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Roadmap

■ Act I: Why Covariates? — Two applications, conditional parallel trends, TWFE fragility

■ Act II: Three Estimation Strategies — Regression adjustment, IPW, doubly robust

■ Act III: The Design Phase & Full Applications — Balance diagnostics, Medicaid, Brazil CAPS

■ Act IV: Repeated Cross‐Sections — Compositional changes & new solutions

■ Act V: Machine Learning & DiD — LASSO, cross‐fitting, causal forests

Building on Lecture 5 (2×2 DiD without covariates)
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Act I: Why Covariates?



Where We Left Off

Lecture 5 established the 2×2 DiD framework:
1. SUTVA + No‐Anticipation + Unconditional Parallel Trends⇒ ATT identified
2. DiD‐by‐hand = TWFE regression (numerically identical in 2×2)
3. Influence functions provide asymptotic theory; always cluster
4. Weights define the target parameter

■ But is unconditional parallel trends realistic?

■ What if treated and comparison units differ systematically in pre‐treatment characteristics?
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Meet the Applications

■ Application 1: ACA Medicaid Expansion (Baker, Callaway, Cunningham, Goodman‐Bacon and
Sant’Anna, 2025)
▶ Effect of Medicaid expansion on county‐level mortality (2×2: 2013–2014)
▶ Expansion states differ from non‐expansion states in demographics, income, poverty

■ Application 2: Brazil Psychiatric Reform (Dias and Fontes, 2024)
▶ Community mental health centers (CAPS) replaced psychiatric hospitals
▶ 5,180 municipalities, staggered rollout 2002–2016
▶ For this lecture: 2×2 — CAPS adopters in 2006 vs. never‐treated, pre/post = 2005/2007
▶ Outcome: assault homicide rate per 10,000 population

■ Both applications: treated and comparison groups differ in pre‐treatment characteristics

■ Question: Can we still use unconditional PT?
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Medicaid: How Different Are the Groups?

■ Treated states (expanded Medicaid in 2014) vs. comparison states (never expanded)

■ Let’s look at pre‐treatment characteristics:
▶ % below poverty line, median household income
▶ % white, % Hispanic, urbanization rate
▶ Pre‐treatment mortality trends

■ Do these groups look comparable?
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Medicaid: Covariate Balance
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Covariate Imbalance: Medicaid Expansion
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Medicaid: Raw Trends
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Raw Mortality Trends: Medicaid Expansion

Pre‐treatment trends look roughly parallel, but given the covariate differences we just saw — is
unconditional PT enough?
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Brazil CAPS: Covariate Imbalance Across Dimensions
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Pre−treatment (2005): CAPS municipalities differ on multiple dimensions

Covariate Distributions by Treatment Group
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Brazil CAPS: Standardized Differences
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Covariate Balance: Brazil CAPS Application
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Brazil CAPS: Raw Trends
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Homicide Rates: CAPS Adopters vs. Never Treated

Again, trends look roughly parallel — but given the covariate imbalance we just saw, is
unconditional PT plausible here?
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The Core Idea: Conditional Parallel Trends

■ Sometimes the unconditional PT assumption is too strong

■ But PT may be plausible within subgroups defined by pre‐treatment characteristics Xi

■ Intuition: “Among counties with similar demographics, treated and comparison counties would
have trended similarly absent treatment”

■ This is the conditional parallel trends assumption

Key insight: Covariates can make the PT assumption more credible, but we need appropriate
estimation methods to exploit them.
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Notation: Review from Lecture 5

■ Two periods: t = 1 (pre‐treatment) and t = 2 (post‐treatment)

■ Two groups: Gi ∈ {2,∞}, with Di = 1{Gi = 2}

■ Potential outcomes: Yi,t(g) for each treatment timing g

■ Target parameter:

ATT = E[Yi,t=2(2)− Yi,t=2(∞) | Gi = 2]
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Notation: New for Covariates

■ Xi: vector of pre‐treatment covariates (observed before treatment)

■ p(Xi) ≡ P(Di = 1 | Xi): generalized propensity score

■ p ≡ P(Di = 1) = E[Di]: unconditional treatment probability

■ Ti ∈ {1, 2}: period indicator for unit i (in panel data, each unit observed in both; in RCS, Ti is the
sampling period)

■ Later we will also define:
▶ md

∆(x) ≡ E[∆Yi | Xi = x,Di = d]: conditional mean outcome change
▶ CATT(x): conditional ATT given Xi = x
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Conditional Parallel Trends Assumption

We formalize the idea that parallel trends may hold only within covariate subgroups:

Assumption (Conditional Parallel Trends)
E [Yi,t=2(∞)− Yi,t=1(∞) | Xi,Di = 1] = E [Yi,t=2(∞)− Yi,t=1(∞) | Xi,Di = 0] a.s.

■ In words: conditional on Xi, the average evolution of Y(∞) is the same for treated and
comparison units

■ Allows for covariate‐specific trends: outcome evolution can depend on Xi

■ Remark: Caetano and Callaway (2024) condition on (Xt∗ ,Xt∗−1, Z), allowing time‐varying
covariates. We restrict to pre‐determined baseline Xi to avoid “bad controls” concerns (Angrist
and Pischke, 2009).
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The Overlap Assumption

For identification, we also need treated units to have comparable controls at every covariate value:

Assumption (Strong Overlap)
For some ϵ > 0,

P(Di = 1 | Xi) < 1− ϵ almost surely.

■ Every treated unit must have comparison units with similar covariate values

■ Without overlap: we cannot learn about the counterfactual for some treated units

■ For identification: can relax to ϵ = 0 (boundary case)

■ For standard inference: need ϵ > 0 to avoid irregularity (Khan and Tamer, 2010)

■ Closely related to overlap conditions in the matching/weighting literature (Crump, Hotz, Imbens
and Mitnik, 2009)

■ Note: for ATT, we only need p(Xi) bounded away from 1, not from 0 — unlike ATE, which
requires both bounds.
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Conditional vs. Unconditional PT: A Visual
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Solid = observed comparison trend. Dashed = PT counterfactual for the treated group. Within
subgroups, these are parallel.
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How Conditional PT Can Break Unconditional PT
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Identification of ATT under Conditional PT

Assumptions: A1. SUTVA A2. No Anticipation: Yi,t=1(2) = Yi,t=1(∞) A3. Conditional PT A4. Overlap

Step 1: Identify the conditional ATT:

CATT(x) = E[∆Yi | Xi = x,Di = 1]− E[∆Yi | Xi = x,Di = 0]

where ∆Yi ≡ Yi,t=2 − Yi,t=1.
Step 2: Integrate over the treated covariate distribution:

ATT = E[CATT(Xi) | Di = 1]

■ We identify a very rich object: the conditional ATT function CATT(x)

■ The unconditional ATT follows by averaging over treated units’ covariates
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The Practitioner’s Instinct: Add X to TWFE

■ The most common approach in applied work: “just add covariates to the regression”

Yi,t = αi + λt + τDit + X′
i,tβ + εi,t

■ Recall from Lecture 5: without covariates, TWFE = DiD‐by‐hand in 2×2

■ Many practitioners expect the same logic extends: “τ̂ should estimate the ATT after controlling
for X”

■ This intuition is wrong.

Adding X to TWFE is not the same as allowing for covariate‐specific trends. The regression
imposes strong — and often hidden — restrictions.
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What Goes Wrong with TWFE + Covariates

■ Consider the TWFE specification with pooled data:

Yi,t = α̃0 + γ̃0Di + λ̃01{Ti=2}+ β̃twfe
0

(
Di · 1{Ti=2}

)
+ X′

i α̃1 + ε̃i,t

■ Write out the implied conditional means:

E[Yi,t | Di = 0, T = 1,Xi] = α̃0 + X′
i α̃1

E[Yi,t | Di = 0, T = 2,Xi] = α̃0 + λ̃0 + X′
i α̃1

E[Yi,t | Di = 1, T = 1,Xi] = α̃0 + γ̃0 + X′
i α̃1

E[Yi,t | Di = 1, T = 2,Xi] = α̃0 + γ̃0 + λ̃0 + β̃twfe
0 + X′

i α̃1
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TWFE Imposes No Covariate‐Specific Trends

■ From the comparison group:

E[Y | D = 0, T = 2,X]− E[Y | D = 0, T = 1,X] = λ̃0

■ The time trend does not depend on X!

