = —55 Selection bias = —10
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Selection bias contaminates naive comparisons.

What assumptions let us recover the ATT?



Assumptions: No-Anticipation and Parallel Trends




Assumption: No Anticipation

Our first assumption ensures that future treatment does not contaminate pre-treatment outcomes:

No-Anticipation

For all units i: Y;—1(2) = Yjt=1(c0). Treatmentatt = 2 has no effect on outcomes att = 1.

Interpretation: Agents do not change behavior before treatment begins
When it holds: Unexpected policy changes; units unaware of future treatment

When it fails: Pre-announced policies — behavioral adjustments before implementation (Malani
and Reif, 2015)

Notational simplification: Under No-Anticipation, Y;;—; = Y; -1 (c0) for all units
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Assumption: Parallel Trends

Parallel Trends (PT)

E[YiatZQ(oo) - Yi,f:l(oo) | G = 2] = E[Yi,t:Z(OO) - Yi,t:1(00) ‘ G = OO]

What PT says:
In the absence of treatment, both groups would have followed the same trend
Allows for permanent level differences between groups

What PT does NOT require:

Same levels of outcomes: E[Y; ¢(c0)|Gi = 2] # E[Y](00)|G; = 0] is fine!

Random treatment assignment or no selection into treatment
What PT rules out: Differential time-varying selection — trends in untreated outcomes differ by
group
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Parallel Trends: Graphical Intuition (1/4)

E[Y]

A

G = 2 (Treated)

Treated group has higher levels and rises more fromt =1tot =2

But how much of the rise is due to treatment?
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Parallel Trends: Graphical Intuition (2/4)

E[Y]

A

Naive £ ATT

The naive comparison at t = 2 includes the level difference that existed before treatment
This is selection bias + treatment effect, mixed together
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Parallel Trends: Graphical Intuition (3/4)

__-0O Counterfactual

ILevel diff

t=1 t=2

Under PT: the treated group’s counterfactual trajectory is parallel to the comparison group
The hollow circle is the missing counterfactual E[Y; ;—(c0)|G; = 2]
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Parallel Trends: Graphical Intuition (4/4)

ATT = (Treated group’s change) — (Comparison group’s change) = Difference-in-Differences
Think: What would this diagram look like if Parallel Trends fails?
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When Is Parallel Trends Plausible?

PT is fundamentally untestable — it concerns counterfactual trends, not observed trends

Suggestive evidence: Pre-treatment trends can provide support

If expansion and non-expansion states had similar mortality trends before 2014, PT is more credible
But parallel pre-trends +# parallel trends (Roth, 2022; Ghanem, Sant’Anna and Wiithrich, 2026)

Potential violations in the Medicaid example:
Opioid crisis differentially affected states — could confound mortality trends

Expansion states may have had different health infrastructure investments

Best practice: Argue for PT using institutional knowledge, not just pre-trend tests. We will
revisit this in future lectures
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Identification of the ATT




Constructive Imputation: Step by Step

Goal: Show that 6PP = ATT under SUTVA + No-Anticipation + PT.
Start from the ATT:

ATT = E[Y;1—2(2)|G; = 2] — E[Yj1—2(c0)|G; = 2]

observable counterfactual

Use PT to impute the counterfactual:
E[Yjt=2(00)|Gi = 2] = E[Yi =1(00)|Gj = 2] + E[Yj t=2(00)|Gj = 00| — E[Yj ¢=1(c0)|Gj = o]
Under No-Anticipation + SUTVA, all terms are observable:
E[Y t=2(00)|G; = 2] = E[Y] t=1|G; = 2] + E[Y] t=2|G; = 00| — E[Y} 1=1|G; = ]

v~ No-Anticipation v~ all observable
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The DiD ldentification Result

Theorem (DiD Identification). Under SUTVA, No-Anticipation, and Parallel Trends:

ATT = gPP — (E[Y,»,tﬁ\ci = 2] — E[Y;;1|Gi = 2}) - (E[Yi,t=2|ci = 00] — E[Yi_1|G; = oo])

Three assumptions = observable formula with four population means

Note: This is an identification result, not an estimation result

The formula involves population expectations, not sample averages
Estimation comes next
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Weighted Expectations: Who Defines the Parameter?

