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Act I: Why Covariates? — Two applications, conditional parallel trends, TWFE fragility

Act ll: Three Estimation Strategies — Regression adjustment, IPW, doubly robust

Act lll: The Design Phase & Full Applications — Balance diagnostics, Medicaid, Brazil CAPS
Act IV: Repeated Cross-Sections — Compositional changes & new solutions

Act V: Machine Learning & DiD — LASSO, cross-fitting, causal forests
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Act I: Why Covariates?



Where We Left Off

Lecture 5 established the 2x2 DiD framework:

1. SUTVA + No-Anticipation + Unconditional Parallel Trends = ATT identified
2. DiD-by-hand = TWEFE regression (numerically identical in 2x2)

3. Influence functions provide asymptotic theory; always cluster

4. Weights define the target parameter

But is unconditional parallel trends realistic?

What if treated and comparison units differ systematically in pre-treatment characteristics?
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Meet the Applications

Application 1: ACA Medicaid Expansion (Baker, Callaway, Cunningham, Goodman-Bacon and
Sant’Anna, 2025)

Effect of Medicaid expansion on county-level mortality (2x2: 2013-2014)
Expansion states differ from non-expansion states in demographics, income, poverty

Application 2: Brazil Psychiatric Reform (Dias and Fontes, 2024)

Community mental health centers (CAPS) replaced psychiatric hospitals

5,180 municipalities, staggered rollout 2002-2016

For this lecture: 2x2 — CAPS adopters in 2006 vs. never-treated, pre/post = 2005/2007
Outcome: assault homicide rate per 10,000 population

Both applications: treated and comparison groups differ in pre-treatment characteristics

Question: Can we still use unconditional PT?
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Medicaid: How Different Are the Groups?

Treated states (expanded Medicaid in 2014) vs. comparison states (never expanded)

Let’s look at pre-treatment characteristics:

% below poverty line, median household income
% white, % Hispanic, urbanization rate
Pre-treatment mortality trends

Do these groups look comparable?
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Medicaid: Covariate Balance

Covariate Imbalance: Medicaid Expansion
Population-weighted standardized differences (treated — comparison)
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Medicaid: Raw Trends

Raw Mortality Trends: Medicaid Expansion
Population-weighted mean crude mortality rate (ages 20-64)

400 Expansion :
!

w @w
=3 @
S S

Deaths per 100,000
@
®
s

320

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
Year

-~ Expansion -4 Non-Expansion

Pre-treatment trends look roughly parallel, but given the covariate differences we just saw — is

unconditional PT enough?
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Brazil CAPS: Covariate Imbalance Across Dimensions

Covariate Distributions by Treatment Group
Pre-treatment (2005): CAPS municipalities differ on multiple dimensions
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Brazil CAPS: Standardized Differences

Covariate Balance: Brazil CAPS Application

Standardized difference (treated — comparison), raw
Log Population
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Brazil CAPS: Raw Trends

Homicide Rates: CAPS Adopters vs. Never Treated
Municipal average, assault homicides per 10,000 population
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Again, trends look roughly parallel — but given the covariate imbalance we just saw, is

unconditional PT plausible here? )
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The Core Idea: Conditional Parallel Trends

Sometimes the unconditional PT assumption is too strong
But PT may be plausible within subgroups defined by pre-treatment characteristics X;

Intuition: “Among counties with similar demographics, treated and comparison counties would
have trended similarly absent treatment”

This is the conditional parallel trends assumption

Key insight: Covariates can make the PT assumption more credible, but we need appropriate
estimation methods to exploit them.
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Notation: Review from Lecture 5

Two periods: t = 1 (pre-treatment) and t = 2 (post-treatment)
Two groups: G; € {2, 00}, with D; = 1{G; = 2}
Potential outcomes: Y;;(g) for each treatment timing g

Target parameter:

ATT = E[YM:Q (2) — Yi}tZQ(OO) | G,‘ = 2]
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Notation: New for Covariates

X;: vector of pre-treatment covariates (observed before treatment)

=
x

S~—"
I

P(D; = 1 | X;): generalized propensity score
p = P(D; = 1) = E[Dj]: unconditional treatment probability

T; € {1,2}: period indicator for unit i (in panel data, each unit observed in both; in RCS, T; is the
sampling period)

Later we will also define:

m4 (x) = E[AY; | X; = x, D; = d]: conditional mean outcome change
CATT(x): conditional ATT given X; = x
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Conditional Parallel Trends Assumption

We formalize the idea that parallel trends may hold only within covariate subgroups:

Assumption (Conditional Parallel Trends)
E[Yit=2(00) = Yit=1(00) | X;, Di = 1] = E[Yj t=2(c0) — Yjt=1(c0) | X;,D; = 0] a.s.

In words: conditional on X;, the average evolution of Y(oo) is the same for treated and
comparison units

Allows for covariate-specific trends: outcome evolution can depend on X;
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The Overlap Assumption

For identification, we also need treated units to have comparable controls at every covariate value:

Assumption (Strong Overlap)
For some ¢ > 0,

P(D;=1|X;) <1—¢€ almostsurely.

Every treated unit must have comparison units with similar covariate values

Without overlap: we cannot learn about the counterfactual for some treated units

For identification: can relax to e = 0 (boundary case)

For standard inference: need ¢ > 0 to avoid irregularity (Khan and Tamer, 2010)

Closely related to overlap conditions in the matching/weighting literature (Crump, Hotz, Imbens

and Mitnik, 2009)
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Conditional vs. Unconditional PT: A Visual
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How Conditional PT Can Break Unconditional PT
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Identification of ATT under Conditional PT

Assumptions: A1. SUTVA  A2. No Anticipation: Y;;—1(2) = Yit=1(c0) AS. Conditional PT  A4. Overlap
Step 1: Identify the conditional ATT:
CATT(X) = E[AY,‘ | X,‘ =X, D,‘ = 1] - ]E[AY,‘ | X,' = X, D,‘ = 0]

where AY; =Yty — Yj 1.

Step 2: Integrate over the treated covariate distribution:

ATT = E[CATT(X;) | D; = 1]

We identify a very rich object: the conditional ATT function CATT(x)

The unconditional ATT follows by averaging over treated units’ covariates
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The Practitioner’s Instinct: Add X to TWFE

The most common approach in applied work: “just add covariates to the regression”

Yit = i+ M+ 7Dt + X[ 18 + it
Recall from Lecture 5: without covariates, TWFE = DiD-by-hand in 2x2

Many practitioners expect the same logic extends: “7 should estimate the ATT after controlling
for X"

This intuition is wrong.