■ Similarly for the treated group:

E[Y | D = 1, T = 2,X]− E[Y | D = 1, T = 1,X] = λ̃0 + β̃twfe
0

■ This means:
ATT(X) = β̃twfe

0 for all X

■ Treatment effects are forced to be homogeneous across covariate subgroups!

■ The very reason we introduced covariates — allowing for covariate‐specific trends — is assumed
away by the TWFE specification
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TWFE forces homogeneous trends — but how bad is the
bias in practice?

A controlled simulation where ATT = 0.



TWFE Bias: Monte Carlo Evidence

■ Data generating process from Sant’Anna and Zhao (2020):
▶ Xj ∼ N(0, 1), j = 1, . . . , 4

▶ Propensity score: logistic in fps(X) = 0.75(−X1 + 0.5X2 − 0.25X3 − 0.1X4)

▶ Outcome regression: freg(X) = 210 + 27.4X1 + 13.7(X2 + X3 + X4)

▶ Outcomes: Yi,t(∞) = t · freg(Xi) + vi + εi,t

▶ True ATT(X) = 0 for all X

■ TWFE regression: Yi,t = α+ γDi + λ1{Ti=2}+ τ
(
Di · 1{Ti=2}

)
+ X′

iβ + εi,t

■ Results (n = 1,000, 1,000MC replications):

■ Average τ̂ twfe: −16.36 (true ATT = 0) — severely biased!
■ Coverage of 95% CI: 0% — does not control size!
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TWFE Bias: Density Comparison

0.00

0.05

0.10

0.15

−30 −20 −10 0

TWFE Estimate

D
en

si
ty

DGP: Sant'Anna & Zhao (2020). n = 1,000; 10,000 replications. True ATT = 0.

TWFE with Covariates Is Severely Biased

DGP 1 from Sant’Anna and Zhao (2020): covariates X observed. True ATT = 0, yet TWFE is severely
biased even when all covariates are included in the regression.
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The simulation used time‐invariant Xi in a pooled
regression.

What if covariates vary over time and we use fixed
effects?

Caetano & Callaway (2024): a formal decomposition.



The FE Specification and Its Hidden Transformation

Caetano and Callaway (2024) analyze the standard fixed effects specification:

Yi,t = θt + ηi + αDit + X′
i,tβ + ei,t

■ With two periods, the within/FD transformation eliminates ηi:

∆Yi = αDi +∆X′
iβ +∆ei

■ The transformation also transforms the covariates: only ∆Xi enters, not levels Xi,1

■ Time‐invariant covariates Zi (e.g., race, region) are completely absorbed — cannot control for
them

■ This is the hidden linearity bias: the FE/FD form reveals restrictions that the levels specification
obscures

Compare with the pooled specification on the previous slides, which controls for Xi in levels but
forces homogeneous time trends.

25/130



Three Sources of Bias (Caetano and Callaway, 2024)

When conditional PT holds but TWFE is used with covariates:

β̃twfe
0 = E[w(∆X) · ATT(X) | D = 1]︸ ︷︷ ︸

weighted ATT

+ BIASA︸ ︷︷ ︸
time‐invariant

+ BIASB︸ ︷︷ ︸
levels vs. changes

+ BIASC︸ ︷︷ ︸
nonlinearity

■ BIASA: Time‐invariant covariates Zi absorbed by first‐differencing — cannot control for them

■ BIASB: TWFE only controls for changes ∆X, not levels Xt−1

■ BIASC: Linear projection ̸= conditional expectation when the relationship is nonlinear

■ Even the “weighted ATT” uses non‐transparent weights w(∆X) that can be negative

In Act II, we introduce three estimation strategies (RA, IPW, DR) that avoid all three biases by
separating identification from estimation.
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C&C showed TWFE with covariates introduces three
sources of bias.

How do these biases play out in real data?

Back to the Brazil application.



Back to Brazil: All Estimators Compared

Doubly Robust

IPW (Hajek)

Regression Adj.

TWFE + X

Unconditional DiD

−0.2 0.0 0.2 0.4 0.6

ATT (homicides per 10,000)

Callaway & Sant'Anna (2021), 30 covariates + state FE

ATT Estimates: CAPS and Homicide Rates

■ 30 baseline covariates + state FE from Dias and Fontes (2024); RA, IPW, DR use levels, TWFE
uses time‐varying form (These three strategies are the subject of Act II.)

■ Overlap warning: only 216 treated municipalities with 30 covariates + state FE
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TWFE with covariates is fragile.

We need better tools: separate identification from
estimation.



Act II: Three Estimation Strategies



Three Faces of DiD with Covariates

Regression
Adjustment (RA)

Model comparison group’s
outcome evolution md=0

∆ (X)

✓ outcome correct⇒ consistent

× outcome wrong⇒ biased

Inverse Probability
Weighting (IPW)

Reweight comparison group
to match treated via p(X)

✓ PS correct⇒ consistent

× PS wrong⇒ biased

Doubly Robust
(DR)

Consistent if either model is correct

Two chances to get it right
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Act II: Three Estimation Strategies
Regression Adjustment



The First Face of DiD with Covariates: Regression Adjustment

■ Idea: Model the comparison group’s outcome evolution E[∆Yi | Xi,Di = 0], then impute for
treated units

■ With panel data, the ATT simplifies to:

ATT = E[∆Yi | Di = 1]− E
[
md=0

∆ (Xi) | Di = 1
]
= E

[
md=1

∆ (Xi)−md=0
∆ (Xi) | Di = 1

]
where md=0

∆ (x) ≡ E[∆Yi | Xi = x,Di = 0]

■ Only need to model one conditional expectation: the comparison group’s ∆Y given X

■ Originally proposed by Heckman, Ichimura and Todd (1997) and Heckman, Ichimura, Smith and
Todd (1998)
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Regression Adjustment: Estimation

■ We need to estimate md=0
∆ (x) ≡ E[∆Yi | Xi = x,Di = 0]. A convenient choice is a linear working

model: md=0
∆ (Xi) = X′

iβ0

■ Step 1: Estimate β0 by OLS using comparison units only: β̂n =
(∑

i:Di=0 XiX′
i

)−1 ∑
i:Di=0 Xi∆Yi

■ Step 2: Impute for treated and average: θ̂ran = 1
n1

∑
i:Di=1

(
∆Yi − X′

i β̂n

)
■ Any estimator of md=0

∆ (x) can be plugged in — kernel regression, random forests, LASSO, etc.
Linear model is popular but consistency requires correct specification

Key difference from TWFE: regression is estimated on the comparison group only, then predic‐
tions are made for treated units. This allows covariate‐specific trends.
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Worked Example: RA with 5 Units

Unit i Di Xi (poverty %) ∆Yi (mortality change)

1 0 (comparison) 12 −2.0

2 0 (comparison) 18 −0.5

3 0 (comparison) 22 +1.0

4 1 (treated) 20 −3.0

5 1 (treated) 15 −2.5

Step 1: Regress ∆Yi on Xi using comparison units only⇒ β̂ = 0.30

Step 2: Impute for treated: m̂d=0
∆ (20) = 0.30× 20 = 6.0, m̂d=0

∆ (15) = 0.30× 15 = 4.5

(intercept omitted for simplicity)

Step 3: ÂTT = 1
2

[
(−3.0− 6.0) + (−2.5− 4.5)

]
= −8.0

The key: comparison group regression tells us “what would have happened to treated units if they
hadn’t been treated.” 33/130



RA: Key Properties

■ Consistent when the outcome model md=0
∆ (x) is correctly specified

■ Inconsistent when md=0
∆ (x) is misspecified

■ Works well when:
▶ X is low‐dimensional
▶ Functional form is known or well‐approximated
▶ Good overlap (but does not explicitly reweight)

RA relies entirely on the researcher’s ability to model the comparison group’s outcome evolution.

Q: If RA is inconsistent under misspecification, why not always use a very flexible model formd=0
∆ (x)?
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RA in Practice: What Are We Actually Estimating?

Medicaid Expansion

■ ∆Yi: change in county mortality

■ Xi: poverty, income, % white, % Hispanic,
urbanization

■ md=0
∆ (Xi): “How does mortality change in
non‐expansion counties with similar
demographics?”

