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Abstract

This paper presents econometric tools to unpack the treatment effect heterogeneity of
punishing misdemeanor offenses on time-to-recidivism. We show how one can identify, esti-
mate, and make inferences on the distributional, quantile, and average marginal treatment
effects in setups where the treatment selection is endogenous and the outcome of interest,
usually a duration variable, is potentially right-censored. We explore our proposed econo-
metric methodology to evaluate the effect of fines and community service sentences as a
form of punishment on time-to-recidivism in the State of Sao Paulo, Brazil, between 2010
and 2019, leveraging the as-if random assignment of judges to cases. Our results highlight
substantial treatment effect heterogeneity that other tools are not meant to capture. For
instance, we find that people whom most judges would punish take longer to recidivate
as a consequence of the punishment, while people who would be punished only by strict
judges recidivate at an earlier date than if they were not punished.
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To owe his life to a malefactor, to accept that debt and to repay it; to be, in spite of himself,
on a level with a fugitive from justice, and to repay his service with another service; to
allow it to be said to him, “Go,” and to say to the latter in his turn: “Be free”; to sacrifice
to personal motives duty, that gemeral obligation, and to be comscious, in those personal
motives, of something that was also general, and, perchance, superior, to betray society
in order to remain true to his conscience; that all these absurdities should be realized and

should accumulate upon him,—this was what overwhelmed him.

Les Misérables by Victor Hugo

1 Introduction

Understanding how different types of sanctions impact defendants’ behavior is a critical area
of research among Crime Economists. For misdemeanors, which are relatively minor offenses,
we know relatively little about the causal effects of prosecution on defendants’ subsequent
criminal justice involvement (Agan, Doleac and Harvey, 2023), and arguably even less about
the effect of alternative sentences on defendants’ recidivism.! This is a particularly important
topic, as a misdemeanor charge is often the point of entry of individuals to the criminal justice
system. If they are convicted, they will then acquire a criminal record. This could “lower the
cost” of committing other crimes, or work as intended and prevent future criminal behavior. In
practice, it is unclear which direction dominates, and it is likely that this varies from individual
to individual. Being able to understand the types of defendants that are on either side is
therefore desirable and policy-relevant.

In this article, we propose econometric tools that are tailored to highlight treatment ef-
fect heterogeneity with respect to the unobserved punishment resistance on time-to-recidivism.
These tools can then be used to shed light on to whom punishments are working as intended
in terms of avoiding (or postponing) recidivism. Importantly, our tools account for the fact
that (i) time-to-recidivism is a duration outcome that is subject to right-censoring, i.e., not all
defendants recidivate by the end of the sampling period (but may do it later on); (ii) treat-
ment selection is endogenous and judges are likely to have more information about the case
than researchers; (iii) individuals may be inherently heterogeneous (essential heterogeneity);
(iv) one may be interested in causal effects beyond local average treatment effect parameters;
(iv) distributional features of time-to-recidivism may also be relevant.

We achieve these goals by extending the marginal treatment effects (MTE) framework of
Heckman and Vytlacil (1999, 2005) to setups in which the outcome variable is right-censored.

1See Huttunen, Kaila and Nix (2020), Giles (2023), Klaassen (2021), Possebom (2023), and Lieberman, Luh
and Mueller-Smith (2023) for some advances in this area.



The main requirement to use our tools is having access to a continuous instrument such that
the propensity score has large support.? In the context of Crime Economics, this instrument
is usually given by the trial judge’s leniency rate. Our tools can be used to recover various
heterogeneity-rich causal effects, including distributional and quantile MTE (Carneiro and Lee,
2009). Indeed, when we use our MTE tools to study the impact of fines and community service
sentences as a form of punishment on time-to-recidivism in the State of Sao Paulo, Brazil, we
find substantial treatment effect heterogeneity that traditional causal inference tools are not
meant to capture.

We find the MTE framework particularly attractive to studying the effect of punishments
on time-to-recidivism. For example, it allows one to assess the treatment effect of punishment
on recidivism for defendants on a margin of indifference between being punished or not. By
considering different degrees of unobserved punishment resistance, the MTE provides a detailed
picture of how punishments heterogeneously affect recidivism and can be used to design better
sentencing criteria and/or train judges to follow a specific protocol. For example, suppose that
one finds a negatively sloped MTE function with some positive and negative effects. This would
suggest that defendants who would be punished even by very lenient judges — i.e., defendants
with low unobserved punishment resistance — would take more time to recidivate as a result
of the punishment (punishment is working as intended). On the other hand, defendants who
would be fined only by very strict judges — i.e., defendants with high unobserved punishment
resistance — would recidivate sooner than if they were not punished (punishment is not effective,
perhaps because of scaring effects of a criminal record). Such degree of heterogeneity is usually
washed out when using single summaries of treatment effects such as local average treatment
effect (LATE) (Imbens and Angrist, 1994).3

Our methodological results highlight that extending the MTE framework to deal with time-
to-recidivism (or a duration variable subject to right-censoring) introduces some interesting
challenges depending on the censoring mechanism. For instance, if censoring is independent of
potential outcomes, we can point-identify the distributional marginal treatment effect (DMTE)
and quantile marginal treatment effect (QMTE) functions for some, but not necessarily all,
support points and quantiles. Nonparametrically identifying the entire DMTE and QMTE
functions is only possible if the support of the censoring variable is at least as large as the

4

support of the duration outcome.* We address these challenges and propose semiparametric

2See Brinch, Mogstad and Wiswall (2017) and Mogstad, Santos and Torgovitsky (2018) for extensions of
the MTE framework that does not require this support condition.

3To be fair, we stress that LATE was not meant to highlight this degree of heterogeneity and that it has
the advantage of only requiring binary instruments. However, when the empirical setting presents a continuous
instrument, the definition of a “complier” is less clear than in the binary instrument case, potentially making
the LATE results more challenging to interpret formally.

4When this restriction is not satisfied, one can nonetheless nonparametrically point-identify truncated MTE
functions, which are still well-defined causal parameters. See Appendix H for more details.



estimators and inference procedures for the DMTE and QMTE functions and establish their
large sample properties. We also discuss two potential avenues to handle cases where censoring
possibly depends on the potential outcomes. First, we leverage a negative regression dependence
between potential outcomes and censoring variables (Lehmann, 1966), which can be justified
when defendants commit fewer crimes over time. Second, we discuss how one can continuously
relax the independent censoring assumption. Both of these strategies that do not impose
exogenous censoring mechanisms lead to partial identification of the causal parameters.

As the discussion above highlights, explicitly dealing with (right-censored) time-to-
recidivism outcomes can be challenging. One question that naturally arises is whether
empirical researchers can bypass these challenges and use standard causal inference tools. One
potential way to avoid such challenges that some empirical researchers have considered is to
impose some sample construction restrictions and focus on recidivism within a given time
frame, say two years. This essentially changes the outcome of interest from time-to-recidivism
to whether one recidivates within 2 years. The censoring issue is avoided if one follows all
defendants for at least two years. Although this is convenient and generically valid, this
procedure has drawbacks: (a) it changes the question of interest by changing the outcome
variable, and (b) the choice of the cutoff (two years in this example) is arbitrary. For instance,
it may be that punishment has no effect on recidivism within two years but then has an
effect within three years (or one year). These concerns are minor if one is interested only in
recidivism within a known time frame. One potential way to assess whether this is the case is
to ask ourselves: if censoring was not a concern, would we use time-to-recidivism or recidivism
within two years as the outcome? If the answer is only the latter, then standard practice is
justified. If not, we caution researchers that the conclusions of their analysis may be sensitive
to the cutoff used for “binarization” of the time-to-recidivism outcome and that directly using
the time-to-recidivism outcome may lead to different conclusions. See Appendix E.2 for a
simple example of this.

If the conclusions of a study might be sensitive to the cutoff used for binarization, a natural
next step would be for empirical researchers to consider a handful of cutoffs and show that the
results are “robust” to the cutoff used. We note that this happens often in practice. However,
when doing this, researchers often ensure that the sample used for the entire analysis is not
contaminated with compositional changes, which can lead to loss of power for shorter horizons.
To be more concrete, suppose that researchers considered three thresholds for the “binarization’:
two, three, and five years. To ensure that the same defendants are analyzed according to all
transformed outcomes, researchers commonly restrict the sample to contain only the defendants
we have observed in the data for at least five years. As such, they drop available observations
for the shorter horizons, leading to a loss of statistical power.

This discussion leads to the next natural question: what if we considered a large set of



cutoffs and did not restrict the sample across cutoffs? Heuristically, one can interpret our
distributional MTE results as doing precisely that—avoiding choosing arbitrary cutoffs and
considering recidivism within y periods for a continuum of y € R,. Our quantile MTE results
“transform” our distributional MTE results so the underlying treatment effects are expressed
in the same units as the time-to-recidivism outcome, leading to additional insights. Here,
though, it is worth stressing that we explicitly tackle the censoring problem when considering
the continuum of cutoffs by adapting the Frandsen’s (2015) reweighing approach to our context.
Erroneously ignoring the censoring problem can indeed lead to misleading conclusions.

We show the appeal of our causal inference tools by evaluating the effect of fines and
community service sentences as a form of punishment on time-to-recidivism in the State of
Sao Paulo, Brazil, between 2010 and 2019.> Our treated group (punished group) contains
the defendants who were fined or sentenced to community services, and our untreated group
(unpunished group) contains defendants who were acquitted or whose cases were dismissed.®
To measure recidivism, we check whether the defendant’s name appears in any criminal case
within the sample period after the final sentence’s date. More precisely, our outcome variable is
the time between the final sentence and a subsequent criminal case. Since the sampling period
is finite, the outcome variable is right-censored.