Adding X to TWFE is not the same as allowing for covariate-specific trends. The regression
imposes strong — and often hidden — restrictions.
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What Goes Wrong with TWFE + Covariates

Consider the TWFE specification with pooled data:
Yie = ao + 50D + Aor{Ti=2} + 0" (Di - 1{Ti=2}) + Xia1 + &

Write out the implied conditional means:

E[Yi¢ | Di=0,T=1,X] = ao + Xjaa

E[Yit | Di=0,T=2,X] = éo + Ao+ X/ én

]E[Y,"t ‘ D; = 1,T: ].,X,'] = a0+ Y +X,{5z1
[ ]

ElYit | Di=1,T=2,X]=d0+ 7 + Xo + /g(t)wfe + X{ay
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TWEFE Imposes No Covariate-Specific Trends

From the comparison group:

EY| D=0,T=2X-E[Y|D=0T=1X =X
The time trend does not depend on X!

Similarly for the treated group:

EY|D=1,T=2X —E[Y|D=1T=1X =X + g

This means:

ATT(X) = ¥ for all X
Treatment effects are forced to be homogeneous across covariate subgroups!

The very reason we introduced covariates — allowing for covariate-specific trends — is assumed

away by the TWFE specification
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TWEE forces homogeneous trends — but how bad is the
bias in practice?

A controlled simulation where ATT = 0.



TWEFE Bias: Monte Carlo Evidence

Data generating process from Sant’/Anna and Zhao (2020):
Xi ~N(0,1),j=1,...,4
Propensity score: logistic in fps(X) = 0.75(—X1 + 0.5X2 — 0.25X3 — 0.1X4)
Outcome regression: freg(X) = 210 + 27.4 X1 + 13.7(X2 + X5 + X4)
Outcomes: Yj¢(00) =t - freg(Xi) + Vi + i
True ATT(X) = 0 forall X

TWEFE regression: Yj; = o +vDj + M{T;=2} + 7(D; - 1{Tij=2}) + XI5 + i
Results (n = 1,000, 1,000 MC replications):

Average 7tfe: —16.36 (true ATT = 0) — severely biased!
Coverage of 95% Cl: 0% — does not control size!
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TWEFE Bias: Density Comparison

TWEFE with Covariates Is Severely Biased
DGP: Sant'’Anna & Zhao (2020). n = 1,000; 10,000 replications. True ATT = 0.

0.15

0.10

Density

0.05

0.00

e Y

TWFE Estimate

23/130



The simulation used time-invariant X; in a pooled

regression.

What if covariates vary over time and we use fixed
effects?

Caetano & Callaway (2024): a formal decomposition.



The FE Specification and Its Hidden Transformation

Caetano and Callaway (2024) analyze the standard fixed effects specification:
Yie = 0c+mi + oDt + Xi 1 + ey

With two periods, the within/FD transformation eliminates #;:
Z&\G = CM[);‘% Z&)(Hg +’eri
The transformation also transforms the covariates: only AX; enters, not levels X; ;

Time-invariant covariates Z; (e.g., race, region) are completely absorbed — cannot control for
them

This is the hidden linearity bias: the FE/FD form reveals restrictions that the levels specification
obscures
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Three Sources of Bias (Caetano and Callaway, 2024)

When conditional PT holds but TWFE is used with covariates:

By = E[w(AX) - ATT(X) |[D=1]+ BIASs + BIAS; + BIASc
N—— N—— N——

weighted ATT time-invariant  levels vs. changes  nonlinearity

BIAS,: Time-invariant covariates Z; absorbed by first-differencing — cannot control for them
BIASg: TWFE only controls for changes AX, not levels X;_;
BIAS(: Linear projection # conditional expectation when the relationship is nonlinear

Even the “weighted ATT” uses non-transparent weights w(AX) that can be negative
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C&C showed TWFE with covariates introduces three

sources of bias.
How do these biases play out in real data?

Back to the Brazil application.



Back to Brazil: All Estimators Compared

ATT Estimates: CAPS and Homicide Rates
Callaway & Sant’Anna (2021), 30 covariates + state FE

Unconditional DiD

TWFE + X

Adj

IPW (Hajek)

Doubly Robust

'
-0.2 0.0 0.4 0.6

0.2
ATT (homicides per 10,000)

30 baseline covariates + state FE from Dias and Fontes (2024); RA, IPW, DR use levels, TWFE
uses time-varying form

Overlap warning: only 216 treated municipalities with 30 covariates + state FE
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TWEE with covariates is fragile.

We need better tools: separate identification from
estimation.



Act Il: Three Estimation Strategies



Three Faces of DiD with Covariates

Regression Inverse Probability
Adjustment (RA) Weighting (IPW)
Model comparison group’s Reweight comparison group
outcome evolution m4=0(X) to match treated via p(X)
v’ outcome correct = consistent v’ PS correct = consistent
X outcome wrong = biased x PS wrong = biased

Two chances to get it right

Doubly Robust
(DR)

Consistent if either model is correct
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Act ll: Three Estimation Strategies

Regression Adjustment



The First Face of DiD with Covariates: Regression Adjustment

Idea: Model the comparison group’s outcome evolution E[AY; | X;, D; = 0], then impute for
treated units

With panel data, the ATT simplifies to:

ATT =E[AY; |D;=1] - E [md;(’(x,-) | D; = 1] —E {mdA:l(X,-) —md=0(X) | D = 1}
where m4=0(x) = E[AY; | X; = x,D; = 0]
Only need to model one conditional expectation: the comparison group’s AY given X

Originally proposed by Heckman, Ichimura and Todd (1997) and Heckman, Ichimura, Smith and
Todd (1998)
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Regression Adjustment: Estimation

We need to estimate m4="(x) = E[AY; | X; = x, D; = 0]. A convenient choice is a linear working
model: m{=0(X;) = X! 5,

“ —1
Step 1: Estimate 3, by OLS using comparison units only: g8, = (Zi:Di:O X;X{) Zi:D;:O XiAY;
Step 2: Impute for treated and average: 67 = D (AY,- - X{/?n>

Any estimator of mdA:(’ (x) can be plugged in — kernel regression, random forests, LASSO, etc.
Linear model is popular but consistency requires correct specification

Key difference from TWFE: regression is estimated on the comparison group only, then predic-
tions are made for treated units. This allows covariate-specific trends.

32/130



Worked Example: RA with 5 Units

Unit i D; Xi (poverty %)  AY; (mortality change)
1 0 (comparison) 12 -2.0
2 0 (comparison) 18 —-0.5
3 0 (comparison) 22 +1.0
4 1 (treated) 20 -3.0
5 1 (treated) 15 —-2.5

p 1: Regress AY; on X; using comparison units only = B =0.30
p 2: Impute for treated: M4-°(20) = 0.30 x 20 = 6.0, MA0(15) = 0.30 x 15 = 4.5

p 3: ATT = 1[(=3.0 - 6.0) + (2.5 — 4.5)] = —8.0

1
2
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RA: Key Properties

Consistent when the outcome model m4=(x) is correctly specified
Inconsistent when m4°(x) is misspecified
Works well when:

X is low-dimensional

Functional form is known or well-approximated
Good overlap (but does not explicitly reweight)

Q: If RA is inconsistent under misspecification, why not always use a very flexible model for m‘i:O(x)?
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RA in Practice: What Are We Actually Estimating?