Brazil CAPS Reform

■ ∆Yi: change in homicide rate

■ Xi: 30 municipal characteristics + state FE

■ md=0
∆ (Xi): “How do homicide rates change in
non‐CAPS municipalities with similar
characteristics?”

The RA recipe (same in both applications):

1. Estimate m̂d=0
∆ (x) using comparison units only

2. For each treated unit, plug in its Xi to get the predicted counterfactual change m̂d=0
∆ (Xi)

3. ÂTT = 1
n1

∑
i:Di=1

(
∆Yi − m̂d=0

∆ (Xi)
)
: mean observed change minus mean predicted

counterfactual change among treated
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RA models outcomes directly.

What if we instead reweight observations?
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Act II: Three Estimation Strategies
Inverse Probability Weighting



The Second Face: Inverse Probability Weighting

■ Idea: Instead of modeling outcomes, reweight the comparison group to “look like” the treated
group in covariates

■ Model the propensity score: p(Xi) = P(Di = 1 | Xi)

With two groups (treated vs. never‐treated), the PS is a single binary model

■ Originally proposed by Abadie (2005):

ATTipw =
E
[(

Di − (1−Di)p(Xi)
1−p(Xi)

)
∆Yi

]
E[Di]

■ The weights p(Xi)
1−p(Xi)

upweight comparison units that “resemble” treated units
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IPW: Normalized (Hájek) Weights

■ Abadie (2005)’s IPW is of the Horvitz–Thompson type (weights do not sum to 1)

■ Sant’Anna and Zhao (2020) proposed Hájek‐type (normalized) weights:

ATTipwstd = E
[(

Di

E[Di]︸ ︷︷ ︸
w1(Di)

−
p(Xi) (1−Di)

1−p(Xi)

E
[
p(Xi) (1−Di)

1−p(Xi)

]
︸ ︷︷ ︸

w0(Di,Xi)

)
∆Yi

]

■ Normalized weights sum to 1 in each group⇒ more stable in finite samples

■ Both versions are consistent under correct propensity score specification
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IPW Reweighting: The Intuition

Before Reweighting

X (poverty rate)

density

TreatedComparison

Misaligned!

After IPW Reweighting

X (poverty rate)

density

Treated
Reweighted

Aligned!

IPW
weights

IPW uses w = p(X)/(1− p(X)) to reweight comparison units so their covariate distribution matches
the treated group.
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IPW: Estimation and Key Properties

■ Working model: Logistic p(Xi; γ0) = Λ(X′
iγ0)

■ Step 1: Estimate γ0 by logit MLE

■ Step 2: Plug in p̂(Xi) and compute weighted averages

■ Influence function accounts for estimation error in γ̂n

■ Consistent when propensity score is correctly specified

■ Inconsistent when propensity score is misspecified — even if outcome model is known!

■ Overlap is critical: if p(Xi) ≈ 1, weights explode
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IPW in Practice: What Are We Actually Reweighting?
Medicaid Expansion

■ p(Xi): prob. county’s state expands
Medicaid, given demographics

■ Counties “resembling” expansion states get
upweighted; dissimilar ones downweighted

■ 6 covariates — overlap manageable

Brazil CAPS Reform

■ p(Xi): prob. municipality adopts CAPS in
2006, given 30 covariates + state FE

■ Non‐CAPS municipalities resembling
adopters get upweighted

■ Overlap concern: only 216 treated with
high‐dimensional X

The IPW recipe (same in both applications):

1. Estimate p̂(Xi) using both treated and comparison units (e.g., logit)

2. Reweight comparison units by p̂(Xi)/(1− p̂(Xi)): units resembling treated get more weight

3. ÂTT: weighted mean ∆Yi among treated minus reweighted mean among comparison
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RA vs. IPW: Complementary Strengths

RA IPW

Models Outcome evolution Treatment assignment
Consistent when md=0

∆ (x) correct p(x) correct
Fails when Outcome misspecified PS misspecified
Sensitive to Functional form Overlap violations

RA and IPWhave complementary failuremodes. Canwe combine them to get robustness against
either type of misspecification?
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RA and IPW each rely on one model being correct.

Can we combine them for robustness against either type of misspecification?
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Act II: Three Estimation Strategies
Doubly Robust DiD



The Third Face: Doubly Robust Estimation

■ Key idea: Combine outcome modeling (RA) with reweighting (IPW)

■ Consistent if either the outcome model or the propensity score is correctly specified (but not
necessarily both)

DR DiD Estimand (Sant’Anna and Zhao, 2020):

ATTdr = E
[(

w1(Di)− w0(Di,Xi)
)(

∆Yi −md=0
∆ (Xi)

)]

Treated weight

w1(Di) =
Di

E[Di]

Comparison weight

w0(Di,Xi) =

p(Xi) (1−Di)
1−p(Xi)

E
[
p(Xi) (1−Di)

1−p(Xi)

]
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Why Is It Doubly Robust?

■ The DR estimand has two equivalent decompositions:

ATTdr = ATTipwstd︸ ︷︷ ︸
IPW

−E
[
(w1(Di)− w0(Di,Xi))md=0

∆ (Xi)
]

︸ ︷︷ ︸
Outcome‐based bias correction

= ATTra︸ ︷︷ ︸
RA

−E
[
w0(Di,Xi)

(
∆Yi −md=0

∆ (Xi)
)]

︸ ︷︷ ︸
Reweighting‐based bias correction

■ If p(x) correct: w0 rebalances⇒ first line’s correction is mean‐zero⇒ consistent

■ If md=0
∆ (x) correct: residuals are mean‐zero⇒ second line’s correction vanishes⇒ consistent

■ If both wrong: generally inconsistent, but bias is product of two errors
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Double Robustness: A Scorecard

PS Correct PS Wrong

O
R
Co
rr
ec
t

O
R
W
ro
ng

RA ✓
IPW ✓
DR ✓

RA ✓
IPW ×
DR ✓

RA ×
IPW ✓
DR ✓

RA ×
IPW ×
DR ×

DR: consistent in 3 out of 4 scenarios — two chances to get it right
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DR in Practice: Two Models, Two Chances
Medicaid Expansion

■ OR: how does mortality change in
non‐expansion counties with similar
demographics?

■ PS: which counties look like expansion
counties based on demographics?

■ 6 covariates — both models tractable

Brazil CAPS Reform

■ OR: how do homicide rates change in
non‐CAPS municipalities with similar
characteristics?

■ PS: which municipalities look like CAPS
adopters, given 30 covariates + state FE?

■ High‐dimensional X — DR’s insurance
especially valuable

The DR recipe (same in both applications):
1. Estimate both m̂d=0

∆ (x) (on comparison units) and p̂(Xi) (on all units)

2. Combine: use IPW weights and outcome residuals ∆Yi − m̂d=0
∆ (Xi)

3. If either model is correct, the other’s errors wash out⇒ two chances to get it right
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DR is consistent if eithermodel is correct.

But what happens to precision when both are right?
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The Semiparametric Efficiency Bound

Q: If DR gives us two chances, why care about getting both models right?

■ Sant’Anna and Zhao (2020) derive the semiparametric efficiency bound for ATT under
conditional PT

■ The bound equals the variance of the efficient influence function:

ψeff
i =

(
w1(Di)− w0(Di,Xi; p0)

)(
∆Yi −md=0

∆ (Xi)
)
− w1(Di) · ATT

■ The DR estimand’s IF equals the efficient IF when both models are correct

■ This means: DR attains the semiparametric efficiency bound when both md=0
∆ and p are correctly

specified — it is locally efficient
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Improved vs. Traditional DR

■ Sant’Anna and Zhao (2020) propose two versions:
▶ Traditional DR (drdid_panel): standard logit PS + OLS outcome model
▶ Improved DR (drdid_imp_panel): inverse probability tilted PS (Graham, Pinto and Egel, 2012) +
weighted OLS outcome model

■ The improved version ensures the estimated PS satisfies an exact balancing condition, improving
finite‐sample performance

■ Both are doubly robust and locally efficient under correct specification

■ Bonus: The improved DR estimator is also doubly robust for inference — no need to adjust
standard errors for first‐step estimation of p(Xi) or md=0

∆ (Xi)
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RA, IPW, and DR have different robustness and efficiency
properties.