To deploy our proposed methodology, we need a continuous instrumental variable since
we face endogenous selection into punishment.” We use the trial judge’s leave-one-out rate
of punishment (or “leniency rate”) as an instrument for the trial judge’s decision (Bhuller,
Dahl, Loken and Mogstad, 2020; Agan et al., 2023). Importantly, this instrumental variable
is continuous with large support and is independent of the defendant’s counterfactual criminal
behavior because judges are randomly assigned to cases conditional on court districts according
to state law in Sao Paulo. Our outcome data — time-to-recidivism — is right-censored by
construction, requiring a methodology that accounts for this identification challenge.

Empirically, we find that the cross-district average QMTE functions for .10, .15, .25, .40, .50,
and .75 quantiles are heterogeneous with respect to unobserved punishment resistance. The

treatment effects are estimated to be sometimes positive and sometimes negative. More pre-

5Sao Paulo is the largest state in Brazil, with a population above 44 million people according to the Brazilian
Census in 2022. Moreover, analyzing the impact of judicial policies on criminal behavior in this state is relevant
due to its relatively high criminality. For example, according to Sao Paulo Public Safety Secretary, there were
12.56 murders, 1261.95 thefts, and 498.82 robberies per 100,000 inhabitants in 2023. Importantly, theft is one
of the most common crimes in our sample.

6 Our sample only contains cases whose punishment must be a fine or community service sentence. In 1998,
a new law established that criminal charges whose maximum prison sentence is less than four years in the 1940
Criminal Law Code must be punished with a fine or a community service sentence from that point onwards. As
we are particularly interested in the effect of fines and community service sentences, we focus on these specific
criminal cases and define them as misdemeanor offenses.

7 If the researcher is comfortable with parametric assumptions, it is possible to use a discrete instrument as
suggested by Brinch et al. (2017).



cisely, we find that people who would be punished by most judges (those with low punishment
resistance) take longer to recidivate as a consequence of the punishment, while people who
would be punished only by strict judges (high punishment resistance) recidivate at an earlier
date than if they were not punished. This result suggests that designing sentencing guidelines
that encourage strict judges to become more lenient could increase time-to-recidivism.

Lastly, we compare our results with methods that ignore that time-to-recidivism is right-
censored. We find attenuated effects when ignoring the censoring problem and estimating the
QMTE model semiparametrically. If one used IV quantile regressions (ignoring censoring),
one would find that treatment effects are slightly negative but would not be able to highlight
heterogeneity as in the QMTE functions. These differences highlight that our tools can indeed
bring new insights to policy discussions.

Related literature: This article contributes to different branches of literature. Concern-
ing its theoretical contribution, our work contributes to the literature on MTE by extending
the MTE framework of Heckman and Vytlacil (1999, 2005), Heckman, Urzua and Vytlacil
(2006), and Carneiro and Lee (2009) to a setting with right-censored data.We also contribute
to the literature on duration outcomes; see, e.g., Khan and Tamer (2009), Frandsen (2015),
Tchetgen Tchetgen, Walter, Vansteelandt, Martinussen and Glymour (2015), Sant’Anna (2016,
2021), Delgado, Garcia-Suaza and Sant’Anna (2022). None of these papers consider MTE-type
parameters as we do. Among these, the closest work to ours is Frandsen (2015), which considers
the case where the censoring variable is observed and shows how one can identify distributional
and quantile local treatment effects, assuming that censoring is exogenous. Our results can be
interpreted as an extension of Frandsen (2015) to the MTE framework, possibly allowing for
endogenous censoring.

Concerning its empirical contribution, our work is inserted in the literature about the effect
of fines and community service sentences on future criminal behavior; see, e.g., Huttunen et al.
(2020), Giles (2023), Klaassen (2021), Possebom (2023), and Lieberman et al. (2023).® They
all focus on binary variables indicating recidivism within a pre-specified period. Within these,
as we build on his dataset, Possebom (2023) is the closest to ours. However, his focus differs
greatly from ours, and he does not handle duration outcomes as we do.

Organization of the paper: The rest of the paper is organized as follows. Section 2
describes the data and causal parameters and discusses why focusing on time-to-recidivism is
useful in our empirical application. Section 3 presents our model, discusses our identifying

assumptions, and provides our identification results with a right-censored outcome variable.

8This literature focuses on non-incarceration punishments for individuals who are already being prosecuted.
The reader who is interested in the effect of alternative solutions to prosecution may check the recent work
developed by Agan et al. (2023) and Shem-Tov, Raphael and Skog (2024). Readers interested in incarceration’s
effect may check the recent work of Rose and Shem-Tov (2021), Humphries, Ouss, Stavreva, Stevenson and van
Dijk (2023) and Kamat, Norris and Pecenco (2023).



Section 4 explains how to semiparametrically estimate the objects necessary to implement
the identification strategy described in the previous section. Finally, Section 5 discusses the
empirical results, while Section 6 concludes and describes other possible applications for our
proposed methods.

This paper also contains an online supporting appendix. Our main identification proofs are
detailed in Appendix A. Appendix B derives the asymptotic distribution of our semiparamet-
ric estimators. In Appendix C, we summarize how we constructed our dataset. Additional
empirical results can be found in Appendix D. Appendix E provides two arguments that jus-
tify focusing on the MTE function of duration outcomes. Appendix F identifies a conditional
version of our causal parameters under weaker assumptions than the ones used in the main
text. Appendix G proposes alternative partial identification strategies. Finally, Appendix H

discusses the average marginal treatment effect function.

2 Empirical context, data, and causal parameters

We study the effect of alternative sentences in the form of fines and community service on
time-to-recidivism in the state of Sao Paulo, Brazil. Towards this end, we collect data from all
criminal cases brought to the Justice Court System in the State of Sao Paulo, Brazil, between
January 4*", 2010, and December 3, 2019.° According to a Brazilian law from 1998, criminal
charges whose maximum prison sentence is less than four years in the 1940 Criminal Law Code
must, from that year onwards, be punished with a fine or a community service sentence if the
defendant is found guilty. As we are particularly interested in the effect of these alternative
sentences, we focus on these specific criminal cases and define them as misdemeanor offenses.
We also restrict our sample to cases that started between 2010 and 2017. Based on these
restrictions, the most common types of crime in our sample are theft and domestic violence.

There are 332 court districts in the state of Sao Paulo. Criminal complaints are analyzed by
a trial judge working at the court with geographic jurisdiction over the location of the alleged
offense.'® Moreover, there are 862 trial judges during our sample period. We keep 642 judges
who analyzed more than 20 cases out of these. In court districts that have more than one
judge, the case is randomly allocated to one of the judges according to a computer algorithm

that creates a lottery of judges. Of the 332 court districts in our sample, 193 have more than

9See Appendix C for an overview of the data-construction.

10 In Brazil, instead of being elected, judges are appointed for life based on their performance in a civil service
exam and frequently serve as judges until retirement (Laneuville, 2024). Furthermore, they make decisions about
conviction, sentence type and sentence intensity in all cases but “crimes against life” (murder, attempted murder,
manslaughter, incentivizing or assisting suicide, and abortion). When a person is accused of a “crime against
life”, a jury decides whether the person is guilty while the presiding judge makes decisions related to incarceration
length. Importantly, our sample does not contain “crime against life” cases. Therefore, all our cases are entirely
decided by appointed judges.



one judge who analyzed more than 20 cases. Given that our econometric procedure explores
the random allocation of judges to criminal cases and their different leniency levels, we restrict
our attention to court districts with more than two judges who analyzed 20 cases or more.
After imposing these two restrictions, our sample has 525 trial judges from 193 different court
districts, handling 43,468 cases in total.

Figure 1 shows the distribution of the number of judges for every court district in Sao Paulo
(Figure 1a) and the distribution of the number of cases for every judge in Sao Paulo (Figure
1b). The average number of cases per judge is 120 in our full sample and 159 after we focus
on judges who analyzed more than 20 cases. Furthermore, the average number of judges per

court district is 2.2 in the full sample and 3.0 in our restricted sample.

Figure 1: Descriptive Statistics for the Number of Judges and the Number of Cases
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Notes: Figure la plots the histogram of the number of judges per court district in our full sample, while Figure 1b plots the
histogram of the number of cases per trial judge in our full sample.

2.1 Defining the variables of interest

In our dataset, we observe the defendant’s full name, the defendant’s court district, the case’s
starting date, the assigned trial judge’s full name, the case’s final ruling, and the case’s final
ruling’s date. All our variables of interest will be constructed from these pieces of information.
Henceforth, let X denote the full set of court district dummies, which will play the role of
covariates in our analysis.

Let us start with our treatment variable, D, which denotes the final ruling in the case.
Defendants who were fined or sentenced to community services because they were either con-
victed or signed a non-prosecution agreement according to the final ruling in their case belong
to our treatment group, D = 1. Defendants who were acquitted or their cases were dismissed

according to the final ruling in their case belong to our comparison group, D = 0.



Our outcome of interest, Y*, is the “time-to-recidivism”, i.e., the number of days it takes for
a defendant to appear in court once again after the case’s final ruling’s date. Here, note that
our outcome of interest is a duration variable and that some defendants may not recidivate by
the end of our sampling period, though they may recidivate later. Putting it simply, we do not
always observe Y* but rather observe a right-censored version of Y*: Y = min(Y*, C'), where
C' is a right-censoring variable. In our context, C is the follow-up period for each defendant,
i.e., the number of days from their case’s final ruling date to December 3™, 2019.