Medicaid Expansion Brazil CAPS Reform
AY;: change in county mortality AY;: change in homicide rate
X;: poverty, income, % white, % Hispanic, X;: 30 municipal characteristics + state FE
urbanization m4=C(X;): “How do homicide rates change in
m‘i\fo(Xi): “How does mortality change in non-CAPS municipalities with similar
non-expansion counties with similar characteristics?”

demographics?”

The RA recipe (same in both applications):
1. Estimate md;O(x) using comparison units only
2. For each treated unit, plug in its X; to get the predicted counterfactual change rﬁdA:O(X,-)

3. ATT = % > D=1 (AY; —m%(X;)): mean observed change minus mean predicted

counterfactual change among treated
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RA models outcomes directly.

What if we instead reweight observations?
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Act ll: Three Estimation Strategies

Inverse Probability Weighting



The Second Face: Inverse Probability Weighting

Idea: Instead of modeling outcomes, reweight the comparison group to “look like” the treated
group in covariates

Model the propensity score: p(X;) = P(D; =1 | X;)

Originally proposed by Abadie (2005):

The weights = ) upweight comparison units that “resemble” treated units
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IPW: Normalized (Hajek) Weights

Abadie (2005)’s IPW is of the Horvitz-Thompson type (weights do not sum to 1)

Sant’Anna and Zhao (2020) proposed Hajek-type (normalized) weights:

p(X) (1-Dj)

i D; T—p(%)
ipw o PAi i
AlTsa = E {( ED] g [P(Xi) (1*Di)] )AY,}
—— 1—p(X;)
Dj
o wo (D, X;)

Normalized weights sum to 1 in each group = more stable in finite samples

Both versions are consistent under correct propensity score specification
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IPW Reweighting: The Intuition

Before Reweighting After IPW Reweighting

density density
AN AN
IPW
weights
Treated Treated
Reweighted
> X (poverty rate} » X (poverty rate)
Misaligned! Aligned!
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IPW: Estimation and Key Properties

Working model: Logistic p(Xi; vo) = A(XIv0)
Step 1: Estimate -, by logit MLE
Step 2: Plug in p(X;) and compute weighted averages

Influence function accounts for estimation error in 4,

Consistent when propensity score is correctly specified
Inconsistent when propensity score is misspecified — even if outcome model is known!
Overlap is critical: if p(X;) =~ 1, weights explode

40/130



IPW in Practice: What Are We Actually Reweighting?

Medicaid Expansion Brazil CAPS Reform
p(X;): prob. county’s state expands p(X;): prob. municipality adopts CAPS in
Medicaid, given demographics 2006, given 30 covariates + state FE
Counties “resembling” expansion states get Non-CAPS municipalities resembling
upweighted; dissimilar ones downweighted adopters get upweighted
6 covariates — overlap manageable Overlap concern: only 216 treated with

high-dimensional X

The IPW recipe (same in both applications):

1. Estimate p(X;) using both treated and comparison units (e.g., logit)
2. Reweight comparison units by p(X;)/(1 — p(X;)): units resembling treated get more weight

3. ATT: weighted mean AY; among treated minus reweighted mean among comparison
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RA vs. IPW: Complementary Strengths

RA IPW
Models Outcome evolution Treatment assignment
Consistent when m?=C(x) correct p(x) correct
Fails when Outcome misspecified PS misspecified
Sensitive to Functional form Overlap violations

RA and IPW have complementary failure modes. Can we combine them to get robustness against
either type of misspecification?
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RA and IPW each rely on one model being correct.

Can we combine them for robustness against either type of misspecification?

43/130



Act lI: Three Estimation Strategies

Doubly Robust DiD



The Third Face: Doubly Robust Estimation

Key idea: Combine outcome modeling (RA) with reweighting (IPW)

Consistent if either the outcome model or the propensity score is correctly specified (but not
necessarily both)

DR DiD Estimand (Sant’Anna and Zhao, 2020):
ATTY — E[(wl(Di) - w()(D;,Xi)) (AY,- - m‘i:O(X;)H

Treated weight Comparison weight
D; p(Xi) (1—Di)
wy(Dy) = Cxy — 1)
]E[D,'] WO(DHXI) - E[p(X;)(l—D;)}
1—p(X;)
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Why Is It Doubly Robust?

The DR estimand has two equivalent decompositions:

ATT" = ATT?Y —E [(Wl(Di) — Wo(Di, Xi)) m‘izo(xiﬂ

IPW

Outcome-based bias correction

- &LW—E{WO(Di»Xi) (AYf - mi:0(xi)>}
RA

Reweighting-based bias correction

If p(x) correct: wy rebalances = first line’s correction is mean-zero = consistent
If m%=°(x) correct: residuals are mean-zero = second line’s correction vanishes = consistent
If both wrong: generally inconsistent, but bias is product of two errors
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Double Robustness: A Scorecard

PS Correct PS Wrong

e

9 RA v RA v
S IPW v IPW x
a4

e DR v DR v
%" RA x RA x
3 IPW IPW x
5 DR v DR x

DR: consistent in 3 out of 4 scenarios — two chances to get it right
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DR in Practice: Two Models, Two Chances

Medicaid Expansion Brazil CAPS Reform
OR: how does mortality change in OR: how do homicide rates change in
non-expansion counties with similar non-CAPS municipalities with similar
demographics? characteristics?
PS: which counties look like expansion PS: which municipalities look like CAPS
counties based on demographics? adopters, given 30 covariates + state FE?
6 covariates — both models tractable High-dimensional X — DR’s insurance

especially valuable

The DR recipe (same in both applications):
1. Estimate both m%=°(x) (on comparison units) and p(X;) (on all units)
2. Combine: use IPW weights and outcome residuals AY; — mgzo(xi)
3. If either model is correct, the other’s errors wash out = two chances to get it right
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DR is consistent if either model is correct.

But what happens to precision when both are right?
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The Semiparametric Efficiency Bound

Q: If DR gives us two chances, why care about getting both models right?

Sant’Anna and Zhao (2020) derive the semiparametric efficiency bound for ATT under
conditional PT

The bound equals the variance of the efficient influence function:
Ve = (w1 (D) — wo(Dy, Xi;po)) (AY; — m&0(X:)) — wi(Dy) - ATT

The DR estimand’s IF equals the efficient IF when both models are correct

This means: DR attains the semiparametric efficiency bound when both m‘i‘zo and p are correctly
specified — it is locally efficient
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Improved vs. Traditional DR

Sant’Anna and Zhao (2020) propose two versions:

Traditional DR (drdid_panel): standard logit PS + OLS outcome model

Improved DR (drdid_imp_panel): inverse probability tilted PS (Graham, Pinto and Egel, 2012) +
weighted OLS outcome model

The improved version ensures the estimated PS satisfies an exact balancing condition, improving
finite-sample performance

Both are doubly robust and locally efficient under correct specification

Bonus: The improved DR estimator is also doubly robust for inference — no need to adjust
standard errors for first-step estimation of p(X;) or mOA:O(Xi)
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RA, IPW, and DR have different robustness and efficiency
properties.