Do these properties hold in finite samples?



Monte Carlo: Comparing All Estimators

■ DGP with true ATT = 0:
▶ 4 DGPs: vary correct/incorrect outcome and PS models
▶ DGP 1: Both correctly specified
▶ DGP 2: PS misspecified, outcome correct
▶ DGP 3: PS correct, outcome misspecified
▶ DGP 4: Both misspecified

■ 7 estimators: Oracle (infeasible), DR‐Improved, DR‐Traditional, IPW, IPW‐Normalized, RA, TWFE

■ n = 500, 1,000MC replications
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Monte Carlo: DGP 1 — Both PS and OR Correctly Specified
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True ATT = 0.  n = 1,000; 1,000 replications.  TWFE omitted (off−scale).  IPW x−axis differs.

DGP 1: Both correct
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Monte Carlo: DGP 2 — Propensity Score Misspecified
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DGP 2: PS wrong, OR correct
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Monte Carlo: DGP 3 — Outcome Regression Misspecified
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True ATT = 0.  n = 1,000; 1,000 replications.  TWFE omitted (off−scale).  IPW x−axis differs.

DGP 3: PS correct, OR wrong
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Monte Carlo: DGP 4 — Both Misspecified
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True ATT = 0.  n = 1,000; 1,000 replications.  TWFE omitted (off−scale).  IPW x−axis differs.

DGP 4: Both wrong
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Monte Carlo Summary: Bias and RMSE

DGP 1 DGP 2 DGP 3 DGP 4
Both correct PS wrong OR wrong Both wrong

Bias RMSE Bias RMSE Bias RMSE Bias RMSE

TWFE −20.9 21.1 −20.5 20.6 −28.2 28.3 −16.4 16.5

Regression 0.0 0.1 0.0 0.1 −6.1 6.2 −5.2 5.3

IPW (Hajek) 0.0 1.2 −1.9 2.2 0.0 1.3 −4.0 4.2

DR (Trad.) 0.0 0.1 0.0 0.1 0.0 1.0 −3.2 3.5

DR (Impr.) 0.0 0.1 0.0 0.1 0.0 1.0 −1.0 2.6

■ DR unbiased whenever at least one model is correct (DGPs 1–3)

■ TWFE severely biased in all DGPs — nonlinear X‐dependence breaks linearity

■ DGP 4: DR has smaller bias (product of two misspecification errors) — but is not consistent
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Monte Carlo Summary: Coverage

DGP 1 DGP 2 DGP 3 DGP 4
Both correct PS wrong OR wrong Both wrong

TWFE 0.0% 0.0% 0.0% 0.0%

Regression 93.9% 94.9% 83.8% 1.1%

IPW (Hajek) 94.0% 83.7% 95.2% 22.0%

DR (Trad.) 95.3% 94.9% 94.6% 28.4%

DR (Impr.) 94.8% 94.4% 94.6% 26.8%

DR is the only estimator that performs well across all scenarios. TWFE should not be the default
when covariates matter.
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Two chances to get it right, and efficient when both
models are correct.

Doubly robust is the default for DiD with covariates.



Act III: The Design Phase & Full Applications



Covariate Balance and the Plausibility of PT

■ If covariates that are important for outcome changes in the absence of treatment are unbalanced
across treated and comparison groups, this raises serious concerns about unconditional PT
(Abadie, 2005)

■ Intuition: if groups differ in X, and X drives ∆Y(∞), then E[∆Y(∞) | D = 1] ≠ E[∆Y(∞) | D = 0]

■ This motivates covariate balance diagnostics as part of any DiD analysis — following the broader
principle that “design trumps analysis” (Rubin, 2008; Baker et al., 2025)

■ Key diagnostics:
▶ Unweighted standardized differences: X̄1−X̄0√

(s21+s20)/2

▶ IPW‐weighted standardized differences: does reweighting restore balance?
▶ Propensity score overlap: are there regions of X with no comparison units?

■ Good balance⇒ more credible results, less sensitivity to specification choices
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Medicaid: Context and Covariates

■ Setting: Effect of Medicaid expansion on county‐level mortality (Lecture 5 data)

■ Now incorporate county‐level covariates:
▶ % white, % Hispanic, % female
▶ Unemployment rate, poverty rate
▶ Median household income

■ Why covariates matter: Expansion states systematically differ from non‐expansion states on
these characteristics

■ Conditional PT more plausible than unconditional PT: “Among counties with similar
demographics, mortality trends would be parallel absent expansion”
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Medicaid: Covariate Imbalance (Recap)

% Hispanic

% White

% Female

Poverty Rate

Unemployment Rate

Median Income ($K)

−0.25 0.00 0.25 0.50

Standardized Difference

Population−weighted standardized differences (treated − comparison)

Covariate Imbalance: Medicaid Expansion

Expansion and non‐expansion states differ systematically. Several covariates exceed the ±0.25

threshold — motivating conditional PT.
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Medicaid: Propensity Score Overlap
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Assessing overlap for Medicaid expansion analysis

Propensity Score Distributions

■ Comparison counties’ PS mostly within the support of expansion counties

■ A few untreated counties have p̂(Xi) close to 1 — did and DRDID trim units with p̂(Xi) > 0.995 by
default
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Medicaid: Covariate Balance Table (Population‐Weighted)

Covariate Treated Comparison Std. Diff.

%White 79.5 77.9 +0.115

% Hispanic 18.9 17.0 +0.107

% Female 50.1 50.5 −0.238

Unemp. Rate 8.0 7.0 +0.503

Poverty Rate 15.3 17.2 −0.375

Median Income ($K) 57.9 49.3 +0.685

■ Expansion counties are wealthier, higher unemployment, less poverty

■ Several covariates exceed ±0.25 threshold — unconditional PT is questionable
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Medicaid: All Estimators Compared (Population‐Weighted)

DR (Improved)

DR (Traditional)

IPW (Hajek)

Regression

TWFE + X

Unconditional DiD

−20 −10 0 10

ATT (deaths per 100,000)

2x2 DiD (2013−2014), county−level covariates, population−weighted

ATT Estimates: Medicaid Expansion and Mortality

■ 6 baseline covariates, population‐weighted; all estimates negative (mortality reduction)

■ All estimators broadly agree; wide CIs reflect limited power at county level
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Medicaid: What We Learned

■ Wide confidence intervals — limited power with county‐level data

■ None of the estimates are statistically significant

■ But the sensitivity of estimates to covariate inclusion is itself informative:
▶ If results change dramatically with covariates, conditional PT is substantively different from unconditional
PT

▶ If results are stable, the unconditional DiD was already capturing the right comparison

■ Good overlap and balance — the “design” checks out

■ Covariates matter for credibility even if they do not dramatically change point estimates
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Medicaid had 6 covariates and good overlap.
What happens with a richer covariate set?

Brazil’s psychiatric reform: 30 covariates + state FE.



Brazil CAPS: Full Context

■ Dias and Fontes (2024): Brazil’s 2002 Psychiatric Reform created CAPS (community mental
health centers) replacing psychiatric hospitals

■ Staggered rollout across 5,180 municipalities (2002–2016)

■ Our 2×2 setup: g = 2006 (early CAPS adopters) vs. never‐treated; pre = 2005, post = 2007

■ Outcome: Assault homicide rate per 10,000 population

■ 30 covariates: Demographics, income, transfers, poverty, geographic characteristics, health
infrastructure (from 2000 census and administrative data) + state fixed effects

■ Surprising finding: CAPS adoption increases homicides — consistent with the Penrose
hypothesis (see Dias and Fontes, 2024) that deinstitutionalization reduces incapacitation
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Brazil: Covariate Balance

MH Facilities (2002)

Municipality Area

Log GDP p.c.