Besides the censoring problem, it is important to be explicit about how we define recidivism.
In this paper, a defendant ¢ in a case j recidivated by the end of our sample if and only if
defendant i’s full name appears in a case j whose starting date is after case j’s final sentence’s
date.!! Then, we measure our outcome variable as the number of days between case j’s final
ruling’s date and case j’s starting date.'? If defendant i did not recidivate by the end of the
sampling period, then Y = C.

At this stage, it is important to stress that we are not adopting a more restrictive notion of
“short-run” recidivism based on a fixed period, say two years, which could potentially allow us to
“ignore” the censoring problem. Instead, we focus on time-to-recidivism directly, which, in our
view, entails some important advantages. For instance, we do not need to pick a threshold to
define (short-run) recidivism arbitrarily. Doing so may lead to potentially sensitive conclusions,
as illustrated in an example in Appendix E.2.

However, if almost all defendants who recidivate do it in the short run, then focusing on
short-run measures would be sufficient. But this is an empirical matter and should be handled
as such. To assess if this is the case in our data, Figure 2 displays estimates of the right tail of
the probability distribution function (PDF) of the uncensored potential outcome (Y*) among
cohorts defined based on the censoring variable. These descriptive results reveal that, in the
case of the state of Sao Paulo, a non-negligible share of defendants have their first recidivism
event in their fifth, sixth, or seventh year after their sentence’s date, implying that analyzing
long-term recidivism is practically relevant, which, in turn, requires us to tackle the censoring
problem directly. See Appendix E.1 for additional motivations for leveraging time-to-recidivism
as a key outcome of interest from a welfare maximizer decision-maker perspective.

As it will be clear in the next sections, our causal inference procedures leverage the avail-
ability of an instrumental variable Z with large support. In our context, the instrument 7 is

the trial judge’s leniency rate. This variable equals the leave-one-out rate of punishment for

"To match defendants’ names across cases, we follow the same procedure as in Possebom (2023) and define
a fuzzy match if the similarity between full names in two different cases is greater than or equal to 0.95 using
the Jaro-Winkler similarity metric.

12Case j can be about any type of crime, including more severe crimes with a maximum sentence of over
four years, while case j has to be about a crime whose maximum sentence is at most four years.



Figure 2: PDF of the Uncensored Outcome given the Defendant’s Cohort
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Notes: This figure shows the right tail of the probability mass function of the uncensored potential outcome (Y *) given cohorts
based on the censoring variable, P[y1 < Y* < y2| C] where y; and y2 define the bins indicated in the x-axis. In particular, these
conditional PDFs are evaluated at six bins of the uncensored potential outcome. For example, “Third Year” denotes that the first
recidivism event occurred between 730 days (= y1) and 1095 days (= y2), while “Fourth year” denotes that the first recidivism event
occurred between 1095 days (= y1) and 1460 days (= y2). Each color denotes a different cohort: orange denotes defendants who
are observed for at least four years and at most five years during our sampling period, purple denotes defendants who are observed
for at least five years and at most six years, light blue denotes defendants who are observed for at least six years and at most seven
years, dark blue denotes defendants who are observed for at least seven years and at most eight years, and gray denotes defendants
who are observed for at least eight years and at most nine years. The y-axis denotes the value of the PDF.

each trial judge, where the defendant’s own decision is excluded from this average.'> We ensure
that the minimum and maximum values of the Z are the same across both treatment arms to
enforce better overlap properties.

Table 1 presents some summary statistics of our final sample. It shows the outcome’s mean,
1%¢ decile, 1%* quartile and median for all defendants, for the defendants who were punished
(treated group), and for the defendants who were not punished (comparison group). It also
shows the sample size of each one of these three groups. The comparison between the treated and
comparison groups suggests that being punished slightly harms defendants. However, this naive
comparison ignores endogenous selection-into-treatment, right-censoring, and heterogeneous
treatment effects. As such, one should be careful with such a comparison, as these descriptive

statistics may not have a causal interpretation.

13 Similarly to Di Tella and Schargrodsky (2013) and Bhuller et al. (2020), we use the simple leave-one-out
rate of punishment for each trial judge as our instrumental variable. Alternatively, we could have used the
residualized leave-one-out rate of punishment as done by Agan et al. (2023), who remove court-district averages
before computing each decision maker’s rate. We choose to use the simple leave-one-out rate because we already
include court-district fixed effects in our regression specifications, and each judge analyzes many cases as shown
in Figure 1b.



Table 1: Descriptive Statistics — Outcome Variable

Unconditional Treated Group Comparison Group

Mean 1,081 1,047 1,116

15 Decile 7 69 86

15¢ Quartile 364 321 430
Median 1082 1047 1127
Number of Observations 43,468 22,060 21,408

Note: The treated group receives a punishment, i.e., its defendants were fined or sentenced to community services because they were
either convicted or signed a non-prosecution agreement. The comparison group did not receive a punishment, i.e., its defendants
were acquitted or its cases were dismissed. The outcome variable measures the number of days between the case’s final ruling’s
date and the first recidivism event if the defendant recidivates or the number of days between the case’s final ruling’s date and the
end of the sampling period if the defendant did not recidivate. An observation is a case-defendant pair.

2.2 Causal questions of interest

For each defendant i, let Y;*(1) be the potential time-to-recidivism if defendant i were
punished with a fine or community service, and let Y;*(0) be the potential time-to-recidivism if
defendant ¢ were not punished with a fine or community service. Defendant i’s treatment effect
is therefore 0; = Y;*(1) — Y;*(0). Ideally, we would like to learn 6, for all defendants. However,
that is very challenging (if not impossible) when we allow for (a) heterogeneous treatment
effects across defendants and (b) whether a defendant is punished or not being related to 6;
(“essential heterogeneity” as defined by Heckman et al. (2006)).

Due to these challenges, it is common for researchers to focus on aggregated summary
measures of 6;, such as the average treatment effect among “compliers” (Imbens and Angrist,
1994), defined as LATE = E[Y*(1) — Y*(0)|Compliers]| (see, e.g., Agan et al., 2023; Bhuller et
al., 2020; Huttunen et al., 2020).!* Although interesting and policy-oriented, such aggregated
measures of causal effects are unsuitable for highlighting important types of treatment effect
heterogeneity. In particular, these parameters cannot answer whether defendants with high
punishment resistance (i.e., defendants who would only be punished by very strict judges)
would, on average, take longer to recidivate if they were punished. The same goes for defendants
with lower punishment resistance. These are the exact types of causal questions that interest
us in this paper. We want to go beyond LATE-type parameters and provide a more detailed
picture of how alternative punishments heterogeneously affect recidivism with respect to the
defendant’s (unobserved) punishment resistance, which we denote by V. Here, punishment
resistance may capture the evidence gathered against the defendant and additional defendant-
specific characteristics.

One can measure the causal effect of fines and community services on time-to-recidivism

for defendants with a given punishment resistance using the notion of distribution and quan-

14 As discussed before, these papers use a different outcome of interest Y* that bypass the censoring issues
we face. However, we can ignore these censoring issues while discussing our causal questions of interest (as this
does not play a prominent role in it).

10



tile treatment effects.!® All these causal parameters build on the Marginal Treatment Effects
framework of Heckman and Vytlacil (2005) and can be used to answer complementary policy-
relevant questions (Heckman and Vytlacil, 2005, Carneiro and Lee, 2009, Carneiro, Heckman
and Vytlacil, 2011). We now carefully define and interpret them.

For treatment status d € {0,1}, let the distributional and quantile marginal treatment

response functions be defined as

DMTRy (y,v) = P[Y*(d) <y|lV =], (2.1)

QMTR, (t,v) = inf{yeR,:P[Y*(d) <y|V =v] =1}, (2.2)
where y € Ry, 7 € (0,1) and v € [0,1]. All these counterfactual parameters have a clear
interpretation. For instance, DMT R, (y, v) gives the proportion of defendants with punishment
resistance v who would have already recidivated after y periods since the court’s final ruling if
they were treated (d = 1) or not (d = 0). Analogously, QM TR, (1,v) provide the 7-th quantile
of the time-to-recidivism under treatment d, among defendants with punishment resistance v.

Based on these counterfactual objects, it is straightforward to define the Distributional and

Quantile Marginal Treatment Effect functions:
DMTE (y,v) = DMTR; (y,v) — DMTR, (y,v), (2.3)
QMTE (1,v) = QMTR, (1,v) — QMTR,(1,v). (2.4)

Positive values of the QMTE function indicate that punishment by fines and community
services increases the defendant’s time-to-recidivism compared to no punishment (so treatment
is working as intended). On the other hand, positive values of the DMTE function indicate
that punishment by fines and community services increases the proportion of defendants who
recidivate by time y compared to no punishment (so treatment is not working as intended). For
policy effectiveness in our context, positive values of QMTE are “good”, while negative values
of DMTE are “good”.

Remark 1. When analyzing the impact of judicial decisions on recidivism, many papers focus
on distributional marginal treatment effects for a small set of values of .1® Here, we entertain
the possibility of moving beyond small set of horizons by considering a continuous set of cutoffs
y’s or by focusing on different target parameters such as the quantile marginal treatment effects
of the time-to-recidivism outcome. See Appendix E.2 for a simple illustration of the appeal of

our approach compared to the traditional “small-set-of-horizons” approach.

15In Appendix H, we also explore how to define and identify types of average treatment effects. Impor-
tantly, censoring causes technical issues when defining parameters based on average effects, and we propose two
alternative solutions that overcome those challenges.