Baker et al. (2025) emphasize: the weights define the ATT

Unweighted DiD: Population-weighted DiD:
ATT = E[Y[,tZQ(Z) — Y,'_tZQ(OO)‘G,' = 2] ATTw = ]Ew [Yi,t:2(2) - Yi7t:2(OC)IGi = 2]
Each unit gets equal weight Weight by population w;
“Average effect per county” “Average effect per person”

Key message: Both are valid ATTs, but they answer different questions
The choice of weights is a substantive decision, not a statistical one

The choice of weights also impacts the PT assumption!
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We know what to estimate.

Now: how to estimate and do inference.



Estimation



The Analogy Principle

Identification: ATT = f(population means)
Estimation: Replace population means with sample analogs

Notation:
n: total sample size; ns: treated units; n..: comparison units
Yer=213". G—g Yit: sample mean for group g € {2, oo} at time t

ng

The DiD estimator (“DiD-by-hand”):

é\DiD = (?3:2.1:2 - Vg:Q,t:I) - (Vg:oo,tZQ - Vg:oo,tzl)

Simply the difference of two within-group time changes
With panel data, this simplifies further...
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Panel Data Simplification: First-Differencing

With panel data (same units in both periods), define AY; =Y ;—o — Yj -

The DiD estimator as a two-sample difference in means:

gPP AY—AYOOf ZAY—— > Ay
i: GG=2 i: Gi=00
Two steps: Requires panel data:
1. First-difference = removes time-invariant unit Same units observed in both periods
effects With repeated cross-sections, use the
2. Compare treated vs. comparison changes four-means formula
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Notation: Treatment Indicator for Regressions

We use G; notation consistently for conditioning and parameters:
ATT = E[Y,'_’tzg(z) — Yi_,t:Q(OO) | G,’ = 2]

For regression and influence function formulas, define a binary shorthand:

1 if unitiis in the treated group
D,‘ = I{G,' = 2} =

0 if unitiisin the comparison group
Why this convention?

G-notation generalizes naturally to staggered adoption
D; is convenient in regression equations where we need 0/1 arithmetic

Rule: All conditioning, parameters, and potential outcomes use G;; D; appears only in regression
specifications and influence function formulas
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TWEFE Regression

A common way to estimate DiD: Two-Way Fixed Effects (TWFE) regression
Pooled OLS form: Unit & time FE form:

TWEE Yie = i+ M + BVFED ¢ + &
Yit = ap+7Di+ X oTe+ 8" (D x Ty) +-€it

where Dy = 1{G; < t}
where Ty = 1{t = 2}, D; = 1{G; = 2}

Both are equivalent in the 2 x 2 case with balanced panel data — same 3™FE

Key question: Does 3™WFE — gDiD?

Answer: Yes! In the 2x2 case, they are numerically identical
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TWEFE = DiD-by-Hand: The Equivalence

Claim: ATWFE — §PID (exact numerical equality)

Proof sketch: OLS solves four moment conditions:

Enleit] =0 = G0 = Yg=oo,t=1
En[Dj-€it] =0 = 40 = Ygot=1 — Yg—oot=1
En[Tt-€if] =0 = Ao = Ygmoot=2 — Ygmoot=1
Eq[(Di-Tt) -€it] =0 = BTWFE _ gDID

The four moment conditions uniquely pin down the four group-time means

Bottom line: In the 2x2 case, TWFE regression is just a convenient way to compute the DiD
estimator. Nothing more, nothing less.

Every student in this class should be able to derive these equivalence results!
Think: Will this equivalence survive when we move to staggered adoption? Why or why not?
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Three Equivalent Specifications

Baker et al. (2025): Three OLS specifications, same 3

Spec Regression Data Used

(1) Pooled OLS Yit=a+Di + ATt + 8(D; - T¢) + i+ Panel (2n obs)

(2) First-diff AY; =6 + BD; + u; Panel, FD (n obs)

(3) Unit & time FE  Yjt = o + At + BDit + &y Panel (2n obs)

All three yield identical point estimates for 3 in the 2x2 case with balanced panel

BUT: Standard errors differ unless you cluster appropriately!
Spec (1) and (3) have 2n observations; Spec (2) has n observations
Clustering at the unit level in Specs (1) and (3) reconciles the SEs
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OLS: Regression as a Means to an End

Important conceptual point: The regression is a computational device

In the 2x 2 case, OLS does not add any statistical content
Same estimate as computing four means and subtracting
The interpretation comes from the DiD identification argument, not from the regression