Do these properties hold in finite samples?



Monte Carlo: Comparing All Estimators

DGP with true ATT = 0:

4 DGPs: vary correct/incorrect outcome and PS models
DGP 1: Both correctly specified

DGP 2: PS misspecified, outcome correct

DGP 3: PS correct, outcome misspecified

DGP 4: Both misspecified

7 estimators: Oracle (infeasible), DR-Improved, DR-Traditional, IPW, IPW-Normalized, RA, TWFE

n = 500, 1,000 MC replications
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Monte Carlo: DGP 1 — Both PS and OR Correctly Specified

DGP 1: Both correct
True ATT = 0. n =1,000; 1,000 replications. TWFE omitted (off-scale). IPW x-axis differs.

Regression DR (Traditional) DR (Improved) IPW (Hajek)
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1 1 1
' 3 1 3 '
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0.0 3
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Monte Carlo: DGP 2 — Propensity Score Misspecified

DGP 2: PS wrong, OR correct
True ATT = 0. n =1,000; 1,000 replications. TWFE omitted (off-scale). IPW x-axis differs.

Regression DR (Traditional) DR (Improved) IPW (Hajek)
4 4
} Y \ 04
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Monte Carlo: DGP 3 — Outcome Regression Misspecified

DGP 3: PS correct, OR wrong
True ATT = 0. n =1,000; 1,000 replications. TWFE omitted (off-scale). IPW x-axis differs.

Regression DR (Traditional) DR (Improved) IPW (Hajek)
T T 0.4 T T
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Monte Carlo: DGP 4 — Both Misspecified

DGP 4: Both wrong
True ATT = 0. n =1,000; 1,000 replications. TWFE omitted (off-scale). IPW x-axis differs.

Regression DR (Traditional) DR (Improved) IPW (Hajek)
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Monte Carlo Summary: Bias and RMSE

DGP 1 DGP 2 DGP 3 DGP 4

Bias RMSE Bias RMSE Bias RMSE Bias RMSE

TWFE —20.9 21.1 —20.5 20.6 —28.2 28.3 —164 16.5
Regression 0.0 0.1 0.0 0.1 —6.1 6.2 —5.2 5.3
IPW (Hajek) 0.0 1.2 —1.9 2.2 0.0 1.3 —4.0 4.2
DR (Trad.) 0.0 0.1 0.0 0.1 0.0 1.0 —3.2 3.5
DR (Impr.) 0.0 0.1 0.0 0.1 0.0 1.0 —1.0 2.6

DR unbiased whenever at least one model is correct (DGPs 1-3)
TWEFE severely biased in all DGPs — nonlinear X-dependence breaks linearity

DGP 4: DR has smaller bias (product of two misspecification errors) — but is not consistent
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Monte Carlo Summary: Coverage

DGP 1 DGP 2 DGP 3 DGP 4
TWFE 0.0% 0.0% 0.0% 0.0%
Regression 93.9% 94.9% 83.8% 1.1%
IPW (Hajek) 94.0% 83.7% 95.2% 22.0%
DR (Trad.) 95.3% 94.9% 94.6% 28.4%
DR (Impr.) 94.8% 94.4% 94.6% 26.8%

DR is the only estimator that performs well across all scenarios. TWFE should not be the default
when covariates matter.
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Two chances to get it right, and efficient when both
models are correct.

Doubly robust is the default for DiD with covariates.



Act lll: The Design Phase & Full Applications




Covariate Balance and the Plausibility of PT

If covariates that are important for outcome changes in the absence of treatment are unbalanced
across treated and comparison groups, this raises serious concerns about unconditional PT
(Abadie, 2005)

Intuition: if groups differ in X, and X drives AY(c0), then E[AY(c0) | D = 1] # E[AY(o0) | D = 0]

This motivates covariate balance diagnostics as part of any DiD analysis — following the broader
principle that “design trumps analysis” (Rubin, 2008; Baker et al., 2025)

Key diagnostics:

Unweighted standardized differences: XX

1/(s%+53)/2

IPW-weighted standardized differences: does reweighting restore balance?
Propensity score overlap: are there regions of X with no comparison units?

Good balance = more credible results, less sensitivity to specification choices
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Medicaid: Context and Covariates

Setting: Effect of Medicaid expansion on county-level mortality (Lecture 5 data)

Now incorporate county-level covariates:

% white, % Hispanic, % female
Unemployment rate, poverty rate
Median household income

Why covariates matter: Expansion states systematically differ from non-expansion states on
these characteristics

Conditional PT more plausible than unconditional PT: “Among counties with similar
demographics, mortality trends would be parallel absent expansion”

61/130



Medicaid: Covariate Imbalance (Recap)

Covariate Imbalance: Medicaid Expansion
Population-weighted standardized differences (treated — comparison)

Median Income ($K)
Unemployment Rate

Poverty Rate A

% White

% Hispanic

% Female A
)
i
i
i
!
i
i
i
i
i
i
i
i

'
-0.25 0.00 0.25 0.50
Standardized Difference
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Medicaid: Propensity Score Overlap

Propensity Score Distributions
Assessing overlap for Medicaid expansion analysis

Density

0
0.00 0.25 0.50 0.75
Estimated Propensity Score

D Comparison D Treated

Comparison counties’ PS mostly within the support of expansion counties

A few untreated counties have p(X;) close to 1 — did and DRDID trim units with p(X;) > 0.995 by
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Medicaid: Covariate Balance Table (Population-Weighted)

Covariate Treated Comparison Std. Diff.
% White 79.5 77.9 +0.115
% Hispanic 18.9 17.0 +0.107
% Female 50.1 50.5 —0.238
Unemp. Rate 8.0 7.0 +0.503
Poverty Rate 15.3 17.2 —0.375
Median Income ($K) 57.9 493 +0.685

Expansion counties are wealthier, higher unemployment, less poverty

Several covariates exceed +0.25 threshold — unconditional PT is questionable
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Medicaid: All Estimators Compared (Population-Weighted)

ATT Estimates: Medicaid Expansion and Mortality
2x2 DiD (2013-2014), county-level covariates, population-weighted

Unconditional DIiD ——e—"1
!

!

TWFE + X ; :

1

1

Regression l—.—;—l

!

1

]

IPW (Hajek) L T

i

!

i

DR (Traditional) —_——

1

1

1

DR (Improved)

!

!