16See, e.g., Agan et al. (2023), Bhuller et al. (2020), Giles (2023), Huttunen et al. (2020), Klaassen (2021),
and Possebom (2023).
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3 Econometric framework and identification results

We face some challenges in identifying the causal parameters of interest described in the
previous section. As usual, potential outcomes are only (potentially) observed under one treat-
ment status, i.e., Y* = Y;*(1) - D; + Y;*(0) - (1 — D;). Furthermore, our outcome of interest
is subject to right-censoring, implying that we do not always observe Y* but rather observe
Y; = min{Y;*, C;}, where C' is the censoring variable. In the case of draws, we assume that Y;*
happens before C}, as is customary in survival analysis. Finally, we also expect that treatment
statuses are related to the potential outcomes and possibly related to the censoring variable.

To tackle all these issues, we build on the MTE framework of Heckman and Vytlacil (2005)
and extend it to handle duration outcomes. Toward this end, we consider a threshold-crossing

treatment selection model
D=1{P(Z,C) =V}, (3.1)

where Z is an observed instrumental variable (with support Z < R), C' is an observed censoring
variable (with support C < R, ), and V is a latent heterogeneity variable that captures the
unobserved treatment resistance (with support (0,1)). The function P : Z x C — P < [0,1]
is unknown and captures the willingness to take the treatment for each value of Z and C.
Importantly, our treatment selection model (3.1) imposes monotonicity (Imbens and Angrist,
1994; Vytlacil, 2002).

To better understand Equation (3.1), let us go back to our empirical context and explain
each component of it. Our instrumental variable Z is a measure of the trial judge’s leniency,
which arguably does not affect time-to-recidivism other than through the judge’s decision to
punish or not. Our censoring variable C' captures the time between the defendant’s sentence
date and the end of our sampling period, and it is observed for all defendants. C' can also
capture seasonality patterns, as it is fully determined depending on the sentence’s date. The
function P captures the trial judge’s punishment criteria, and it allows trial judges to update
their punishment criteria over time (Bhuller and Sigstad, 2024), as it includes C' as an argument.
Finally, the variable V' can be interpreted as unobserved punishment resistance, and it captures,
among other things, the amount of criminal evidence in the defendant’s favor. The higher the
V', the less likely the defendant will be punished, all else equal. As already discussed, Y™*
captures the length of time between the defendant’s sentence date and her next criminal case’s
starting date, and Y is the minimum of Y* and time from the sentence’s date to the end of our

sampling period, C.
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3.1 Assumptions

In our setup, the available data for the researcher are {Y;, C;, D;, Z;}"_|, while Y;* (0), Y;* (1),
Y;* and V; are latent variables. Henceforth, we assume that {Y;, C;, D;, Z;};_, are independently
and identically distributed as (Y, C, D, Z). For simplicity, we drop exogenous covariates from
the model and focus on the case with a single instrument. All results derived in the paper hold
conditionally on covariates and can be extended to the case with multiple instruments. Since
we deal with a time-to-event outcome, Y is non-negative by construction.

In what follows, we present a set of five assumptions (Assumptions 1-5) that will allow us
to point-identify the DMTE and the QMTE functions across a range of thresholds and quantile
points. These assumptions are related to those imposed by Heckman and Vytlacil (2005) and
Frandsen (2015) and involve assuming that censoring is not related to the potential outcomes
Y*(d).

We now state our five assumptions and contextualize each of them to our empirical setup.

Assumption 1 (Random Assignment). Conditional on C, the potential outcomes Y™ (0), Y* (1)

and V' are independent of the instrument Z, i.e.,

Z L(Y*(0),Y*(1),V)|C.

Assumption 1 is an exogeneity assumption and is common in the literature about instru-
mental variables with censored outcomes (Frandsen, 2015). In our empirical application, this
assumption holds conditional on the court district because trial judges are randomly assigned
to cases within each court district. Importantly, judges are assigned to criminal cases based
on a computer algorithm that creates a lottery of judges and there is no suspicion in the press
that this software is manipulated.

Note also that Assumption 1 allows the instrument to depend on the censoring variable.
In our empirical application, this flexibility is useful because the trial judge’s punishment rate
may depend on the case’s sentence date if judges who entered the Judiciary more recently are

more lenient than judges who retired at the beginning of our sampling period, for example.

Assumption 2 (Propensity Score is Continuous). Conditional on C, P(z,c) is a nontrivial
function of z and the random variable P (Z,c)| C = c is absolutely continuous in Z, with support

given by an interval P = @, p| = [0,1] for any ce C.1"

Assumption 2 is a rank condition, intuitively imposing that the instrument is locally relevant.
In addition, we implicitly assume that the support of the propensity score does not vary with

the value of C'. In our application, this implicit assumption is plausible because the judges

1"The assumption that P is an interval is made for notational simplicity. All the proofs can be easily extended
to the case where P is a set with a non-empty interior.
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are mostly the same over time. Furthermore, the judge’s lenience rate has a good amount of

variation since we observe 525 judges who use many different punishment criteria (Figure 4).*®

Assumption 3 (V is continuous). The distribution of the latent heterogeneity variable V' con-

ditional on C' is absolutely continuous with respect to the Lebesgue measure.

Assumption 3 is a regularity condition that allows us to normalize the marginal dis-
tribution of V|C to be the standard uniform. Consequently, we can write P (z,¢) =
P[D=1|Z =2,C =c¢] for any z € Z and c € C.

Assumption 4 (Overlap). Conditional on C, all treatment groups ezist, i.e., P[D = d|C = c| €
(0,1) for any d € {0,1} and any c € C.

Assumption 4 is a regularity condition about overlap.

Assumption 5 (Random Censoring). The censoring variables are independent of the uncen-

sored potential outcomes given the latent heterogeneity V', i.e.,

C L (Y*(0),Y*(W)[V,

Assumption 5 is an exogeneity assumption and is common in the literature about duration
outcomes (Frandsen, 2015; Sant’Anna, 2016; Delgado et al., 2022). When combined with As-
sumption 3, Assumption 5 implies that C is unconditionally independent of the uncensored
potential outcomes, i.e., C' L (Y*(0),Y*(1)). In our empirical application, this restriction
imposes that the case’s sentence date is independent of the defendant’s decision to commit
another crime in the future, i.e., potential recidivism is stationary.

Importantly, Assumption 5 imposes that controlling for V' accounts for all sources of endo-
geneity coming through the censoring variable. This assumption can be restrictive since en-
dogeneity might still be present once controlling for the latent heterogeneity. If the researcher
believes that this assumption is too strong in a particular application, she can use alternative
assumptions that are sufficient to partially identify the distributional marginal treatment effect
and some quantile marginal treatment effects when the outcome variable is right-censored. We

discuss two alternative partial identification strategies in Appendix G.

18 Since our main identification result is fully nonparametric, Assumption 2 requires sufficient (continuous)
variation in the instrument, which induces continuous variation in the propensity score, which generates the
variation we need on the outcomes of interest to identify the effects for every value of V', the latent heterogeneity.
Nevertheless, our proposed estimation procedure is semi-parametric and relies on series approximations for the
propensity score. If one treats the series as fixed (meaning that the first stage is parametric), our approach allows
for discrete instruments (Brinch et al., 2017). The extrapolation and interpolation induced by the parametric
second stage permit Z (and P) to vary discretely while still being used to identify the effects of interest.
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3.2 Identification

We present our point-identification results that rely on Assumptions 1-5.
First, define

d
P)/d(yﬂ]ac) = %P[Yéy,D:d‘P<Z,C) :U,C:C].

We now state our main identification result: point-identification of the DMT R functions.

Proposition 3.1. Suppose that Assumptions 1-5 hold. Then, for any d € {0,1}, y < v¢ and
vEeP,

DMTRy (y,v) = (2d—1) - E[va(y,p,C)|P(Z,C) =v,C > y],
where o = inf {c eR:P[C<c]= 1} is the upper bound of the support of the censoring

variable C.

Proof. See Appendix A.2. m

The above proposition shows how we can point-identify the distributional marginal treat-
ment response for a given unobserved treatment resistance v. It involves first taking the deriva-
tive of the conditional joint distribution of the realized outcome Y and treatment status D given
the propensity score P = v and the censoring variable being above y (C' = y + ¢ for § > 0)
with respect to v, and then integrating over all values § > 0 such that the y + ¢ remains in the
support of the censoring variable C'. Differently from the results in Carneiro and Lee (2009)
and Carneiro et al. (2011), we need to tackle the right-censoring problem, which manifests in
our results by having to condition on C' = y + 9, so that C' > y, and then integrating over 9.

Furthermore, our results are specific to the DMT R4(y, v) function, and not for a generic
transformation of Y*(d), say G(Y*(d)) as in Carneiro and Lee (2009). This follows from the
fact that we may not be able to identify the DMT R,(y, v) over all values of y in the support of
Y*(d), as a consequence of the censoring problem. Having said that, there are several functions
that we can actually nonparametrically point-identify without additional restrictions and under
standard regularity conditions, including the QMTE functions for a range of quantiles. We
state these results, which use only Assumptions 1-5 and a regularity condition, as a corollary
for convenience. The proof is a direct consequence of the previous proposition and the definition

of quantiles.

Corollary 3.1. Suppose that Assumptions 1-5 and Assumption B.7 listed in the Appendix
B hold. Then the QMTE (1,v) function (Equation (2.4)) is point-identified for any v € P
and 7 € (0,7 (v)), where T (v) := min {7y (v),71 (v)} and T4(v) = DMTR; (yc,v) for any
d e {0,1}.

Notice that the right-tail of the DMT R4(-,v) may be differentially affected by the censoring

problem, implying that 7; (v) may be different from 7 (v). As a consequence, we can only
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identify the QMTFE (7,v) over the common range of identified quantiles among treated and

untreated units.