Why use regression then?
Convenience: standard software handles SEs and clustering
Reporting: tables with coefficients and SEs are standard in economics

Warning for later: In more complex settings (staggered adoption, heterogeneous effects), TWFE
# “the” DiD estimator
The 2x 2 equivalence is special and does not generalize
Recall Lecture 3: FE can be biased under carryover effects. Here, with no carryover in the 2x2 case,
TWEFE is well-behaved
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Empirical Application: Medicaid Expansion




Application: The ACA and County Mortality

Data: County-level mortality rates (ages 20-64), deaths per 100,000
Source: Baker et al. (2025), replication data from pedrohcgs/JEL-DiD

Treatment: State-level Medicaid expansion under the ACA

24 states + DC expanded in January 2014
19 states never expanded (through 2019)
Drop DC and pre-2014 adopters (DE, MA, NY, VT) for clean 2x2

2x 2 Setup:
Pre: 2013, Post: 2014
Treated: Counties in states expanding in 2014
Comparison: Counties in never-expanding states

Sample: ~2,300 counties, roughly 900 treated and 1,400 comparison
Key feature: Counties vary enormously in population size — weighting matters!
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Simple 2x 2 Results: Unweighted vs. Weighted

Baker et al. (2025), Table 2: Simple means and DiD

Unweighted Pop-Weighted

Pre (2013) Post(2014) Pre(2013) Post(2014)

Treated (G = 2) 419.2 428.5 322.7 326.5
Comparison (G = c0) 474.0 483.1 376.4 382.7
A Treated +9.3 +3.7
A Comparison +9.1 +6.3
DiD +0.1 —2.6

Unweighted: DiD ~ +0.1 (SE = 3.7)
Population-weighted: DiD ~ —2.6 (SE = 1.5)

Why the difference? Different parameters! “Per county” vs. “per person” ATT
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Regression Equivalence: Three Specifications

All three specifications yield the same point estimate (county-clustered SEs)

(1) Pooled OLS (2) First-diff (3) Unit & time FE

3 (unweighted) 0.1 0.1 0.1
SE (county-clustered) (3.7) (3.7) (3.7)
3 (pop-weighted) —-2.6 —2.6 —-2.6
SE (county-clustered) (1.5) (1.5) (1.5)
Observations 2n n 2n

Point estimates are identical across all three specifications
County-clustered SEs are also identical (as expected from theory)
Neither result is statistically significant at conventional levels
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R Code: DiD by Hand vs. Regression

DiD by hand:

# Four group—time means
means <- short_data %>%
group_by(Treat, Post) %>%
summarise (
m = mean(crude_rate_20_64))

# DiD estimate
did_hat <- (means$m[4] - means$m[3]) -
(means$m[2] - means$m[1])

Both approaches give identical estimates

TWEFE regression:

library(fixest)

# TWFE with county + year FE
reg <- feols(
crude_rate_20_64 ~ Treat:Post
| county_code + year,
data = short_data,
cluster = ~statelD)

coef(reg) # Same as did_hat!

short_data: balanced panel with 2013-2014 only (the 2x 2 subset)

Full replication code: github.com/pedrohcgs/JEL-DiD
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Key Takeaway: Weights Matter

Lesson from the Medicaid application:

The choice of weights (unweighted vs. population-weighted) changes the target parameter
Unweighted DiD: § = (“per county” ATT)
Weighted DiD: § = —2.6 (“per person” ATT)

Both are valid, but they answer different questions

Why this matters going forward:
When we add covariates, conditioning variables implicitly change weights

Different estimators (regression adjustment, IPW, doubly robust) target the same parameter but may use
different implicit weights

Researcher’s responsibility: Be explicit about what parameter you are estimating
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We have seen DiD work in practice.

Now: what are its statistical properties?



Influence Functions and Asymptotic Theory




Why Influence Functions?

We have an estimator #PP. What are its large-sample properties?

Goals: Consistency, asymptotic normality, variance estimation, and valid bootstrap inference

Influence functions provide a unified approach:

Decompose the estimator as a sum of iid terms (+ remainder)
The influence function 1); captures unit i's contribution to the estimator
Variance of the IF = asymptotic variance of §°°

This framework generalizes naturally to more complex estimators (covariates, staggered designs)
in later lectures
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Panel Data Sampling Scheme

Panel Data Sampling

We observe an iid random sample {Z;}"_, where Z; = (Y;;_1, Y2, G;) is drawn from the joint
distribution of (Y;;_1, Yi =2, Gi).