-20 -10 10

0
ATT (deaths per 100,000)

6 baseline covariates, population-weighted; all estimates negative (mortality reduction)

All estimators broadly agree; wide Cls reflect limited power at county level
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Medicaid: What We Learned

Wide confidence intervals — limited power with county-level data

None of the estimates are statistically significant

But the sensitivity of estimates to covariate inclusion is itself informative:
If results change dramatically with covariates, conditional PT is substantively different from unconditional
PT
If results are stable, the unconditional DiD was already capturing the right comparison

Good overlap and balance — the “design” checks out

Covariates matter for credibility even if they do not dramatically change point estimates
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Medicaid had 6 covariates and good overlap.
What happens with a richer covariate set?

Brazil’s psychiatric reform: 30 covariates + state FE.



Brazil CAPS: Full Context

Dias and Fontes (2024): Brazil's 2002 Psychiatric Reform created CAPS (community mental
health centers) replacing psychiatric hospitals

Staggered rollout across 5,180 municipalities (2002-2016)
Our 2x2 setup: g = 2006 (early CAPS adopters) vs. never-treated; pre = 2005, post = 2007
Outcome: Assault homicide rate per 10,000 population

30 covariates: Demographics, income, transfers, poverty, geographic characteristics, health
infrastructure (from 2000 census and administrative data) + state fixed effects

Surprising finding: CAPS adoption increases homicides — consistent with the Penrose
hypothesis (see Dias and Fontes, 2024) that deinstitutionalization reduces incapacitation
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Brazil: Covariate Balance

Covariate Balance: Brazil CAPS Application
Standardized difference (treated ~ comparison), raw
Log Population
Log Health Spending A
Rural Share A
Theil Index A
Rainfall A
Temperature A
Dist. to Capital
Altitude
lliteracy Rate A
Poverty Rate A
Health Estab. (2002) A
Log GDP p.c. A

Municipality Area

A
A
MH Facilities (2002) !

05 1.0 15 20
Standardized Difference
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Brazil: Propensity Score Overlap

Propensity Score Distributions: Brazil CAPS
30 baseline covariates + state FE, logistic regression

0.00 0.25 0.50 0.75

Estimated Propensity Score

[] Never-Treated [[] cAPS (g = 2006)

Massive spike near O: most untreated municipalities look nothing like CAPS adopters

But p(X;) =~ 0 = weights 1f(px()x) ~ 0: these units naturally drop out of IPW

The real concern: p(X;) ~ 1 among untreated, where weights explode
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(h(X) € [0.01,0.995])

Brazil: Overlap After Trimming Untreated (

Overlap After Trimming Untreated: p(X) 0 [0.01, 0.995]
Untreated: 1607 / 3829 remain (dropped 2222); Treated: all 216 retained

0
0.00 025 050 075
Estimated Propensity Score

[[] Never-Treated [[] cAPS (g = 2006)

Trimming untreated with p(X;) < 0.01 or > 0.995 drops 58% of comparison (2,222/3,829)
All 216 treated units retained — trimming applies only to untreated

Still a large spike near O among remaining untreated
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(h(X) € [0.025,0.995))

Brazil: Overlap After Trimming Untreated (

Overlap After Trimming Untreated: p(X) 0 [0.025, 0.995]

Untreated: 913 / 3829 remain (dropped 2916); Treated: all 216 retained

Density

0
025 050 075
Estimated Propensity Score

[[] Never-Treated [[] cAPS (g = 2006)

Trimming untreated at 0.025 drops 76% of comparison (2,916/3,829) — only 913 remain

Overlap improves, but treated distribution still much more spread out

Aggressive trimming changes the effective comparison group substantially
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(P(X) € [0.05,0.995))

Brazil: Overlap After Trimming Untreated (

Overlap After Trimming Untreated: B(X) O [0.05, 0.995]
Untreated: 493 / 3829 remain (dropped 3336); Treated: all 216 retained

10.0

0.00 025 0.50
Estimated Propensity Score

[[] Never-Treated [[] caPs (g = 2006)

Trimming untreated at 0.05 drops 87% — only 493 of 3,829 remain

Overlap finally reasonable, but we lost most of the comparison group
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Brazil: Results — All Estimators

ATT Estimates: CAPS and Homicide Rates
Callaway & Sant'/Anna (2021), 30 covariates + state FE

Unconditional DiD

TWFE + X Fr @ |

Regression Adj. F

IPW (Hajek) t

Doubly Robust I

-0.2 0.0 0.2 0.4 0.6
ATT (homicides per 10,000)
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Brazil: Event Study with Covariates

Event Study: CAPS and Homicides

Callaway & Sant'/Anna (2021) with and without covariates

15

}HHH

ATT (homicides per 10,000)
°
&
——
——
—_——

-0.5

0 5
Relative Time to CAPS Adoption

-o- With Covariates (DR) - Without Covariates
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Key Insight: Covariates and Credibility

In both applications, covariates may not dramatically change point estimates
But they dramatically change credibility:

Unconditional PT is a strong assumption when groups differ

Showing that conditional PT gives similar results strengthens the case

Showing that they differ reveals that the baseline was contaminated

The “design phase” (balance diagnostics) is crucial for transparency

Bottom line: Even when estimates are stable, the exercise of checking matters
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We have seen the theory, diagnostics, and empirical
results.

How do we implement this in practice?



Software: The did Package (Primary)

library(did)

# Callaway & Sant'Anna (2021) with covariates
# Uses doubly robust estimation by default
result <- att_gt(

yname = "1_homicide",

tname = '"year",

idname = "sid",

gname = "first_treat",

xformla = ~ x1 + x2 + x3,

data = my_data,

control_group = "notyettreated",

est_method = "dr", # DR is the default
base_period = "universal" # use first period as base

# Aggregate to event study
es <- aggte(result, type = "dynamic")
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Software: The DRDID Package (Low-Level)

library (DRDID)

# Panel data: Doubly Robust DiD (improved)

result_dr <- drdid(yname = "y", tname = "post',
idname = "id", dname = "treat",
xformla = ~ x1 + x2 + x3,

data = panel_data, panel = TRUE)

# Also available: ipwdid(), ordid()

# For low-level functions, note the intercept convention:
#  drdid_imp_panel: needs cbind(1, X) explicitly

#  twfe_did_panel: adds intercept internally (do NOT add)
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Practitioner Checklist

Step-by-step guide for DiD with covariates:

1. Specify: Which pre-determined covariates make conditional PT plausible? Only
condition on X; measured before treatment and not affected by it.

. Check overlap: Plot propensity score distributions. Trim if needed.
. Balance: Compare covariate means across treated and comparison groups.
. Estimate: Use DR as the default. Report RA and IPW as robustness.

Sensitivity: How much do results change with/without covariates?

(SIS, I N VRN

For repeated cross-sections: Test for compositional changes (see Act IV).
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What if we observe repeated cross-sections instead of a
panel?

New challenges: compositional changes and
stationarity.