4 Estimation and inference

In this section, we provide algorithms on how to semiparametrically estimate the DMTE and
QMTE functions based on the identification results described in Proposition 3.1 and Corollary
3.1. We discuss two sets of results in this section. First, we present generic algorithms to
estimate the marginal treatment effect functionals that remain agnostic about the type of
estimators used to estimate the nuisance functions (Section 4.1). These results are useful for
pinpointing intuition and providing templates for flexible estimation procedures. However,
pinning down the asymptotic properties of such estimators at this level of generality is rather
challenging, especially regarding inference. To ameliorate this, we provide practical and formally
justified estimation and inference procedures based on a more restricted class of estimators for

the nuisance functions (Section 4.2).

4.1 Generic estimation procedure

We first present a generic algorithm one can use to estimate DMTE functions across a grid
of threshold points {yk}fzo. The algorithm will make use of an estimator for the propensity
score, P(Z,C) = E[D|Z,C], and the conditional distribution of Y - 1{D = d} given P (Z,C)
and C' for any d € {0, 1}. This algorithm builds on Proposition 3.1. Recall that our data consist

of i.i.d. observations {Y;, C;, D;, Z;};_,, where n is the sample size.

Algorithm 4.1 (Generic Estimation of DMTE function).

1. Semiparametrically (or nonparametrically) estimate the propensity score P: Z x C —
[0,1]. Denote the fitted propensity score values by P;.

2. Define a grid of values for the duration outcome Y, {yk},iio, such that y, > yr_1 for any
ke{l,...,K} and K € N.

3. For each k € {0,..., K} and each d € {0, 1}, estimate the conditional distribution function
of Y -1{D = d} given P (Z,C), and C, that is,
Since the propensity score for unit i, P;, is unknown, use the estimated fitted values from

Step 1. Denote the estimated fitted values by f(f’u Ci;yk,d) = Dy

4. Foreach k€ {0,..., K} andd € {0,1}, estimate the derivative of I'( P, C; yy, d) with respect
to P. Since I'(P,C;yx,d) is unknown, use the estimated Uy ;. Denote the estimated
derivative evaluated at P = v,C = ¢ by Y4(yx, v, c), where ve P, and ce C.
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5. For each k € {0,..., K} and each d € {0, 1}, estimate DMT Ry (yx,v) by averaging (2d —
)4 (yk, v, ¢) over values of ¢ such that ¢ > yy,

DMT Ry (g, v) = (2d = DB |5 (1,0, C) [ C > g, P = 0]
where IAE[|] is a generic estimator for a conditional expectation.

6. For each value v e P and d € {0,1}, ensure that Dde (yg,v) is non-decreasing in yx,
and bounded between zero and one.

7. For each k €{0,..., K}, estimate DMTE (yy,v) using
DMTE (yg,v) = DMTR; (yg,v) — DMTRq (yg, v).

Building on Algorithm 4.1, it is straightforward to compute the QMTE functions. More
specifically, from Step 6, we have that for both d = 1 and d = 0, DM TR, (y,v) is monotone in
y for a given v, as any cumulative distribution function should be. Thus, one can invert these
to compute the quantile marginal treatment response functions, and then take their differences
to compute the QMTE function. More precisely, for each d € {0, 1} and a quantile 7, a generic
estimator of the QMT R, (7,v) is given by

QT/[?Rd (1,v) := min {yk: DMTR, (g, v) = 7'}.
ke{0,...,K}

The QMTE estimator for any 7 € [0,7 (v)) is given by
QMTR (1,0) = QWRl (1,v) — QWRO (1,v).

Remark 2. The above procedures do not explicitly account for covariates X. However, every
single step of Algorithm 4.1 can be thought as implicitly conditioning on covariate values X = .
In such cases, one would get a conditional version of the DMTE function, and, consequentially,
a conditional version of the QMTE functions. If one were interested in the “unconditional”
version of these functionals, all one needs to do is integrate the DMTE functional over values
of the distribution of X given the propensity score P = v, and then follow the same steps as
described in the paragraphs after Algorithm 4.1. If covariates are of moderate dimensions or
data for each covariate stratum is not-so-large to justify asymptotic approximations, one may
be interested in imposing additional restrictions to bypass the “curse-of-dimensionality”. We

follow this path in the next section.

4.2 Semiparametric estimation and inference procedures

This section provides a more specific procedure to semiparametrically estimate the marginal
treatment effect functionals discussed before. The steps we follow are similar to those in Al-
gorithm 4.1, but we are more specific about choosing estimators for the nuisance functions.
This degree of specificity allows us to establish large-sample statistical guarantees and provide

asymptotically valid inference procedures for the target functionals of interest.
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Here, we also allow for additional covariates X to enter into the model, so we have data
on {Y;,Cy, D;, Z;, X!} . In the context of our application about the effect of alternative pun-
ishments to misdemeanor offenses on time-to-recidivism in Brazil, X is a set of court district
indicators. For this reason, we focus on the case where all X’s are discrete.

We start discussing how we estimate the propensity score. Similar to Carneiro and Lee
(2009), we model P(Z,C, X) = E[D|Z, C, X] using an additive partially linear series regression

P(Z,C,X)=ay+ X'ax + Cac + ¢(Z), (4.1)

where (ap, 'y, a¢)" are unknown finite-dimensional parameters, and ¢ is an unknown (infinite-
dimension) function. In our context, the partially linear additive specification (Eqaution (4.1))
allows one to pool information from different court districts and run a single propensity score
model for all courts. Alternatively, one could use a different propensity score model for each
district, at the cost of getting arguably much less precise estimates.

In practice, one would approximate ¢(-) using a linear combination of the vector of basis
functions " (2) = (¥1(2),¥2(2), ..., (2)), for L € N. That is, p(2) ~ ¥*(2)'ay, such that,
as L. — oo, the approximation error shrinks to zero. For simplicity, we pick a polynomial basis
function, ¥ (z) = (2,22, e ,zL)/, though other options such as B-splines are also possible

(Chen, 2007). Note that all the series coefficients can be estimated via ordinary least squares,

ie.,
07° — argmin n~! Z (Di — ap — Xjax — Ciac — V"(Z;) az, )2 (4.2)
0fse@fs i=1
where 675 = (@, @'y, acy 0iz))'. Thus, we can compute the fitted propensity score values
P, = P(Z;,Cy, X;) = Go + X[ax + Ciac + *(Z:) @y (4.3)

In finite samples, P, might be negative or larger than one. To handle this, we follow Carneiro
and Lee (2009) and use the trimmed version of P, as our estimator,

D=B+(1-c—DP) 14D >1}+ (e— P) - 1{P, <0}, (4.4)
for a sufficiently small e. Our application uses ¢ = 0.01, though this is not material as only one
observation is trimmed.

Next, we move into the estimation of the conditional distribution function of Y - 1 {D = d}
given P,C, X for d € {0,1}. Here, we follow the distribution regression approach introduced by
Foresi and Peracchi (1995) and further formalized by Chernozhukov, Ferndndez-Val and Melly
(2013). The idea is to pose a model with “varying coefficients” for the conditional distribution
of Y-1{D =d}, d e {0, 1},

D(P,C,Xiy.d) = E[L{Y <y,D - d}|P,C,X]

19 Alternatively, one could use a semiparametric logit model P(Z,C X) =
exp{ap + X'ax + Cac + ¢(Z)}/ (1 + exp{ag + X'ax + Cac + ¢(Z)}). In the Appendix, we show that
our regularity conditions could still be satisfied. The same is true for a fully nonparametric series estimator.
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= A(Bo(y.d) + X'Bx(y,d) + CBcly,d) + PBp(y.d)) as.  (4.5)
where 0y(-,-) = (Bo (+,) , Bx (-,), Bc (+,-), Bp (-, -))" ¥ © < R3*Ex is a vector of nonparametric
functions, kx is the dimension of X, and A is a known link function.?® For concreteness, we
focus on a logistic link function, A(-) = exp(-)/(1 + exp(-)).

To estimate these unknown functions, we first need to acknowledge that the propensity
score P; is not observed. However, we can use the “generated regressor” fA’Z from Equation (4.4).
Once we replace P; with f’i, we can then leverage the insights of Foresi and Peracchi (1995)
and Chernozhukov et al. (2013) by noticing that, for a fixed y and d, Equation (4.5) is a binary
regression problem. Consequently, we can pointwise estimate these parameters by maximizing

the (feasible) conditional likelihood function
. 1 < ~
Q:y,d) = — > nlp(1{Y; <y, D; = d}, X5, Ci, Py, d) (4.6)
i—1

with
lo(b, ;. piy,d) = A (w0)" (1— A (w0))"",
and w = (1,2, ¢,p)’. Thus, the distribution regression (DR) estimator of §y(y, d) is given by

0 (y,d) = argmax Q,, (6;y,d). (4.7)
[=C)

Notice that computing the distribution regression estimators for several (y,d) points only re-
quires running a sequence of binary regressions. This can be performed in any statistical
software.

Next, note that the derivative of I' (Equation (4.5)) with respect to P can computed in
closed-form for each (y,d),

d
Vd(ya v, C, l’) = %F(Uv G, T3 Y, d) = ﬁP(yv d) F<U> G, T3 Y, d)(l - F('U, C, T3y, d)>7 (48)
where we explored that A is the logistic link function. Denote the distribution regression

estimated fitted values of v4(y, v, ¢, ) by
July. v, ¢.x) = Bp(y.d) T(v, e 079, d)(1 = T(v, ¢, 079,d)), (4.9)

where the distribution regression coefficients are as in Equation (4.7), and

- exp (30 (y,d) + @' Bx(y,d) + cBe(y, d) + vBe(y, d))

D(v, e, x5y,d) = — — — — .