Health Estab. (2002)
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Rural Share

Log Health Spending

Log Population
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Standardized Difference

Standardized difference (treated − comparison), raw

Covariate Balance: Brazil CAPS Application

Standardized differences (unweighted). Several covariates exceed the ±0.25 threshold.
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Brazil: Propensity Score Overlap
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30 baseline covariates + state FE, logistic regression

Propensity Score Distributions: Brazil CAPS

■ Massive spike near 0: most untreated municipalities look nothing like CAPS adopters

■ But p̂(Xi) ≈ 0 ⇒ weights p(X)
1−p(X) ≈ 0: these units naturally drop out of IPW

■ The real concern: p̂(Xi) ≈ 1 among untreated, where weights explode
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Brazil: Overlap After Trimming Untreated (p̂(X) ∈ [0.01, 0.995])
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Never−Treated CAPS (g = 2006)

Untreated: 1607 / 3829 remain (dropped 2222);  Treated: all 216 retained

Overlap After Trimming Untreated:  p̂(X) ∈  [0.01, 0.995]

■ Trimming untreated with p̂(Xi) < 0.01 or > 0.995 drops 58% of comparison (2,222/3,829)

■ All 216 treated units retained — trimming applies only to untreated

■ Still a large spike near 0 among remaining untreated
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Brazil: Overlap After Trimming Untreated (p̂(X) ∈ [0.025, 0.995])
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Never−Treated CAPS (g = 2006)

Untreated: 913 / 3829 remain (dropped 2916);  Treated: all 216 retained

Overlap After Trimming Untreated:  p̂(X) ∈  [0.025, 0.995]

■ Trimming untreated at 0.025 drops 76% of comparison (2,916/3,829) — only 913 remain

■ Overlap improves, but treated distribution still much more spread out

■ Aggressive trimming changes the effective comparison group substantially
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Brazil: Overlap After Trimming Untreated (p̂(X) ∈ [0.05, 0.995])
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Never−Treated CAPS (g = 2006)

Untreated: 493 / 3829 remain (dropped 3336);  Treated: all 216 retained

Overlap After Trimming Untreated:  p̂(X) ∈  [0.05, 0.995]

■ Trimming untreated at 0.05 drops 87% — only 493 of 3,829 remain

■ Overlap finally reasonable, but we lost most of the comparison group

did/DRDID default: trim untreated with p̂(Xi) > 0.995 only; units with p̂(Xi) ≈ 0 self‐trim via
vanishing weights
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Brazil: Results — All Estimators

Doubly Robust

IPW (Hajek)

Regression Adj.

TWFE + X

Unconditional DiD

−0.2 0.0 0.2 0.4 0.6

ATT (homicides per 10,000)

Callaway & Sant'Anna (2021), 30 covariates + state FE

ATT Estimates: CAPS and Homicide Rates

Same 30 covariates + state FE as Act I. All conditional estimators (RA, IPW, DR) use identical
specification via att_gt().
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Brazil: Event Study with Covariates
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Callaway & Sant'Anna (2021) with and without covariates

Event Study: CAPS and Homicides

Two groups (g = 2006 vs. never‐treated), multiple periods. DR with covariates yields smaller
pre‐trend coefficients and more precise post‐treatment estimates. We formalize event studies in
later lectures. 75/130



Key Insight: Covariates and Credibility

■ In both applications, covariates may not dramatically change point estimates

■ But they dramatically change credibility:
▶ Unconditional PT is a strong assumption when groups differ
▶ Showing that conditional PT gives similar results strengthens the case
▶ Showing that they differ reveals that the baseline was contaminated

■ The “design phase” (balance diagnostics) is crucial for transparency

■ Bottom line: Even when estimates are stable, the exercise of checking matters

In these data, covariates predict treatment adoption but DR and unconditional estimates are broadly
similar—the exercise of checking is what matters.
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We have seen the theory, diagnostics, and empirical
results.

How do we implement this in practice?



Software: The did Package (Primary)

library(did)

# Callaway & Sant'Anna (2021) with covariates
# Uses doubly robust estimation by default
result <− att_gt(

yname = "l_homicide",
tname = "year",
idname = "sid",
gname = "first_treat",
xformla = ~ x1 + x2 + x3,
data = my_data,
control_group = "notyettreated",
est_method = "dr", # DR is the default
base_period = "universal" # use first period as base

)

# Aggregate to event study
es <− aggte(result, type = "dynamic")
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Software: The DRDID Package (Low‐Level)

library(DRDID)

# Panel data: Doubly Robust DiD (improved)
result_dr <− drdid(yname = "y", tname = "post",

idname = "id", dname = "treat",
xformla = ~ x1 + x2 + x3,
data = panel_data, panel = TRUE)

# Also available: ipwdid(), ordid()
# For low−level functions, note the intercept convention:
# drdid_imp_panel: needs cbind(1, X) explicitly
# twfe_did_panel: adds intercept internally (do NOT add)

The did package wraps DRDID and handles the intercept convention automatically. Use DRDID for
more control.
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Practitioner Checklist

Step‐by‐step guide for DiD with covariates:
1. Specify: Which pre‐determined covariates make conditional PT plausible? Only
condition on Xi measured before treatment and not affected by it.

2. Check overlap: Plot propensity score distributions. Trim if needed.
3. Balance: Compare covariate means across treated and comparison groups.
4. Estimate: Use DR as the default. Report RA and IPW as robustness.
5. Sensitivity: How much do results change with/without covariates?
6. For repeated cross‐sections: Test for compositional changes (see Act IV).
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What if we observe repeated cross‐sections instead of a
panel?

New challenges: compositional changes and
stationarity.



Act IV: Repeated Cross‐Sections



Panel vs. Repeated Cross‐Sections: Recap

■ Panel data: Observe same units in both periods
▶ Can compute∆Yi = Yi,t=2 − Yi,t=1 directly
▶ Only need one outcome model: md=0

∆ (x) = E[∆Yi | Xi = x,Di = 0]

■ Repeated cross‐sections (RCS): Different units sampled each period
▶ Cannot first‐difference
▶ Need to model outcomes separately in each period
▶ Requires additional assumptions about the sampling process

■ From Lecture 5: panel data is strictly more efficient than RCS

■ With covariates, the gap between panel and RCS has additional nuances
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RCS Sampling Assumption

RCS Sampling

The pooled RCS data {Yi,Di,Xi, Ti}ni=1 consist of iid draws from the mixture distribution

P(Y≤y, D=d, X≤x, T= t) = 1{t=2} · λ · P(Y2≤y, D=d, X≤x | T=2)

+ 1{t=1} · (1−λ) · P(Y1≤y, D=d, X≤x | T=1)

where (y, d, x, t) ∈ R× {0, 1} × Rk × {1, 2} and λ = P(T = 2) ∈ (0, 1).

■ Each unit i is observed in exactly one period; Yi = 1{Ti=2} · Yi,2 + 1{Ti=1} · Yi,1

■ In panel data, we observe (Yi,1,Yi,2) for each unit; in RCS, we observe Yi for one period only

■ Define outcome regressions per cell: md
t (x) = E[Yi | Di = d, Ti = t,Xi = x]
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Conditional PT for Repeated Cross‐Sections

■ The conditional PT assumption is the same as in the panel case (Sant’Anna and Zhao, 2020):

E[Yi,t=2(∞)− Yi,t=1(∞) | Di = 1,Xi] = E[Yi,t=2(∞)− Yi,t=1(∞) | Di = 0,Xi] a.s.

■ What changes with RCS is the data structure, not the assumption:
▶ Different units sampled in each period⇒ cannot first‐difference
▶ Need to model md=0

t (x) = E[Y | D = 0, T = t,X = x] separately for t = 1, 2

■ Key additional requirement: stationarity of the joint distribution of (D,X) across sampling
periods (Assumption 2(b) in Sant’Anna and Zhao, 2020)

■ With panel data, stationarity is automatic (same units observed twice)

■ The conditional PT is stated for the superpopulation; the RCS sampling assumption ensures we
can identify these quantities from the observed cross‐sectional data.
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The Stationarity Assumption

Assumption (Stationarity / No Compositional Changes)
The joint distribution of (Gi,Xi) is the same across time periods:

(Gi,Xi) | Ti = 1
d
= (Gi,Xi) | Ti = 2

■ In words: the “composition” of units sampled in each period is stable

■ Automatic in panel data (same units observed each period)

■ Not automatic in RCS: differential migration, attrition, survey redesigns can change who is
sampled

■ Standard DR DiD estimators for RCS assume stationarity
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Compositional Changes: A Visual

Stationary

X

density

t = 1

t = 2

Same composition

Compositional Change

X

density

t = 1

t = 2

Shifted composition

When the covariate distribution shifts between periods (migration, attrition, survey redesign),
standard RCS estimators are biased.
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IPW for Repeated Cross‐Sections

■ With RCS, IPW must reweight across both treatment groups and time periods:

IPW for RCS (Abadie, 2005):

ATTipw,rc =
1

E[D]
E
[
D− p(X)
1− p(X)

T− λ

λ(1− λ)
Y
]

■ Compared to panel IPW, the RCS version uses an additional reweighting factor T−λ
λ(1−λ) that

adjusts for the time dimension

■ Still requires the same overlap condition: p(Xi) < 1 a.s.