The same n units are observed in both periods (t = 1 and t = 2)

Key: Units are iid across i, but Y;;—; and Y; ;—, are not independent within unit
This allows us to compute AY; =Y —, — Y;;—; for each unit

Let D; = 1{G; =2} and p = Pr(G; = 2) € (0,1)

Notation: E,[f(Z;)] = + >, f(Z;) denotes the sample average
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The DiD Estimator as a Function of Means

Write the DiD estimator using empirical expectations:

GiD _ En[AY;-D;]  EnAY;- (1 —D))]
" EJD]  E.[l-Dj

This is a smooth function of sample means: 6P = g(E,[m(Z;)])

where m(Z;) = (AY; - D;, D;, AY;-(1—-D;), 1 —D;)

By the Law of Large Numbers: E,[m(Z)] > E[m(Z)]

By the Continuous Mapping Theorem: 6°° = g(E,[m(Z)]) 2 g(E[m(Z)]) = 6°P

= Consistency follows from LLN + CMT
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Asymptotic Normality: Setup

Apply the delta method to g(E,[m(Z;)]):
Vn(OPP — 6°P) = /n - Vg(p) (En[m(Z)] — ) + 0p(1)
where p = E[m(Z;)]

By the CLT:
VN (Enm(Z;)] — p) % N(o, Var(m(Z;)))

Combining (Slutsky):
Vn(PP — gPP) & N(0, Vg(p)'Var(m(Z;))V3(s))
This can be written more compactly using the influence function...
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The Influence Function: Panel Data Case

Panel data IF. Under the panel data sampling scheme:

D; 1 —-D;

YP = ) (AYi — pa2) — = (AY; — pa,00)
~— ——
Wl(D,'> Wo(D,’)

where p = Pr(G; = 2), ua g = E[AYj|G; = g] for g € {2, 00}

Key property: /n(6PP — 9PiD) = ﬁ S U +0,(1)

Asymptotic variance: V, = Var(¢?)
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Computing the IF: Medicaid Example

Suppose: p = 0.4, pa 2 = —4.0, ia, 00 = —1.4

Expansion county with AY; = —6.5:

Takeaway: The IF assigns each unit a signed “credit” for the overall estimate
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Understanding the Influence Function

Two terms: treated group’s contribution and comparison group’s contribution
Each term is a demeaned quantity, weighted by group proportion
E[?] = 0 by construction — the IF is centered

Intuition for the weights:

Di/p: up-weights treated units (rarer group gets more weight)
(1 —D;)/(1 — p): up-weights comparison units

Why this matters: The IF gives us everything for inference — consistency, asymptotic normality,
variance estimation, and bootstrap validity all follow from this representation
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Asymptotic Normality Result

Theorem. Under the panel data sampling scheme, SUTVA, No-Anticipation, and Var(AY;|G; =
g) < oo

V(8PP — PP % N(0, V)

2
where V,, = Var(yF) = % + Lf_’:

ai,g = Var(AY;|G; = g): within-group variance of the first-differenced outcome

Intuition: Two components — treated group uncertainty (Ui,z/P) and comparison group
uncertainty (03 /(1 - p))

Design matters: p small = first term dominates = large variance. Minimized at p ~ 0.5 (balanced
design)

Think: If only 5% of counties expanded, what does this formula say about power?
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Repeated Cross-Sections: Brief Overview

With repeated cross-sections (RCS), different units sampled att =1 and t = 2
Let T; = 1{unitisampled at t = 2}

Cannot first-difference = must estimate four means separately
The IF has four components instead of two:
Ui¢ =wi(Di, Ti) - (Yi — pa,1;) —Wo(Di, Ti) - (Yi — poo,T;)

where each weight depends on both group and period membership
Requires additional assumption: Stationarity of group composition
Pr(G; = 2|T; = 1) = Pr(G; = 2|T; = 2) (no compositional changes)

Panel is strictly more efficient than RCS — panel exploits within-unit correlation
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Inference: Standard Errors and Clustering




How to Conduct Inference

Given: /n(6P° — o) 2 N(0,V,)

Variance estimation (analogy principle):

where 1/7}” replaces population quantities with sample analogs
Standard error: SE = Vp/n

Confidence interval: 9P0 + Zo)o - SE

t-statistic: t = 0P /SE. Reject Hy : 6P = 0 if |t| > Zo /2

But wait: Should we cluster the standard errors?
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Why Cluster Standard Errors?