Act IV: Repeated Cross-Sections




Panel vs. Repeated Cross-Sections: Recap

Panel data: Observe same units in both periods
Can compute AY; =Y ;—> — Y~ directly
Only need one outcome model: m%=° (x) = E[AY; | X; = x,D; = 0]

Repeated cross-sections (RCS): Different units sampled each period
Cannot first-difference
Need to model outcomes separately in each period
Requires additional assumptions about the sampling process

From Lecture 5: panel data is strictly more efficient than RCS

With covariates, the gap between panel and RCS has additional nuances
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RCS Sampling Assumption

RCS Sampling

The pooled RCS data {Y;, D;, X;, Ti}!'_; consist of iid draws from the mixture distribution

P(Y<y,D=d, X<x, T=t) =1{t=2} - A - P(Yo<y, D=d, X<x | T=2)
+1{t=1}-(1-)\)-P(Y1 <y, D=d, X<x | T=1)

where (y,d,x,t) € R x {0,1} x Rk x {1,2} and A = P(T = 2) € (0, 1).

Each unit i is observed in exactly one period; Y; = 1{Tj=2} - Yi s + 1{Tj=1} - Yi;
In panel data, we observe (Y; 1, Y; ) for each unit; in RCS, we observe Y; for one period only

Define outcome regressions per cell: m¥(x) = E[Y; | D; = d,T; = t, X; = X|
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Conditional PT for Repeated Cross-Sections

The conditional PT assumption is the same as in the panel case (Sant’Anna and Zhao, 2020):
]E[Y,-,tzg(oc) — Y,'J_-:l(OO) | D,' = 17X,'] = ]E[Y,-’tzg(oo) — Y,'7t:1(00) | D,' = 07X,'] a.s.
What changes with RCS is the data structure, not the assumption:

Different units sampled in each period = cannot first-difference

Need to model m{=°(x) = E[Y | D = 0, T = t,X = x] separately fort = 1,2

Key additional requirement: stationarity of the joint distribution of (D, X) across sampling
periods (Assumption 2(b) in Sant’/Anna and Zhao, 2020)

With panel data, stationarity is automatic (same units observed twice)
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The Stationarity Assumption

Assumption (Stationarity / No Compositional Changes)
The joint distribution of (G;, X;) is the same across time periods:

G, X)) | Ti=12 (G, X)) | Ti =2

In words: the “composition” of units sampled in each period is stable
Automatic in panel data (same units observed each period)

Not automatic in RCS: differential migration, attrition, survey redesigns can change who is
sampled

Standard DR DiD estimators for RCS assume stationarity
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Compositional Changes: A Visual

Stationary Compositional Change

density density

A A

Same composition Shifted composition
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IPW for Repeated Cross-Sections

With RCS, IPW must reweight across both treatment groups and time periods:

IPW for RCS (Abadie, 2005):

/XT14pw,m _

1 [D=p(X) T—A
E[D] E[l—p(X) ML= N Y}

Compared to panel IPW, the RCS version uses an additional reweighting factor % that
adjusts for the time dimension
Still requires the same overlap condition: p(X;) < 1 a.s.

The propensity score p(X) = P(D = 1 | X) is estimated on pooled data across both periods — this
is valid under the no-compositional-changes assumption
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Efficient DR DiD for Repeated Cross-Sections: The Estimand

The efficient DR estimand, derived from the EIF (Sant’Anna and Zhao, 2020), models all four (d, t)
cells:

DN

dr,r
ATTH — | [ ED

(m& 00 - mi(x)

RA component
+ (WS (Y = miZ ) - wisd (Y - mi=l00) )
treated bias correction
- (wisp (¥ - mi=300) — Wit (v - mi=t0) ) |

comparison bias correction
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RCS Efficient DR DiD: The Four Hajek Weights

Where m4 (x) = mi_, (x) — m¢_, (x). The estimand requires four Hajek weights — two for the treated
group, two for the comparison:

Treated weights (simple: select treated at each period, normalize):

D,' y I{T,' :t}

W?ZI(D:‘, Ti) = m

fort=1,2

Comparison weights (reweight comparison to match treated covariate distribution):

p(X) (1—-Di) 1{T=t}

Wi=(D;, T, Xi) = e fort=1,2
E 2000

1—-p(X)
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Compositional Changes: The Problem

Compositional changes: the distribution of (G, X) differs across periods
Happens when:

Migration: people move in/out of regions across survey waves

Attrition: some types of units drop out differentially

Survey redesign: sampling frame changes between waves

Natural disasters, policy changes that affect who is “at risk”

When stationarity fails, standard RCS estimators are biased

The bias arises because the “comparison group trend” is contaminated by compositional shifts
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Sant’Anna & Xu (2026): DiD with Compositional Changes

Sant’Anna and Xu (2026) propose estimators that do not require stationarity

Key innovation: rate double robustness

Consistent at y/n rate if both nuisance functions converge, even if each converges at a slower rate
Enables use of nonparametric/ML methods for nuisance estimation

Additional nuisance parameter: model for compositional changes

How does P(T = 2 | X, D) vary with covariates?
Captures differential sampling across periods
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Sant’Anna & Xu (2026): Estimation Strategy

Nonparametric nuisance estimation: all nuisance functions (m¢, p, =) estimated
nonparametrically — no need to assume linear/logistic models

DML-style procedures:
Cross-fitting to avoid overfitting bias from flexible first-stage estimators
Enables use of ML methods (random forests, neural nets, LASSO, etc.) for nuisance estimation while
maintaining valid inference

Leave-one-out estimation:
Each unit’s nuisance functions estimated without that unit’s own data
Eliminates the “own observation” bias that arises with nonparametric estimators
Particularly useful with kernel-based or local polynomial methods

These innovations ensure /n-consistent and asymptotically normal estimators even when
nuisance functions are estimated at slower-than-/n rates
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DR DiD Robust to Compositional Changes

Sant’Anna and Xu (2026) derive a DR estimand that does not require stationarity. Same structure,
different weights:

+ (Wi (Y= miZ5300) —wish (Y = miZl 0) )
— (WD (Y = miZ200) —wim (Y = miZ2 0)) )]

Key difference: weights use a generalized PS 7 (d,t,x) = P(D=d,T=t | X=x):

m(1,2,X) - -
Wd:LCC(D' T) - D’, . 1{T,':2} Wd’CC(D' T X) _ w(dtX) I{D,—d, Ty—t}
t=2 i) — _ I t Iy Yy 2N ) —
E[D-1{T=2}] E[Z3 - 1{D=d, T=1}]
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Hausman-Type Test for Compositional Changes

Key diagnostic: Compare estimators that use stationarity vs. those that do not
Under stationarity: both should give the same answer
Under compositional changes: they will diverge

Sant’Anna and Xu (2026) formalize this as a Hausman-type test:

H, : stationarity holds vs. H; : compositional changes
Test statistic based on the difference between two DR estimators
Rejection = use the estimator that allows for compositional changes
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Application: South Africa-Mozambique Tariff Liberalization

Sant’Anna and Xu (2026) revisit Sequeira (2016)’s study of South Africa’s tariff liberalization on
trade with Mozambique

Data: repeated cross-sections of trade flows across product categories

Compositional changes are plausible: product mix changes over time as trade patterns evolve

Results:

Standard estimators (assuming stationarity): find large effects
Compositional-change-robust estimators: qualitatively similar but different magnitudes
Hausman test: rejects stationarity in some specifications
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Key Takeaway: When to Worry about Compositional Changes

Panel data: stationarity holds by construction — not an issue

RCS data: always ask:
Is the sampling frame the same across periods?
Could migration, attrition, or policy changes affect who is observed?