■ The propensity score p(X) = P(D = 1 | X) is estimated on pooled data across both periods — this
is valid under the no‐compositional‐changes assumption
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Efficient DR DiD for Repeated Cross‐Sections: The Estimand

The efficient DR estimand, derived from the EIF (Sant’Anna and Zhao, 2020), models all four (d, t)
cells:

ATTdr,rceff = E
[

D
E[D]

(
md=1

∆ (X)−md=0
∆ (X)

)
︸ ︷︷ ︸

RA component

+
(
wd=1

t=2

(
Y−md=1

t=2 (X)
)
− wd=1

t=1

(
Y−md=1

t=1 (X)
))

︸ ︷︷ ︸
treated bias correction

−
(
wd=0

t=2

(
Y−md=0

t=2 (X)
)
− wd=0

t=1

(
Y−md=0

t=1 (X)
))

︸ ︷︷ ︸
comparison bias correction

]

Same DR logic as the panel case: RA plus IPW‐based corrections for both groups. Key difference:
each period needs its own outcome model and weight. (Weights defined on next slide.)
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RCS Efficient DR DiD: The Four Hájek Weights

Where md
∆(x) = md

t=2(x)−md
t=1(x). The estimand requires four Hájek weights — two for the treated

group, two for the comparison:

Treated weights (simple: select treated at each period, normalize):

wd=1
t (Di, Ti) =

Di · 1{Ti= t}
E[D · 1{T= t}]

for t = 1, 2

Comparison weights (reweight comparison to match treated covariate distribution):

wd=0
t (Di, Ti,Xi) =

p(Xi)(1−Di) 1{Ti=t}
1−p(Xi)

E
[
p(X)(1−D) 1{T=t}

1−p(X)

] for t = 1, 2

Compare with panel DR DiD: instead of one weight pair, RCS needs a pair per period because we
cannot track the same units across time.
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Compositional Changes: The Problem

■ Compositional changes: the distribution of (G,X) differs across periods

■ Happens when:
▶ Migration: people move in/out of regions across survey waves
▶ Attrition: some types of units drop out differentially
▶ Survey redesign: sampling frame changes between waves
▶ Natural disasters, policy changes that affect who is “at risk”

■ When stationarity fails, standard RCS estimators are biased

■ The bias arises because the “comparison group trend” is contaminated by compositional shifts
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Sant’Anna & Xu (2026): DiD with Compositional Changes

■ Sant’Anna and Xu (2026) propose estimators that do not require stationarity

■ Key innovation: rate double robustness
▶ Consistent at

√
n rate if both nuisance functions converge, even if each converges at a slower rate

▶ Enables use of nonparametric/ML methods for nuisance estimation

■ Additional nuisance parameter: model for compositional changes
▶ How does P(T = 2 | X,D) vary with covariates?
▶ Captures differential sampling across periods
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Sant’Anna & Xu (2026): Estimation Strategy

■ Nonparametric nuisance estimation: all nuisance functions (md
t , p, π) estimated

nonparametrically — no need to assume linear/logistic models

■ DML‐style procedures:
▶ Cross‐fitting to avoid overfitting bias from flexible first‐stage estimators
▶ Enables use of ML methods (random forests, neural nets, LASSO, etc.) for nuisance estimation while
maintaining valid inference

■ Leave‐one‐out estimation:
▶ Each unit’s nuisance functions estimated without that unit’s own data
▶ Eliminates the “own observation” bias that arises with nonparametric estimators
▶ Particularly useful with kernel‐based or local polynomial methods

■ These innovations ensure
√
n‐consistent and asymptotically normal estimators even when

nuisance functions are estimated at slower‐than‐
√
n rates
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DR DiD Robust to Compositional Changes
Sant’Anna and Xu (2026) derive a DR estimand that does not require stationarity. Same structure,
different weights:

τ ccdr = E
[
wd=1,cc

t=2

(
md=1

∆ (X)−md=0
∆ (X)

)
+

(
wd=1,cc

t=2

(
Y−md=1

t=2 (X)
)
− wd=1,cc

t=1

(
Y−md=1

t=1 (X)
))

−
(
wd=0,cc

t=2

(
Y−md=0

t=2 (X)
)
− wd=0,cc

t=1

(
Y−md=0

t=1 (X)
))]

Key difference: weights use a generalized PS π(d, t, x) = P(D=d, T= t | X=x):

wd=1,cc
t=2 (Di, Ti) =

Di · 1{Ti=2}
E[D · 1{T=2}]

, wd,cc
t (Di, Ti,Xi) =

π(1,2,Xi)
π(d,t,Xi)

· 1{Di=d, Ti= t}

E
[
π(1,2,X)
π(d,t,X) · 1{D=d, T= t}

]
Intuition: π(1, 2,Xi)/π(d, t,Xi) reweights each (d, t) cell to match the treated post‐treatment
covariate distribution — the same IPW logic of “make comparison look like treated,” but now applied
within each (d, t) cell separately. 93/130



Hausman‐Type Test for Compositional Changes

■ Key diagnostic: Compare estimators that use stationarity vs. those that do not

■ Under stationarity: both should give the same answer

■ Under compositional changes: they will diverge

■ Sant’Anna and Xu (2026) formalize this as a Hausman‐type test:

H0 : stationarity holds vs. H1 : compositional changes

■ Test statistic based on the difference between two DR estimators

■ Rejection⇒ use the estimator that allows for compositional changes
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Application: South Africa–Mozambique Tariff Liberalization

■ Sant’Anna and Xu (2026) revisit Sequeira (2016)’s study of South Africa’s tariff liberalization on
trade with Mozambique

■ Data: repeated cross‐sections of trade flows across product categories

■ Compositional changes are plausible: product mix changes over time as trade patterns evolve

■ Results:
▶ Standard estimators (assuming stationarity): find large effects
▶ Compositional‐change‐robust estimators: qualitatively similar but different magnitudes
▶ Hausman test: rejects stationarity in some specifications

95/130



Key Takeaway: When to Worry about Compositional Changes

■ Panel data: stationarity holds by construction — not an issue

■ RCS data: always ask:
▶ Is the sampling frame the same across periods?
▶ Could migration, attrition, or policy changes affect who is observed?
▶ Do covariate distributions shift across periods?

■ Practical advice:
1. Compare covariate distributions across periods
2. Run the Hausman‐type test
3. If stationarity is rejected, use compositional‐change‐robust estimators

Q: In your own research, how would you diagnose whether compositional changes are present?
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What if we have many potential covariates?

From low to high dimensions: machine learning
meets DiD.



Act V: Machine Learning & DiD



What You Need to Know About This Section

■ We now enter high‐dimensional territory: many covariates, flexible estimation

■ This section sketches the key ideas; a full treatment requires substantially more time than we
have available

■ The practical takeaway:
▶ Use LASSO/Post‐LASSO for covariate selection
▶ Combine with cross‐fitting to avoid overfitting bias
▶ Wrap in the DR framework for robustness

■ Focus on the recipe and the intuition — we will not derive convergence rates or prove oracle
inequalities

If you plan to use these methods in your dissertation, see ? for the full DML framework and
Belloni, Chernozhukov and Hansen (2014) for Post‐LASSO inference theory.
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The High‐Dimensional Challenge

■ So far: X is low‐dimensional and we specify parametric models (OLS, logit)

■ But what if we have many potential confounders?
▶ Administrative data with hundreds of variables
▶ Interactions, polynomials, transformations
▶ Researcher degrees of freedom in choosing which to include

■ Standard approach: include “all reasonable” covariates⇒ overfitting, instability

■ Can we do better?
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Machine Learning to the Rescue?