DiD-by-hand operates on n units (first-differenced panel)

Natural degrees of freedom: n independent observations

TWEFE regression uses 2n observations (n units x 2 periods)

Without clustering: SE formula assumes 2n independent observations
Artificially inflates sample size by a factor of 2!

Clustering at the unit level accounts for within-unit correlation

Two observations from the same unit are not independent
Corrected SE matches the DiD-by-hand SE

Bertrand, Duflo and Mullainathan (2004): Ignoring clustering in DiD leads to massive
over-rejection (up to 40% rejection at 5% nominal level)
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Multiplier Bootstrap Using Influence Functions

Key advantage of IF-based inference: The multiplier bootstrap

Idea: Perturb the IF with random weights instead of resampling data
1~ 0
Z%,b _ 7DD "
60 =07+ =% U o
i=1

where U,.(b) ~ N(0, 1) are iid random weights

No re-estimation needed: Each bootstrap draw is a simple weighted sum
Extremely fast compared to traditional bootstrap (which re-estimates 9 each time)

For cluster-level inference: Draw U§b> at the cluster level
All units in cluster s share the same weight U§b>
This preserves the within-cluster correlation structure
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Bootstrap Algorithm

Multiplier Bootstrap for DiD (Cluster-Robust)
1. Compute §PP and the influence function ¢? for each unit i
2. Forb=1,...,B(e.g., B=999):

2.1 Draw U ~ N(0,1) for each clusters =1,...,S
2.2 Assign U'.(b> = Ui:’,)) for all units i in cluster s

2.3 Compute: T*° = D u® . P
3. Compute bootstrap critical value: ¢, = quantile; _(|T*!|,..., |T*8|)
4. Reject Hy : 6P = 0if [y/n - 8PP > ¢,

Bootstrap Cls can also be constructed from quantiles of 6 = PP + T=b/\/n

Rademacher weights (u§"> € {—1, +1} with equal probability) also valid and sometimes preferred
for few clusters
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The Few-Clusters Problem

Standard cluster-robust inference relies on S — oo (number of clusters)

Problem: In many DiD applications, S is small (e.g., 50 states, 10 provinces)

CLT approximation may be poor with few clusters
Cluster-robust SEs can be severely biased downward

Approaches in the literature:

Donald and Lang (2007): t-distribution with S — 2 degrees of freedom (assumes homoskedasticity)
Conley and Taber (2011): Large untreated group to inform inference (fixed S;, growing Sp)
Ferman and Pinto (2019): Allow for heteroskedasticity across clusters

No silver bullet: Each approach requires additional assumptions; this is an active area of research
(see Alvarez, Ferman and Wuthrich, 2025, for a recent survey)
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Panel Data vs. Repeated Cross-Sections




We have assumed panel data. But what if we do not have
it?

What changes with repeated cross-sections?



Repeated Cross-Section (RCS) Sampling Scheme

Repeated Cross-Section Sampling

Period t data {(Y;¢, Gi)} is an iid sample from Fy g7—. Observations across periods are inde-
pendent.

Different units sampled att =1 andt =2

Requires additional assumption: Stationarity of group composition
Pr(G; = 2|Ti = 1) = Pr(G; = 2|T; = 2)
Violation: compositional changes (Sant’Anna and Xu, 2026)

IF has four components: one per group-period cell

Examples: CPS microdata, Census data, polling data before/after events
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Comparison: Panel vs. Repeated Cross-Sections

Panel Data Repeated Cross-Sections
Same units both periods Different units each period
Can first-difference Must estimate 4 means
2 IF components 4 |IF components
More efficient Less efficient
Risk: attrition, survivorship bias Risk: compositional changes

Key result: Panel data is strictly more efficient than RCS

Intuition: Panel exploits within-unit correlation = Var(AY;|G;) can be much smaller than
Var(Yji—2|G;) + Var(Y;—1|G;)

Unbalanced panels: Some units observed once, some twice — use panel structure where
available, but gains depend on strength of within-unit correlation
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Taking Stock




What We Accomplished Today

Key takeaways from the 2x2 DiD framework:

1. Identification: SUTVA + No-Anticipation + Parallel Trends = DiD identifies the ATT
using four observable group-time means

2. Estimation: DiD-by-hand and TWFE regression are numerically identical in the 2x 2 case
— regression is just a convenient computational device

3. Inference: Influence functions provide consistency, asymptotic normality, and variance
estimation. Always cluster at least at the unit level; ideally at the treatment-assignment
level

4. Weights matter: The choice of weights (unweighted vs. population-weighted) defines a
different target parameter

54/56



References i

References

Alvarez, Luis, Bruno Ferman, and Kaspar Wiithrich, “Inference with Few Treated Units,” 2025.
arXiv:2504.19841.