1+ exp (o (4, ) + 'Bx(y,d) + Bo(y, d) + vBp(y, d))
Using Equation (4.9), we can estimate
DMTRy(y,v,z) =P[Y*(d) <y|lV =0v,X =2x].

To do so, let ng,, = > 1{D; = d,X; = z,C; > y} denote the sample size with treat-

20This class of distribution regression models nests and extends many traditional duration models such as
the proportional hazard model (Cox, 1972) and the accelerated time model (Kalbfleisch and Prentice, 1980).
See Delgado et al. (2022) for a discussion.
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ment status d, covariate value x, and censoring variable above y. Our proposed estimator for
DMTRy(y,v, x) is given by
Z?:l 1{DZ = d7 XZ =1, Cz > y} ad(ya v, Ci7 l’)

DMTRy(y,v,z) = (2d — 1) - . (4.10)
d,x,y

Since DT/[?Rd(y,v,x) is an estimator for a conditional distribution, it needs to be non-
decreasing in y for all (d,v,z) € {0,1} x P x X. However, this may not be the case in finite
samples. We recommend using the rearrangement procedure of Chernozhukov, Fernandez-Val
and Galichon (2009).

Based on Equation (4.10), we can then estimate DMTE(y,v,x) = DMTR;(y,v,x) —
DMTRy(y,v, x) using

DWE(y, v, 1) = DWRl(y, v, x) — DWRO(?;, v, T). (4.11)
Analogously, one can estimate QM T E(7, v, z) functionals using
OMTE(r,v,2) = QMTR,(r,v,2) — QMTRy(1,v,z), (4.12)
where Qde(T,v,x) =inf{y e R, : DWRd(y,v, x) =T}

We summarize all these estimation steps in the following algorithm.

Algorithm 4.2 (Semiparametric Estimation of DMTE and QMTE functionals).

1. Semiparametrically estimate the propensity score using the series partially linear model
in Equation (4.1). Denote its trimmed fitted propensity score values by P; as defined in
Equation (4.4).

2. Define a grid of values for the duration outcome Y : {yk}fzo such that yr > yr_1 for any
ke{l,...,K} and K € N.

3. For each k€ {0,..., K} and each d € {0, 1}, estimate the conditional distribution function
of Y - 1{D =d} given P(Z,C), C, and X using the distribution regression model in
Equation (4.5), with estimated coefficients in Equation (4.7).

4. For each k€ {0,...,K} and d € {0,1}, estimate the derivative of the distribution regres-
sion model with respect to P as in Equation (4.8). Denote its estimated fitted value for a
given x by Ya(yx, v, ¢, x) as in Equation (4.9).

5. For each k € {0,..., K} and each d € {0,1}, compute DWRd(yk,v,x) as in Equation
(4.10).

6. For each value v € P, d € {0,1}, and for a given x, ensure that Dde(yk,v,x) 18
non-decreasing in Yy, and bounded between zero and one.

7. For each k €{0,..., K}, estimate the DMTE (yx, v, ) using Equation (4.11).

8. Estimate the QMTE (t,v,x) using Equation (4.12), with
Q/]WRd(T,U,I') = min{y € {yr}1_y: Dde(y,v,x) > 7}, de{0,1}.
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The next theorem establishes the large-sample properties of our proposed estimators. We
defer all the regularity conditions to the appendix to streamline the presentation. Let 7 (v, x) =
min {7y (v, x),71 (v,2)} and 74 (v,2) := DMTR, (yc, v, x) for any d € {0, 1}.

Theorem 4.1. Suppose that Assumptions 1-5 and Assumptions B.1-B.7 listed in Appendix B
hold. Then, as n — oo,

(a) for each fized y < vo, vE P, and x € X,
Jn (DWE(y, v,2) — DMTE(y, v, a:)) 4N (0, Vimtey,

y?’u7x

with DWE(y,v,x) as defined in Equation (4.11) and V%™ qas defined in Appendiz B.

y7v7x

(b) for each fixed T € (0,7 (v,z)), ve P, and x € X,
\/ﬁ (QﬁE(T,U,:E) — QMTE(T,Q:):)) —d>N(O qute),

)’ U T,V,T

with QWE(T, v, ) as defined in Equation (4.12) and V.9™¢ as defined in Appendixz B.

7,0,

Theorem 4.1 follows from first deriving the influence function of the DMTR functions
(Equation (4.10)), paying particular attention to quantifying the estimation effect arising from
replacing the true propensity score with the estimated one. After this step, all the results follow
from the functional delta method and the continuous mapping theorem. The proof strategy is
similar to Rothe (2009).

Although Theorem 4.1 indicates that one can potentially conduct inference using plug-in
estimates of the variance, this procedure would involve estimating additional nuisance functions
and could be cumbersome in practice. To avoid this issue, we propose using a weighted bootstrap
procedure as in Ma and Kosorok (2005) and Chen and Pouzo (2009). This bootstrap procedure

is very straightforward to implement, as described in the next algorithm.

Algorithm 4.3 (Weighted-Bootstrap Implementation).
1. Estimate DMTE and QMTE according to Algorithm J.2.

2. Generate {w;,1 = 1,...,n} as a sequence of independent and identically distributed non-
negative random variables with mean one, variance one, and finite third moment (e.q.,
w; ~ Exp(1)).

3. Compute the propensity score coefficients associated with Equation (4.1) by minimizing
the weighted least squares function, i.e,

n
. o 2
6/%* = argmin n! Zwi (Di —ag — Xjax — Ciac — @ZJL(Zi)'aZ,)
9fse@fs i=1

(4.13)

where 67 = (a% &%, &%, a%)). Denote its trimmed fitted propensity score values by pr
as defined in Equation (4.4), but with 075* in place of 67°.

4. Consider the same grid of values for the duration outcome Y as defined in Step 2 of
Algorithm 4.2.
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5. For each k € {0,..., K} and each d € {0,1}, estimate the conditional distribution func-
tion of Y - 1{D = d} given P(Z,C), C, and X using the distribution regression model
(Equation (4.5)) with estimated coefficients

~

1< A~
0" (y,d) = arg max —Zwi Inly(1{Y; <y, D; =d}, X;,C;, PF;y,d). (4.14)
0O ni4

6. Follow Steps 4-9 of Algorithm 4.2 wusing 6 (y,d) instead of é(y,d). Denote by

DMTE" (Yg, v, z) and QWE*(T, v, x) the distributional and quantile marginal treatment
effects estimates.

7. Repeat Steps 2-6 B times, e.qg., B = 399, and collect { <D/]\ﬁE*(yk, v, :L‘)) b=1... ,B}.
b
Do the same for the QMTE (1,v, ).

8. Obtain the (1 — «) quantile of {‘ <DWE*(yk, v, ) — DWE(yk,v,x)>bl b=1... ,B},

dmte,*(

c Yk, v, T; ). Compute the analogous critical values based on Q]/W?E*(T,’U,$).

9. Construct the 1—a (pointwise) confidence interval for DMTE (yg, v, z) as C™(y;,, v, z) =
[DMTE (yx, v, x) £ c™*(yp, v, 2;)]. Define CT™(1, v, x; ) analogously.?

The next theorem establishes that our weighted bootstrap procedure has asymptotically

correct coverage.

Theorem 4.2. Under the assumptions of Theorem 4.1, for any 0 < o < 1, and for each v € P,

reX,y<n~c, and T € (0,7(v,x)), for n — o0,

(a) P (DMTE(yk,U,x) € 6’dmte(yk,v,x;a)> —1-aq,

(b) P (QMTE(T,U,ZE) € CA'qmte(T,v,m;a)> —1-a.

Note that all functionals in Theorems 4.1 and 4.2 provide a covariate-specific treatment ef-
fect. In our application’s context, we can get court-district-specific DMTE and QMTE estimates
of the effect of fines and community service sentences on time-to-recidivism. An advantage of
this approach is that one can better understand treatment effect heterogeneity across districts.
However, with 193 court districts in the State of Sao Paulo, it may be desirable to further
aggregate the MTE functionals as a way to summarize the obtained effects.

There are several potential aggregations one could entertain. In our specific context, we
decided to aggregate the court-district-specific DMTE functionals across court districts using
the proportion of cases per court district as weights. Let w, = P(X = ) denote the probability
of a covariate X takes the value x, which, in our case, denotes the true proportion of cases

assigned to a court district z. Let @, = n~' > | 1{X; = z} be the plugin estimator of w, .

21Tf the researcher wants to compute uniform confidence bands instead of pointwise confidence intervals, it
is straightforward to adapt the sup-t procedure proposed by Olea and Plagborg-Moller (2018) to our setting.
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For each d € {0,1}, ye Y and v € P, let
DMTR{(y,v) = E[DMTRy(y, v, X)] = 3 w, DMTRy(y, v, ).

veX
Analogously, les DMTE*9(y,v) = DMTR"(y,v)—DMTR;" (y,v) and QMT E®I(7,v) =
QMTR"(1,v)—QMTR;"(1,v), where QMTR" (1,v) :== inf{y e R, : DMTR}"(y,v) > 7}.
All these functionals can be straightforwardly estimated using functionals of
D’]\’ﬁRng(y,v) = Z Wy, DWRd(y,v,x),
weX
with D]/W?Rd(y,v,x) as in Equation (4.10), just like in Equations (4.11)-(4.12). Their large-

sample properties follow from the delta method and are summarized in the following corollary.