■ Machine learning offers principled ways to handle high‐dimensional X:
1. Select relevant covariates automatically (LASSO, elastic net)
2. Estimate flexible functional forms (random forests, boosting)
3. Avoid overfitting through regularization and cross‐validation

■ But: naively plugging ML into DR creates an overfitting bias problem

■ Solution: cross‐fitting — estimate nuisance functions on one sample, evaluate on another

■ This lecture: LASSO→ cross‐fitting→ DML‐DiD
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Why Not Just Use All Covariates?

■ With k covariates and n observations:
▶ OLS/logit requires k < n (infeasible when k is large)
▶ Even when k < n, overfitting degrades predictions
▶ Variance of fitted values grows with k

■ The bias‐variance tradeoff:
▶ Underfitting (too few covariates): misspecification bias
▶ Overfitting (too many covariates): high variance, poor out‐of‐sample prediction

■ We need methods that regularize: shrink or select to control complexity

■ Key insight: the DR structure provides a natural framework for ML integration
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Review: The DR Estimand Structure

Recall the DR DiD estimand (panel data):

ATTdr = E
[
(w1(D)− w0(D,X; p))(∆Y−md=0

∆ (X))
]

■ Two nuisance functions to estimate:
1. Outcome model: md=0

∆ (X) = E[∆Y | X,D = 0]

2. Propensity score: p(X) = P(D = 1 | X)

■ The DR property means: bias from estimating these nuisance functions is a product of their
respective errors

■ This is exactly the right structure for ML: we can use flexible methods for nuisance estimation
while maintaining valid inference for the ATT
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LASSO: A Primer

■ LASSO (Tibshirani, 1996) (Least Absolute Shrinkage and Selection Operator):

β̂ lasso = arg min
β

1

n

n∑
i=1

(Yi − X′
iβ)

2 + λ

k∑
j=1

|βj|

■ The ℓ1 penalty λ∥β∥1 serves dual purpose:
1. Shrinkage: Pulls coefficients toward zero (reduces variance)
2. Selection: Sets some coefficients exactly to zero (selects variables)

■ Useful when the true model is sparse: only s ≪ k covariates truly matter

■ The tuning parameter λ controls the bias‐variance tradeoff
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Approximate Sparsity

■ Exact sparsity: Only s coefficients are nonzero (restrictive)

■ Approximate sparsity: Many small coefficients, but the best s‐sparse approximation is close to
the truth

■ More realistic: covariates may all contribute, but most only marginally

■ LASSO works well under approximate sparsity: it automatically finds the most important
variables and provides a good approximation

■ Key rate requirement: s2 log(k)/n → 0 (sparsity grows slowly relative to n)
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Post‐LASSO: Correcting for Shrinkage Bias

■ LASSO shrinks coefficients toward zero⇒ downward bias in fitted values

■ Post‐LASSO (Belloni and Chernozhukov, 2013; Belloni, Chernozhukov, Fernández‐Val and
Hansen, 2017): Two‐step procedure
1. Run LASSO to select variables (identify Ŝ = {j : β̂ lasso

j ̸= 0})
2. Run OLS using only the selected variables XŜ (no penalty)

■ Post‐LASSO reduces bias while maintaining the sparsity‐driven variable selection

■ Achieves the same rate of convergence as LASSO but with better constants
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LASSO for the Propensity Score

■ Model: p(Xi) = Λ(X′
iγ) with logistic LASSO

γ̂ lasso = arg min
γ

−1

n

n∑
i=1

[
Di logΛ(X′

iγ) + (1− Di) log
(
1− Λ(X′

iγ)
)]

+ λ∥γ∥1

■ Post‐LASSO logit: Select variables, then refit logit on selected set

■ Key concern: logistic LASSO provides good prediction but not necessarily good balancing

■ Solution: combine with DR estimation (bias correction handles PS errors)
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LASSO for the Outcome Model

■ Model: md=0
∆ (Xi) = X′

iβ with linear LASSO

β̂ lasso = arg min
β

1

n0

∑
i:Di=0

(∆Yi − X′
iβ)

2 + λ∥β∥1

■ Estimated using comparison group only (same as RA)

■ Post‐LASSO OLS: Select variables, then refit OLS on selected set

■ LASSO automatically discovers which covariates predict∆Y among untreated
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The Overfitting Problem: Why Naïve ML Can Fail

■ Plugging ML‐estimated nuisance functions into the DR formula can yield valid inference, but
requires Donsker‐type conditions on the nuisance function classes, plus stronger
rate/smoothness/sparsity requirements

■ ML estimators (LASSO, random forests, neural nets) typically violate these conditions — their
complexity grows with n

■ Without these conditions: using the same data to (i) fit nuisance functions and (ii) evaluate the
DR formula creates regularization bias that may not vanish at

√
n rate

■ Intuition: ML adapts to noise in the training data, and this noise “leaks” into the DR estimator

■ Solution: Sample splitting / cross‐fitting (Chernozhukov, Chetverikov, Demirer, Duflo, Hansen,
Newey and Robins, 2018) — avoids Donsker conditions entirely
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Cross‐Fitting: A Visual

K = 5 Fold Cross‐Fitting

Fold 1: Evaluate Train Train Train Train

Fold 2: Train Evaluate Train Train Train

Fold 3: Train Train Evaluate Train Train

Fold 4: Train Train Train Evaluate Train

Fold 5: Train Train Train Train Evaluate
Average
across
folds

Key: Nuisance functions trained on gray blocks; DR formula evaluated on colored block.
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Cross‐Fitting: The DML Framework

Double/Debiased Machine Learning (DML) (Chernozhukov et al., 2018):
1. Split sample into K folds (e.g., K = 5)
2. For each fold k:

▶ Estimate nuisance functions (m̂d=0
∆ , p̂) on all folds except k

▶ Evaluate the DR formula on fold k using these estimates

3. Average across folds to get the final estimate

■ Key property: Estimation and evaluation use different data⇒ no overfitting bias

■ Allows
√
n‐consistent and asymptotically normal ATT estimates even with slow‐converging ML

nuisance estimators (requires product of estimation errors ∥m̂−m0∥ · ∥p̂− p0∥ = op(n−1/2))

■ Works with any ML method (LASSO, random forests, neural networks, …)
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DML Algorithm for DR‐DiD

■ Input: Data {Yi,t=1,Yi,t=2,Di,Xi}ni=1, number of folds K

■ Step 1: Randomly partition {1, . . . , n} into K folds I1, . . . , IK
■ Step 2: For each fold k = 1, . . . ,K:
1. Estimate m̂d=0,(−k)

∆ (x) using data outside fold k (comparison units only)
2. Estimate p̂(−k)(x) using data outside fold k
3. Compute DR estimate on fold k:

θ̂k =
1

|Ik|
∑
i∈Ik

ψ̂dr
i

(
m̂d=0,(−k)

∆ , p̂(−k)
)

■ Step 3: Aggregate: θ̂DML = 1
K
∑K

k=1 θ̂k

■ Inference: IF‐based plug‐in variance or multiplier bootstrap; see Belloni et al. (2017) and
Chernozhukov et al. (2018) for details
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We have the tools: LASSO + cross‐fitting + DR.

How well does DML‐DiD perform in finite samples?



Monte Carlo: DML‐DiD

■ Three DGPs with p = 100 covariates (s = 5 active), n = 500:
1. DGP 1: Unconditional PT valid (covariates irrelevant)
2. DGP 2: Conditional PT + homogeneous ATT
3. DGP 3: Conditional PT + heterogeneous ATT

■ Compare: LASSO‐DR (with cross‐fitting), Linear DR, TWFE

■ 200 MC replications (ML is computationally intensive)
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DML‐DiD: DGP 1 — Unconditional PT (Covariates Irrelevant)
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DML‐DiD: DGP 2 — Conditional PT, Homogeneous ATT
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DML‐DiD: DGP 3 — Conditional PT, Heterogeneous ATT
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DML‐DiD: Summary — Bias and RMSE

DGP 1 DGP 2 DGP 3
Uncond. PT Cond. PT, homog. Cond. PT, heterog.