Do covariate distributions shift across periods?

Practical advice:
1. Compare covariate distributions across periods

2. Run the Hausman-type test
3. If stationarity is rejected, use compositional-change-robust estimators

Q: In your own research, how would you diagnose whether compositional changes are present?
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What if we have many potential covariates?

From low to high dimensions: machine learning
meets DiD.



Act V: Machine Learning & DiD




What You Need to Know About This Section

We now enter high-dimensional territory: many covariates, flexible estimation

This section sketches the key ideas; a full treatment requires substantially more time than we
have available

The practical takeaway:
Use LASSO/Post-LASSO for covariate selection
Combine with cross-fitting to avoid overfitting bias
Wrap in the DR framework for robustness

Focus on the recipe and the intuition — we will not derive convergence rates or prove oracle
inequalities

If you plan to use these methods in your dissertation, see ? for the full DML framework and
Belloni, Chernozhukov and Hansen (2014) for Post-LASSO inference theory.
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The High-Dimensional Challenge

So far: X is low-dimensional and we specify parametric models (OLS, logit)
But what if we have many potential confounders?

Administrative data with hundreds of variables

Interactions, polynomials, transformations

Researcher degrees of freedom in choosing which to include

Standard approach: include “all reasonable” covariates = overfitting, instability

Can we do better?
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Machine Learning to the Rescue?

Machine learning offers principled ways to handle high-dimensional X:

1. Select relevant covariates automatically (LASSO, elastic net)
2. Estimate flexible functional forms (random forests, boosting)
3. Avoid overfitting through regularization and cross-validation

But: naively plugging ML into DR creates an overfitting bias problem

Solution: cross-fitting — estimate nuisance functions on one sample, evaluate on another

This lecture: LASSO — cross-fitting — DML-DIiD
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Why Not Just Use All Covariates?

With k covariates and n observations:

OLS/logit requires k < n (infeasible when k is large)
Even when k < n, overfitting degrades predictions
Variance of fitted values grows with k

The bias-variance tradeoff:
Underfitting (too few covariates): misspecification bias
Overfitting (too many covariates): high variance, poor out-of-sample prediction

We need methods that regularize: shrink or select to control complexity

Key insight: the DR structure provides a natural framework for ML integration
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Review: The DR Estimand Structure

Recall the DR DiD estimand (panel data):
ATT = E [ (w1 (D) — wo(D, X; p))(AY — m&-0(X))

Two nuisance functions to estimate:
1. Outcome model: m%°(X) = E[AY | X,D = (]
2. Propensity score: p(X) = P(D =1 | X)

The DR property means: bias from estimating these nuisance functions is a product of their
respective errors

This is exactly the right structure for ML: we can use flexible methods for nuisance estimation
while maintaining valid inference for the ATT
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LASSO: A Primer

LASSO (Tibshirani, 1996) (Least Absolute Shrinkage and Selection Operator):

) 1 n k

| _ . Yy 2)\2 .

Basso_argrnﬁmHZ(Y, XipB) +>\z;‘ﬁj‘
J:

i=1

The ¢, penalty A||3]|1 serves dual purpose:
1. Shrinkage: Pulls coefficients toward zero (reduces variance)
2. Selection: Sets some coefficients exactly to zero (selects variables)

Useful when the true model is sparse: only s < k covariates truly matter

The tuning parameter X\ controls the bias-variance tradeoff
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Approximate Sparsity

Exact sparsity: Only s coefficients are nonzero (restrictive)

Approximate sparsity: Many small coefficients, but the best s-sparse approximation is close to
the truth

More realistic: covariates may all contribute, but most only marginally

LASSO works well under approximate sparsity: it automatically finds the most important
variables and provides a good approximation

Key rate requirement: s2log(k)/n — 0 (sparsity grows slowly relative to n)
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Post-LASSO: Correcting for Shrinkage Bias

LASSO shrinks coefficients toward zero = downward bias in fitted values

Post-LASSO (Belloni and Chernozhukov, 2013; Belloni, Chernozhukov, Fernandez-Val and
Hansen, 2017): Two-step procedure

1. Run LASSO to select variables (identify S = {Jj: BJ’“SS" #0})

2. Run OLS using only the selected variables X; (no penalty)

Post-LASSO reduces bias while maintaining the sparsity-driven variable selection

Achieves the same rate of convergence as LASSO but with better constants
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LASSO for the Propensity Score

Model: p(X;) = A(X{~) with logistic LASSO

n

~ . 1 ! !
7% = argmin —— >~ [Dylog A(X{) + (1 = Dy) log (1 = A(X{)) ] + Al

i=1

Post-LASSO logit: Select variables, then refit logit on selected set
Key concern: logistic LASSO provides good prediction but not necessarily good balancing

Solution: combine with DR estimation (bias correction handles PS errors)
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LASSO for the Outcome Model

Model: m%(X;) = X! 3 with linear LASSO

A 1
lasso __ g - — X/8)?
6 = argmin E (AY; = XiB)" + AllBll

0 ip—o

Estimated using comparison group only (same as RA)
Post-LASSO OLS: Select variables, then refit OLS on selected set

LASSO automatically discovers which covariates predict AY among untreated
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The Overfitting Problem: Why Naive ML Can Fail

Plugging ML-estimated nuisance functions into the DR formula can yield valid inference, but
requires Donsker-type conditions on the nuisance function classes, plus stronger
rate/smoothness/sparsity requirements

ML estimators (LASSO, random forests, neural nets) typically violate these conditions — their
complexity grows with n

Without these conditions: using the same data to (i) fit nuisance functions and (ii) evaluate the
DR formula creates regularization bias that may not vanish at \/n rate

Intuition: ML adapts to noise in the training data, and this noise “leaks” into the DR estimator

Solution: Sample splitting / cross-fitting (Chernozhukov, Chetverikov, Demirer, Duflo, Hansen,
Newey and Robins, 2018) — avoids Donsker conditions entirely
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Cross-Fitting: A Visual

K = 5 Fold Cross-Fitting

Fold 1: Train Train Train Train
Fold 2: Train Train Train Train
Fold 3: Train Train Train Train

Fold 4: Train Train Train Train
Fold 5: Train Train Train Train v
Average
across

folds
Key: Nuisance functions trained on gray blocks; DR formula evaluated on colored block.
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Cross-Fitting: The DML Framework