Corollary 4.1. Suppose that Assumptions 1-5 and Assumptions B.1-B.7 listed in Appendix B
hold. Then, as n — o0,

(a) for each fized y < ¢, and v € P,
Vn (DWEavg(y, v) = DMTE*(y, v)) LN (0, vdmteavs

Vi )-
(b) for each fixed T € (0,7 (v,z)), and v € P,
\/ﬁ (QJ/\/[TE(WQ(T, U) . QMTE(wg(T, U)) —d>N(O qute,avg

» VY Tv )

It is also straightforward to construct a weighted-bootstrap confidence interval for these
functionals by using @* = n~'> " | w; 1{X; = z} as weights for the MTE functionals. We omit

a detailed description to avoid repetition.

Remark 3. We note that other aggregations of the covariate-specific marginal treatment effect
functionals do exist, but may be more challenging to estimate. For instance, one may be

interested in functionals of the “unconditional” DMT R,(y, v), defined as
DMTRy(y,v) = E[DMTRy(y,P,X)|D =d,P =]
_ J DMTRu(y, v, ) fxip.(7|D = d, P = v)dz.
It should be clear that DMT Ry(y, v) is different from DMT R (y,v), though the latter can

be more easily estimated as it does not require estimation of conditional densities as the former
does. If one were to focus on DMT R4(y,v), all the uncertainty in estimating it would come
from the estimation of the conditional density of X. This follows from Theorem 4.1 establish-
ing that DMT R4(y, v, x) is y/n-consistent with discrete X’s, while fxp p converges at slower
rates. Developing a higher-order asymptotic analysis for estimators for DM T R,(y, v) would be

interesting. We leave a detailed analysis of it for future research.
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5 Effect of alternative sentences on time-to-recidivism

Our empirical application answers the question: “Do alternative sentences such as fines and
community service impact time-to-recidivism in Sao Paulo, Brazil?”. We start our discussion
by assessing the plausibility of our identifying assumptions in Subsection 5.1. Subsection 5.2
presents the results of our empirical analysis using our proposed tools. Subsection 5.2 also

compares our methods to unpack treatment effect heterogeneity with more traditional methods.

5.1 Assessing the plausibility of our assumptions

The credibility of any causal inference procedure depends on the plausibility of its underlying
identification assumptions. In this subsection, we use some descriptive statistics to assess
the plausibility of three of our identifying assumptions: Random Assignment (Assumption 1),
Monotonicity Condition (Equation (3.1)), and Random Censoring (Assumption 5). We focus
on these three assumptions because the others are not controversial in this paper. For instance,
Assumptions 2 is plausible as we use the judge’s leave-one-out rate of punishment (or “leniency
rate”) as an instrument for the trial judge’s decision, and we have 525 judges and a good amount
of variation in this variable as further discussed around Table 4 and Figure 4.

Table 2 focuses on assessing the plausibility of Assumption 1. Although it is not possi-
ble to directly test that the instrument (Z) is independent of the potential uncensored time-
to-recidivism outcomes (Y*(0),Y* (1)) and the latent heterogeneity (V') given the censoring
variable (C), it is possible to test whether Z is correlated with four excluded covariates: an in-
dicator for whether the defendant has a male name, an indicator for whether the defendant used
a public defender instead of hiring a private lawyer, and indicator for whether the defendant
was accused of theft, and an indicator for whether the defendant was caught red-handed when
committing a crime (“in flagrante delicto”).?? If we find that the instrument is uncorrelated
with these four covariates after conditioning on the censoring variable and court-district fixed
effects, this could serve as indirect support for Assumption 1.

Table 2 reports the estimated coefficients of regressing the treatment variable (first row)
and the instrumental variable (second row) on the four excluded covariates indicated in the
columns, the censoring variable and court-district fixed effects. The standard errors are reported
in parenthesis and are clusterized at the court district level. We find that our four excluded
covariates are correlated with the final ruling in each case (treatment variable), but are not
correlated with the punishment rate (instrumental variable). As discussed above, this finding
indirectly supports Assumption 1.

Table 3 focuses on assessing the plausibility of the monotonicity condition (Equation (3.1)).

22 Appendix C explains how we measure these covariates.

24



Table 2: Testing the Random Assignment Assumption

Male Name Public Defender Theft Red-Handed C

Final Ruling (D) 0.049%% 0.16 17 0.007  0.132%%%  0.018%
(0.009) (0.023) (0.015)  (0.011) (0.004)

Punishment Rate (Z)  0.001 0.003 -0.003 -0.002 -0.001
(0.002) (0.008) (0.005)  (0.003) (0.001)

Note: The first row reports the estimated coefficients of regressing the treatment variable (D =“punished according to the final
ruling in the case”) on the binary covariates indicated in the columns, the censoring variable (C is measured in years for readability)
and court-district fixed effects. The second row reports the estimated coefficients of regressing the instrumental variable (Z =‘“trial
judge’s punishment rate”) on the binary covariates indicated in the columns, the censoring variable (C' is measured in years for
readability) and court-district fixed effects. The standard errors are reported in parenthesis and are clusterized at the court district
level. The covariates indicate whether the defendant has a male name, whether the defendant used a public defender instead of
hiring a private lawyer, whether the defendant was accused of theft, and whether the defendant was caught red-handed when
committing a crime (“in flagrante delicto”).

Although it is not possible to directly test that any change in the instrument changes all agents
in the same direction with respect to treatment take-up, it is possible to test whether, on aver-
age, Z moves agents with different covariate values towards treatment take-up. To implement
this test, we adapt the strategy proposed by Bhuller et al. (2020) to our context and regress
treatment take-up (final punishment) on the instrument (punishment rate), the censoring vari-
able, and court-district fixed effect for different samples based on values of excluded covariates.
We use nine different samples for this test: all defendants, only defendants whose first names
are characteristically male, only defendants whose first names are not characteristically male,
only defendants who used public defenders, only defendants who hired private lawyers, only
defendants accused of theft, only defendants who were not accused of theft, only defendants
who were caught red-handed when committing a crime (“in flagrante delicto”), and only de-
fendants who were not caught red-handed. If the estimated punishment rate’s coefficient has
the same sign in the regressions for all subsamples, this could serve as indirect support for the
monotonicity condition (Equation (3.1)).

Table 3 reports the estimated coefficients of regressing the treatment variable (D =“punished
according to the final ruling in the case”) on the instrumental variable (Z =“trial judge’s pun-
ishment rate” in Column (1)), the censoring variable (C' is measured in years for readability in
Column (2)) and court-district fixed effects for the sample indicated in the rows. The standard
errors are reported in parenthesis and are clusterized at the court district level. Column(3)
reports the number of observations in each sample. We find that the estimated punishment
rate’s coefficient has the same sign and similar magnitude in the regressions for all subsamples,
indirectly supporting the monotonicity condition (Equation (3.1)).

Figure 3 focuses on assessing the plausibility of Assumption 5. Although it is not possible
to directly test that the potential uncensored time-to-recidivism outcomes Y* (0) and Y* (1)
are independent of the censoring variable C' (time-to-follow-up) given the value of the latent

heterogeneity (or punishment resistance) V| it is possible to test whether the realized uncensored

25



Table 3: Testing the Monotonicity Condition

Punishment Rate (Z) Censoring Variable (C') Sample Size

(1) (2) (3)

FFE FH
(1) All 0(370246) O<‘81030 N 43,468
% Kk
(2) Male 0(560151) 0{81020 g 37,304
k%%
(3) Female (8823) O('(())20006) 6,164
kokok *kk
(4) Public Defender 0('511852) (()6031 0 5,101
kksk x>k 3k
(5) Private Lawyer O('g6065 4) O('82020 5) 38,367
kkk k%%
(6) Theft 0(360571) O<'830105) 24,200
. 0.750%** -0.006
(7) Other Crimes (0.082) (0.005) 19,268
kkk X%k
(8) Red-Handed O('360676) O<'830005) 15,147
0.789%** 0.005
(9) Not Red-Handed (0.065) (0.004) 28,321

Note: This table reports the estimated coefficients of regressing the treatment variable (D =“punished according to the final
ruling in the case”) on the the instrumental variable (Z =“trial judge’s punishment rate” in Column (1)), the censoring variable
(C is measured in years for readability in Column (2)) and court-district fixed effects for different samples. The standard errors
are reported in parenthesis and are clusterized at the court district level. The first row uses our entire sample, the second row
uses only defendants whose first names are characteristically male, the third row uses only defendants whose first names are not
characteristically male, the fourth row uses only defendants who used public defenders, the fifth row uses only defendants who hired
private lawyers, the sixth row uses only defendants accused of theft, the seventh row uses only defendants who were not accused
of theft, the eight row uses only defendants who were caught red-handed when committing a crime (“in flagrante delicto”), and the
nineth row uses only defendants who were not caught red-handed. Column(3) reports the number of observations in each sample.

time-to-recidivism outcome (Y*) is (approximately) independent of C. If we find no strong
evidence against the independence assumption between Y* and C, this could serve as indirect
support for (or lack of support against) Assumption 5.