Bias RMSE Bias RMSE Bias RMSE

Unconditional DiD −0.1 12.3 64.0 160.1 67.0 148.2

RA + LASSO −0.1 12.3 2.9 14.9 −3.2 16.3

IPW + LASSO 0.4 14.2 −19.2 157.1 −16.2 155.4

DR + LASSO 0.4 14.0 0.9 14.7 −5.1 16.8

DR + Causal Forest −0.2 12.5 44.1 76.0 41.1 70.9

■ DGP 1: all estimators work — unconditional PT holds, covariates irrelevant

■ DGPs 2–3: DR + LASSO and RA + LASSO dominate; unconditional DiD severely biased

■ IPW + LASSO unstable: propensity score estimation alone insufficient with many covariates
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DML‐DiD: Summary — Coverage

DGP 1 DGP 2 DGP 3
Uncond. PT Cond. PT, homog. Cond. PT, heterog.

Unconditional DiD 96.5% 91.0% 94.5%

RA + LASSO 96.5% 92.5% 93.0%

IPW + LASSO 95.0% 96.0% 96.0%

DR + LASSO 95.0% 94.5% 92.0%

DR + Causal Forest 96.0% 87.5% 92.0%

DR + LASSO with cross‐fitting provides the best bias‐variance tradeoff. Causal forests can esti‐
mate heterogeneous effects but are less reliable for average ATT.
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DML‐DiD estimates the average ATT with
high‐dimensional nuisance functions.

What if treatment effects vary across units?



Causal Forests: Heterogeneous Treatment Effects

■ Beyond estimating the average ATT: what about CATT(x)?

■ Generalized Random Forests (GRF) (Athey, Tibshirani and Wager, 2019):
▶ Nonparametrically estimate conditional treatment effects
▶ Provide valid pointwise confidence intervals
▶ Handle high‐dimensional covariates

■ Causal forests for DiD:
▶ Outcome: ∆Yi (first difference)
▶ Treatment: Di

▶ Covariates: Xi

▶ GRF estimates CATT(x) = E[Yi,t=2(2)− Yi,t=2(∞) | Xi = x,Di = 1]

■ Combines the DR framework with forest‐based heterogeneity estimation
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Open Question: Covariates for Identification vs. Interest

Suppose you care about treatment effects conditional on a small subset of covariates — say,
gender, race, or income — but need many more covariates to justify conditional parallel trends.

How should you proceed?

■ This connects to CATT(x) — but the “x” you care about is low‐dimensional, while the “X” for
identification is high‐dimensional

■ Tension: averaging over nuisance covariates while conditioning on covariates of interest

■ We leave this as an open question for you to think about
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ML can estimate nuisance functions and uncover
heterogeneity.

When does all this machinery actually help?



When Does ML Help?

ML is useful when: ML is overkill when:

Many covariates (k > 20) Few covariates (k < 10)
Unknown functional forms Clear linear relationships
Complex interactions matter Simple additive effects
Heterogeneity exploration Only average effect needed
Administrative/big data Small samples (n < 500)

ML is a tool, not a magic bullet. Use it when the complexity of the nuisance functions justifies
the additional machinery. For simple settings, parametric DR is simpler.
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Honest About Limitations

■ ML does not fix identification problems:
▶ If conditional PT does not hold, no amount of ML helps
▶ ML estimates nuisance functions better, not the causal assumptions

■ Computational cost: cross‐fitting with LASSO/forests is slower than OLS

■ Interpretability: harder to understand what’s driving the estimates

■ Finite‐sample performance: ML guarantees are asymptotic; with n = 200, parametric methods
often work better

■ Bottom line: ML extends the toolkit, but the hard work is still in the identification assumptions
and study design
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Three estimation strategies (RA, IPW, DR), RCS
extensions, and ML integration.

What should practitioners take away from all this?



Taking Stock



What We Accomplished Today

Key takeaways from DiD with covariates:
1. Conditional PT is often more credible than unconditional PT — but requires appropriate
estimation methods

2. TWFE with covariates is fragile: imposes no covariate‐specific trends, hidden linearity
bias, potentially negative weights

3. Doubly robust is the default: consistent if either outcome model or propensity score is
correct; efficient when both are

4. Panel > RCS: strictly more efficient, no stationarity concerns. For RCS, test for
compositional changes

5. ML extends DR naturally: LASSO + cross‐fitting for high‐dimensional settings; causal
forests for heterogeneity

126/130



References i

References

Abadie, Alberto, “Semiparametric Difference‐in‐Differences Estimators,” The Review of Economic Studies, 2005,
72 (1), 1–19.

Angrist, Joshua D. and Jorn‐Steffen Pischke,Mostly Harmless Econometrics: An Empiricist’s Companion,
Princeton: Princeton University Press, 2009.

Athey, Susan, Julie Tibshirani, and Stefan Wager, “Generalized random forests,” The Annals of Statistics, 2019,
47 (2), 1148 – 1178.

Baker, Andrew, Brantly Callaway, Scott Cunningham, Andrew Goodman‐Bacon, and Pedro H. C. Sant’Anna,
“Difference‐in‐Differences Designs: A Practitioner’s Guide,” Journal of Economic Literature, 2025, Forthcoming.

Belloni, Alexandre and Victor Chernozhukov, “Least Squares after Model Selection in High‐Dimensional Sparse
Models,” Bernoulli, 2013, 19 (2), 521–547.

127/130



References ii

, , and Christian Hansen, “Inference on Treatment Effects after Selection among High‐Dimensional
Controls,” The Review of Economic Studies, 2014, 81 (2), 608–650.

, , Iván Fernández‐Val, and Christian Hansen, “Program Evaluation and Causal Inference With
High‐Dimensional Data,” Econometrica, 2017, 85 (1), 233–298.

Caetano, Carolina and Brantly Callaway, “Difference‐in‐Differences with Time‐Varying Covariates in the
Parallel Trends Assumption,” 2024. arXiv:2406.15288.

Chernozhukov, Victor, Denis Chetverikov, Mert Demirer, Esther Duflo, Christian Hansen, Whitney Newey, and
James Robins, “Double/debiased machine learning for treatment and structural parameters,” The
Econometrics Journal, 2018, 21 (1), C1––C68.

Crump, Richard K, V Joseph Hotz, Guido W Imbens, and Oscar A Mitnik, “Dealing with limited overlap in
estimation of average treatment effects,” Biometrika, 2009, 96 (1), 187–199.

Dias, Mateus and Luiz Felipe Fontes, “The Effects of a Large‐Scale Mental Health Reform: Evidence from
Brazil,” American Economic Journal: Economic Policy, 2024, 16 (3), 257–289.

128/130



References iii

Graham, Bryan, Cristine Pinto, and Daniel Egel, “Inverse Probability Tilting for Moment Condition Models with
Missing Data,” The Review of Economic Studies, 2012, 79 (3), 1053–1079.

Heckman, James, Hidehiko Ichimura, Jeffrey Smith, and Petra Todd, “Characterizing Selection Bias Using
Experimental Data,” Econometrica, 1998, 66 (5), 1017–1098.

Heckman, James J., Hidehiko Ichimura, and Petra Todd, “Matching as an econometric evaluation estimator:
Evidence from evaluating a job training programme,” The Review of Economic Studies, 1997, 64 (4), 605–654.

Khan, Shakeeb and Elie Tamer, “Irregular Identification, Support Conditions, and Inverse Weight Estimation,”
Econometrica, 2010, 78 (6), 2021–2042.

Rubin, Donald B., “For Objective Causal Inference, Design Trumps Analysis,” The Annals of Applied Statistics,
2008, 2 (3), 808–840.

Sant’Anna, Pedro H. C. and Jun Zhao, “Doubly robust difference‐in‐differences estimators,” Journal of
Econometrics, 2020, 219 (1), 101–122.

and Qi Xu, “Difference‐in‐Differences with Compositional Changes,”Working Paper, 2026.

129/130



References iv

Sequeira, Sandra, “Corruption, Trade Costs, and Gains from Tariff Liberalization: Evidence from Southern
Africa,” American Economic Review, 2016, 106 (10), 3029–3063.

Tibshirani, Robert, “Regression Shrinkage and Selection via the Lasso,” Journal of the Royal Statistical Society:
Series B (Methodological), 1996, 58 (1), 267–288.

130/130


	Act I: Why Covariates?
	Act II: Three Estimation Strategies
	Regression Adjustment
	Inverse Probability Weighting
	Doubly Robust DiD

	Act III: The Design Phase & Full Applications
	Act IV: Repeated Cross-Sections
	Act V: Machine Learning & DiD
	Taking Stock
	References