Baker, Andrew, Brantly Callaway, Scott Cunningham, Andrew Goodman-Bacon, and Pedro H. C. Sant’Anna,
“Difference-in-Differences Designs: A Practitioner’s Guide,” Journal of Economic Literature, 2025, Forthcoming.

Bertrand, Marianne, Esther Duflo, and Sendhil Mullainathan, “How Much Should We Trust
Differences-In-Differences Estimates?,” Quarterly Journal of Economics, 2004, 119 (1), 249-275.

Conley, Timothy G. and Christopher R. Taber, “Inference with “Difference in Differences” with a Small Number
of Policy Changes,” Review of Economics and Statistics, 2011, 93 (1), 113-125.

Currie, Janet, Henrik Kleven, and Esmée Zwiers, “Technology and Big Data Are Changing Economics: Mining
Text to Track Methods,” AEA Papers and Proceedings, 2020, 110, 42-48.

55/56



References i

Donald, Stephen G. and Kevin Lang, “Inference with Difference-in-Differences and Other Panel Data,” Review of
Economics and Statistics, 2007, 89 (2), 221-233.

Ferman, Bruno and Cristine Pinto, “Inference in Differences-in-Differences with Few Treated Groups and
Heteroskedasticity,” The Review of Economics and Statistics, 2019, 101 (3), 452-467.

Ghanem, Dalia, Pedro H. C. Sant’Anna, and Kaspar Wiithrich, “When Should Pre-trends Be Parallel?,” AEA
Papers and Proceedings, 2026, 116, forthcoming.

Goldsmith-Pinkham, Paul, “Tracking the Credibility Revolution across Fields,” arXiv:2405.20604, 2024.

Malani, Anup and Julian Reif, “Interpreting Pre-Trends as Anticipation: Impact on Estimated Treatment Effects
from Tort Reform,” Journal of Public Economics, 2015, 124, 1-17.

Roth, Jonathan, “Pre-test with Caution: Event-study Estimates After Testing for Parallel Trends,” American
Economic Review: Insights, 2022, 4 (3), 305-322.

Sant’Anna, Pedro H. C. and Qi Xu, “Difference-in-Differences with Compositional Changes,” Working Paper,
2026.

56/56



Appendix




Appendix: Panel Data — Consistency (Detailed)

Setup: Z; = (Yii=1, Yit=2,G)) iid, Dj = 1{G; = 2}, AY; = Yj =2 — Vi =1

Define population quantities:
p1 = E[AY;-Dj], p =E[Dj
/L():]E[Ayi-(l—D,')]., 1—p:JE[1—D,-}

The DiD estimand: §7° = &L — o

Sample analogs:

oo EnlAY;-Dj]  Eq[AY;- (1 D))
" EJD]  E.l1-Dj

By LLN: E,[AY; - D] & 11, etc.

By CMT (continuous mapping theorem): 9P 2 9PD



Appendix: Panel Data — Asymptotic Linearity (1/3)

Goal: Show /n(gPP — gPD) — L 51 P+ 0p(1)

n
Step 1: Write the estimator as a function of sample means.
Let i1 = E,[AY;Dj], p = En[Dj], fio = En[AYi(1 — D;)], g = En[1l — Dj]

goo _ F1_ /o

P4
Step 2: Linearize each ratio. For the first term:

i fap — P
p P p-p

_ (f1 — p1)p — p1(p — p)

p-p
1, . . _
= (i =) = 5 (b —p) +0p(n /%)

where the last step uses p 2 p > 0.



Appendix: Panel Data — Asymptotic Linearity (2/3)

Step 3: Similarly for the second ratio:

flo po 1 Ho
q 1-p 1-p

Step 4: Combine:

; . 1, . A2 A
0P 0 = (i = ) = =2 (b~ p)
1 ~ KA 00 /A _1/c
*E(HO*MO)*H(P*P)JF%(” 12

where pia 2 = p1/p = E[AY}|G; = 2] and pa o0 = po/(1 — p) = E[AY|G; = <.