Double/Debiased Machine Learning (DML) (Chernozhukov et al., 2018):
1. Split sample into K folds (e.g., K = 5)

2. For each fold k:

Estimate nuisance functions (m%=°, p) on all folds except k
Evaluate the DR formula on fold k using these estimates

3. Average across folds to get the final estimate

Key property: Estimation and evaluation use different data = no overfitting bias

Allows /n-consistent and asymptotically normal ATT estimates even with slow-converging ML
nuisance estimators (requires product of estimation errors || — mq|| - [|p — po|| = op(n~1/2))

Works with any ML method (LASSO, random forests, neural networks, ...)
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DML Algorithm for DR-DiD

Input: Data {Yj -1, Yi =2, D, Xi}!_;, number of folds K

Step 1: Randomly partition {1, ...,

Step 2: Foreachfoldk=1,....K:
1. Estimate m d 0,(= k>( x) using data outside fold k (comparison units only)

n}into K folds I, ..., Ik

2. Estimate p( ¥ (x) using data outside fold k
3. Compute DR estimate on fold k:

b = ‘Zw<do<kw<k>)
k

i€l
Step 3: Aggregate: PM- = 1 LS Ok
Inference: IF-based plug-in variance or multiplier bootstrap; see Belloni et al. (2017) and

Chernozhukov et al. (2018) for details
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We have the tools: LASSO + cross-fitting + DR.

How well does DML-DID perform in finite samples?



Monte Carlo: DML-DiD

Three DGPs with p = 100 covariates (s = 5 active), n = 500:

1. DGP 1: Unconditional PT valid (covariates irrelevant)
2. DGP 2: Conditional PT + homogeneous ATT
3. DGP 3: Conditional PT + heterogeneous ATT

Compare: LASSO-DR (with cross-fitting), Linear DR, TWFE

200 MC replications (ML is computationally intensive)
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DML-DiD: DGP 1 — Unconditional PT (Covariates Irrelevant)

DGP 1: Unconditional PT
(ATT =0)
n =500, p =100, 200 replications. True ATT = 0.00. IPW x-axis differs.

Unconditional DID RA + LASSO DR + LASSO DR + Causal Forest IPW + LASSO
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DML-DiD: DGP 2 — Conditional PT, Homogeneous ATT

DGP 2: Conditional PT
(ATT =0)
n =500, p =100, 200 replications. True ATT = 0.00. IPW x-axis differs.
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DML-DiD: DGP 3 — Conditional PT, Heterogeneous ATT

DGP 3: Conditional PT
(ATT 1= 0)
n =500, p =100, 200 replications. True ATT = 0.13. IPW x-axis differs.
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DML-DiD: Summary — Bias and RMSE

DGP 1 DGP 2 DGP 3

Bias RMSE Bias RMSE Bias RMSE

Unconditional DiD —0.1 12.3 64.0 160.1 67.0 148.2
RA + LASSO —0.1 12.3 2.9 14.9 —-3.2 16.3
IPW + LASSO 0.4 142 —19.2 157.1 —16.2 155.4
DR + LASSO 0.4 14.0 0.9 14.7 —5.1 16.8
DR + Causal Forest —0.2 12.5 441 76.0 41.1 70.9

DGP 1: all estimators work — unconditional PT holds, covariates irrelevant
DGPs 2-3: DR + LASSO and RA + LASSO dominate; unconditional DiD severely biased

IPW + LASSO unstable: propensity score estimation alone insufficient with many covariates
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DML-DiD: Summary — Coverage

DGP 1 DGP 2 DGP 3
Unconditional DiD 96.5% 91.0% 94.5%
RA + LASSO 96.5% 92.5% 93.0%
IPW + LASSO 95.0% 96.0% 96.0%
DR + LASSO 95.0% 94.5% 92.0%
DR + Causal Forest 96.0% 87.5% 92.0%

DR + LASSO with cross-fitting provides the best bias-variance tradeoff. Causal forests can esti-
mate heterogeneous effects but are less reliable for average ATT.
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DML-DiD estimates the average ATT with
high-dimensional nuisance functions.

What if treatment effects vary across units?



Causal Forests: Heterogeneous Treatment Effects

Beyond estimating the average ATT: what about CATT(x)?

Generalized Random Forests (GRF) (Athey, Tibshirani and Wager, 2019):

Nonparametrically estimate conditional treatment effects
Provide valid pointwise confidence intervals
Handle high-dimensional covariates

Causal forests for DiD:

Outcome: AY; (first difference)

Treatment: D;

Covariates: X;

GRF estimates CATT(x) = E[Y =2(2) — Yj=2(o0) | Xi = x, D; = 1]

Combines the DR framework with forest-based heterogeneity estimation
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Open Question: Covariates for Identification vs. Interest

Suppose you care about treatment effects conditional on a small subset of covariates — say,
gender, race, or income — but need many more covariates to justify conditional parallel trends.
How should you proceed?

This connects to CATT(x) — but the “x” you care about is low-dimensional, while the “X” for
identification is high-dimensional

Tension: averaging over nuisance covariates while conditioning on covariates of interest

We leave this as an open question for you to think about
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ML can estimate nuisance functions and uncover
heterogeneity.

When does all this machinery actually help?



When Does ML Help?

ML is useful when: ML is overkill when:

Many covariates (k > 20) Few covariates (k < 10)
Unknown functional forms Clear linear relationships
Complex interactions matter Simple additive effects
Heterogeneity exploration Only average effect needed
Administrative/big data Small samples (n < 500)

ML is a tool, not a magic bullet. Use it when the complexity of the nuisance functions justifies
the additional machinery. For simple settings, parametric DR is simpler.
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Honest About Limitations

ML does not fix identification problems:

If conditional PT does not hold, no amount of ML helps

ML estimates nuisance functions better, not the causal assumptions
Computational cost: cross-fitting with LASSO/forests is slower than OLS

Interpretability: harder to understand what’s driving the estimates

Finite-sample performance: ML guarantees are asymptotic; with n = 200, parametric methods
often work better

Bottom line: ML extends the toolkit, but the hard work is still in the identification assumptions
and study design
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Three estimation strategies (RA, IPW, DR), RCS
extensions, and ML integration.

What should practitioners take away from all this?



Taking Stock




What We Accomplished Today

Key takeaways from DiD with covariates:

1. Conditional PT is often more credible than unconditional PT — but requires appropriate
estimation methods

2. TWFE with covariates is fragile: imposes no covariate-specific trends, hidden linearity
bias, potentially negative weights

3. Doubly robust is the default: consistent if either outcome model or propensity score is
correct; efficient when both are

4. Panel > RCS: strictly more efficient, no stationarity concerns. For RCS, test for
compositional changes

5. ML extends DR naturally: LASSO + cross-fitting for high-dimensional settings; causal
forests for heterogeneity
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