Note: p —p = En[Dj] — p and iy — p1 = En[AY;Dj] — 111



Appendix: Panel Data — Asymptotic Linearity (3/3)

Step 5: Express as average of iid terms. Each sample mean is an average:

oo _ goio _ 1 i |:DiAYi — 1 pa2(Di—p)
n p p
(1 -D)AY;—po  pa,o(Di —p)
l1—p 1—-p

i=1

+0p(”_1/2)

Step 6: Simplify the treated group term:
DiAYi —p1 pap(Di—p)  Di(AYi — pa )

p p p
Similarly for the comparison term. Thus:

n

i o 1 D; 1-D;
gPD _ gPID — - Z {p’(AY; —pag2) — = p, (AY; = p1a.00) | +0,(n71/2)

PP

i=1




Appendix: Panel Data — Asymptotic Variance

From the IF representation: /n(6PP — §PP) = f S vl +o0p(1)

By CLT: 22 3o, wf % N(0, Var(4)))

Computing Var(¢y?):

1 - D;

1-p
1

= EVar(Di(AY; —paz2)) +

D;
Vp = Var (p(AY, — MA’Q) — (AY, - MA,OO))

ﬁVar((l ~ D)(AY; — jia.c))

(cross-term is zero since D;(1 — D;) = 0)

Simplifying: Var(D;(AY; — pa2)) = p - 04 o Where 03 , = Var(AYj|G; = 2)




Appendix: Variance Estimation

Plug-in estimator: Replace population quantities with sample analogs

D _ 1—D; -
w‘p = E’(AY‘ — AYQ) — 1= i)l (AY, — Ayoc)

Variance estimate:
n
1 ~

By LLN: V, & v,
Standard error: SE(9PP) = \/V,/n

Alternative: Direct plug-in
~2 ~2
OA2  OAc0

where 6% o = o Y6 (AYi — AY,)?



Appendix: RCS — Influence Function Derivation (1/2)

RCS data: Z; = (Y;,G;, T;), D; = 1{G; = 2}, T; = 1{sampled at t = 2}
Cannot first-difference. The DiD estimand uses four conditional means
0°P = (12,0 — 12,1) = (Hoo2 = Hoo,1)
where pg+ = E[Yi|G; = g, T; = {]
Under statlonarlty Pr(G; = 2|T; = t) is constant across t

Linearization: Apply the delta method to each of the four ratios

The IF takes the form:

e _ Dili oy, D-T)  _
i p- )\(Y‘ —‘LL272) - p- (1 . )\) (YI ,u2,1)
(1-Dy)T; (1-D)(1—-T)
B m(yi — Hoo,2) + m( i — Hoo,1)

where A = Pr(T; = 1) and pg ¢ = E[Y|G; = 8. T = t]



Appendix: RCS — Influence Function Derivation (2/2)

Asymptotic variance: V. = Var(:{)
Since (D;, T;) € {0, 1}? creates four disjoint groups, cross-products vanish:
o2 o2 a?x - Ugo

Vie = 22 + 21 2 .1

+
p-A p-(1-=X) (1-p-x (1A-p)@a-2n)
where U;,t = Var(Y;|G; =g, Ti=t)

Comparison with panel:
OA2 UQA o)
Vp=—""+4+—— < Vg
p 1-p
Two sources of RCS inefficiency:
(i) Cannot exploit within-unit correlation: o3 ; = 055 + 031 — 2Cov(Yi 2, Yi1|Gi = g)

(i) Must split sample across periods: each cell has < n observations (factors 1/\, 1/(1 — X))

Conclusion: Panel data is strictly more efficient than RCS for DiD (V, < Vi, always)



Appendix: Optimal Sample Allocation for RCS

Question: Given a total budget of n observations, how should we split betweent =1 and t = 2
in an RCS?

Let A = ny/(ny + n2) be the fraction sampled at t = 2

The asymptotic variance is:

1 (03, 025 1 03, 0%
Ve =~ (222 T2 ) 1 (%21 T,
re(A) )\(D Jrl_p Jrl_/\ p +1_p

Optimal allocation:

)\*:L
VAL + VA,

2
T oot

2
o
where A = 24 + 1=

Practical implication: If the outcome is more variable in the post-period (e.g., due to treatment
effect heterogeneity), sample more observations in the post-period
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