Figure 3a shows the cumulative distribution function (CDF) of the uncensored time-to-
recidivism outcome given cohorts defined based on the time-to-follow-up variable. If Y™* is
independent of C', then this CDF should not vary across cohorts. Taking into account the
sampling uncertainty, Figure 3a shows that the CDFs are not very different across censoring
cohorts, indirectly suggesting that the censoring variable may be independent of the potential

outcomes as required by Assumption 5.2

23This figure also suggests that if there is dependence, the potential outcomes would be negatively regression
dependent on the censoring variable, as discussed in Appendix G.1. Moreover, as a robustness check against
violations of the random censoring Assumption, we re-do our analysis focusing solely on the period starting in
2014. These results are presented in Appendix D.2 and are similar to the ones using the entire sample period,
indicating that our results are robust to possible violations of the Random Censoring Assumption.
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Figure 3: Assessing the Plausibility of Assumption 5
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Notes: Figure 3a shows the cumulative distribution function of the uncensored potential outcome (Y *) given cohorts based on the
censoring variable. Each color denotes a different cohort: orange denotes defendants who are observed for at least four years and
at most five years during our sampling period, purple denotes defendants who are observed for at least five years and at most six
years, light blue denotes defendants who are observed for at least six years and at most seven years, dark blue denotes defendants
who are observed for at least seven years and at most eight years, and gray denotes defendants who are observed for at least eight
years and at most nine years. These conditional CDFs are evaluated at four values of the uncensored potential outcome (one, two,
three, or four years), and these evaluation points are denoted in the x-axis. The y-axis denotes the value of the CDF, while black
lines denote point-wise 99%-confidence intervals around the values of the CDF.

Figure 3b shows, as a solid dark blue line, the probability that the defendant has a typically male name as a function of their
censoring variable. This nonparametric function was estimated using a local linear regression with an Epanechnikov kernel based
on Calonico, Cattaneo and Farrell (2019). The bandwidth was optimally selected according to the IMSE criterion. The dotted dark
blue lines are robust bias-corrected 99%-confidence intervals. The dashed orange line is the unconditional probability of having a
typically male name.

There are other ways to assess the plausibility of the random censoring assumption, too.
Another practical test we can entertain is to analyze the relationship between the censoring
variable and an excluded covariate: an indicator for whether the defendant has a male name.
Under random censoring, we would expect to see that the information about C' should not
affect the distribution of the excluded covariate. Figure 3b entertains this exercise and shows
the probability of having a typically male name given the defendant’s censoring variable (dark
blue line). Regardless of the censoring variable, this probability is relatively close to the uncon-
ditional share of male names (orange line). This, again, can serve as indirect evidence of the

plausibility of our random censoring assumption.

5.2 Empirical results

In this section, we present our empirical results. Section 5.2.1 contains the information
about the first stage of our estimation procedure, Equation (4.1), which relates how censoring,
court district dummies, and the judge’s leniency rate affects the final ruling of the case. Section

5.2.2 presents our estimates of the causal parameters in Corollary 4.1.
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5.2.1 First stage results

We start by presenting the results of the first stage regression in our empirical analysis. In
our model, the treatment variable D (“final ruling”) is a function of the instrument Z (“trial
judge’s punishment rate”), the censoring variable C', and court district fixed effects. Following
Subsection 4.2, we use a polynomial series to approximate the propensity score and report the
estimated coefficients of a quadratic model in Table 4. Note that our instrument is strong
according to the F-statistic of the first-stage regression. This result suggests that Assumption

2 is plausible.
Table 4: First Stage Results

Z Z? C
Coeflicient 0.663***  0.096  0.012***
Clusterized S.E.  (0.235)  (0.208)  (0.004)
F-statistic 817

Note: The left-hand side variable is our treatment variable, i.e., D =“punished according to the final ruling in the case”. The
standard errors are clusterized at the court district level. The third line reports the F-Statistic of a hypothesis test whose null is
that the coefficients associated with Z and Z?2 are equal to zero. The first stage regression controls for court district fixed effects.
To improve readability, we multiply the coefficient of the censoring variable (and its standard error) by 365. This transformation
is equivalent to measuring the censoring variable in years instead of days.

We also report the distribution of the estimated propensity score in Figure 4. The blue
histogram shows the distribution of the estimated propensity score given that defendant was
punished (treated group) while the white histogram shows the distribution of the estimated
propensity score given that defendant was not punished (comparison group). We find that
most defendants have a probability of being punished around 50%. However, some defendants
are more unlikely to be punished (estimated propensity score around 30%) and others are
more likely to be punished (estimated propensity score around 70%). These widely spread
propensity score distributions are positive for identification and estimation because they allow
us to discuss DMTE and QMTE functions evaluated at many different points of the latent
heterogeneity variable.

The vertical lines in Figure 4 denote the unconditional 5* and 95" percentiles of the esti-
mated propensity score. When discussing our results about the DMTE and QMTE functions,
we only report the estimates for latent heterogeneity values between these two percentiles. We

do so to avoid extrapolation bias and to ensure the plausibility of Assumption 4.

5.2.2 Estimated causal parameters

To estimate the DMTE and QMTE functions in our empirical application, we flexibly ac-
count for court district fixed effects. More precisely, we estimate 193 district-specific functions
for each of our treatment effect parameters (Theorem 4.1). Although very flexible, this strat-

egy makes it challenging to concisely report summary results. The way we proceeded was to
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Figure 4: Distribution of the estimated propensity score among treatment groups
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Notes: The blue histogram shows the distribution of the estimated propensity score among defendants who were punished (treated
group). The white histogram shows the distribution of the estimated propensity score among defendants who were not punished
(comparison group). The vertical lines denote the unconditional 5th and 950 percentiles of the estimated propensity score.

average these district-specific functions over court districts using the proportion of cases per
court district as weights, as in Corollary 4.1. We report the average DMTE function in Section
5.2.2.1 and the average QMTE function in Section 5.2.2.2. Moreover, we compare our proposed

methods against standard methods in the literature in Part 5.2.2.3.

5.2.2.1 Estimated DMTE function

Figure 5 shows the estimated average DMTE (y,-) functions for y € {1,2,...,8}, where
instead of measuring time-to-recidivism in days we measured it in years (to enhance read-
ability).?? These point estimates show relevant heterogeneity with respect to the treatment
resistance (horizontal axis denotes values of V) and with respect to the recidivism horizon
(different colors denote different values of y).

First, the DMTE (y,-) functions are increasing. This functional behavior indicates that
defendants whom almost all judges would punish are less likely to recidivate, while defendants
who would be punished only by tough judges are more likely to recidivate compared to situations
in which they would not be punished.?> This conclusion is supported by our 90%-confidence
intervals (Figures D.2a-D.3d). Importantly, these point-wise confidence intervals suggest that
constant treatment effects are implausible in our empirical context. Hence, they highlight the

importance of taking idiosyncratic latent heterogeneity seriously through an analysis of “MTE-

24Tn our data, we observe time-to-recidivism in days. To illustrate the readability improvements of writ-
ing the DMTFE function in years instead of days, we focus on one value of the time-to-recidivism vari-
able. The DMTE (y,-) function when y = 2 shows the distributional marginal treatment effect given by
P[Y*(1) <2-365 days |V =v] —P[Y*(0) < 2-365 days |V = v].

25 Appendix G.2 shows that these results are robust to violations of Assumption 5.
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Figure 5: DMTE (y,-) for y € {1,2,...,8}
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Notes: Solid lines are the point estimates for the average DMTE (y,-) functions indicated in the legend of each subfigure. These
results are based on Corollary 4.1. Moreover, point-wise 90%-confidence intervals are reported in Appendix D.1. These confidence
intervals were computed using the weighted bootstrap, clustered at the court district level (Subsection 4.2).

like” parameters.

Second, the DMTE (y,-) functions are steeper for y € {3,4,5,6} than for y € {1,2,7,8}.
This functional behavior indicates that the effect of alternative sentences on recidivism is more
intense for extreme cases (small or large punishment resistance levels) in the mid-run than it
is in the short or long-run horizon.

This rich heterogeneity illustrates the importance of considering different treatment resis-
tance levels. Our point estimates suggest that designing sentencing guidelines that encourage
strict judges to become more lenient could increase time to recidivism. However, the DMTFE
functions do not allow us to quantify this impact directly.

For this reason, DMTFE functions may not be the ideal way to convey the main takeaway
of the application, even though they answer well-posed and policy-relevant questions. In what
follows, we show that this limitation can be minimized by focusing on other functionals of

interest, such as the QMTE, which are measured in days instead of percentage points.

5.2.2.2 Estimated QMTE function

To better understand the time trade-offs associated with the effect of punishment on time
to recidivism, we now focus on the average quantile marginal treatment effect functions. These
functionals are easier to interpret than the DMTE functions because they express the underlying
treatment effects in the same units as the time-to-recidivism outcomes, i.e., days before the first

recidivism event.
Figure 6 shows the estimated average QMTE(, -) functions for 7 € {.10, .15, .25, .30, .40, .50, .75}.

30



Once more, these point estimates show relevant heterogeneity with respect to the punishment

resistance (horizontal axis denotes values of V).

Figure 6: QMTE (t,-) for 7 € {.10, .15, .25, .30, .40, .50, .75}
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Notes: Solid lines are the point estimates for the average QMTE (7, -) functions indicated in the legend of each subfigure. These
results are based on Corollary 4.1. Moreover, point-wise 90%-confidence intervals are reported in Appendix D.1. These confidence
intervals were computed using the weighted bootstrap clusterized at the court district level (Subsection 4.2).

Although the level of the estimated QMTFE (7,-) functions depends on the quantile, all
functions are decreasing in the unobserved resistance to punishment. These point estimates
suggest that defendants whom almost all judges would punish would take longer to recidivate
when punished. In contrast, defendants who would be punished only by tough judges would
recidivate faster compared to situations in which they would not be punished. This result
is statistically significant for 7 € {.10,.15,.25,.30,.40, .50, .75} at the 10% significance level,
according to Figures D.4 and D.5a-D.5c in the Appendix. Interestingly, these point-wise confi-
dence intervals suggest that constant treatment effects are likely invalid in our empirical setting.
Hence, they emphasize the importance of taking essential heterogeneity seriously through an
analysis of “MTE-like” parameters.

We reach a similar conclusion when we analyze the QMTE (-, v) as a function of the quantiles
for specific values of unobserved resistance to treatment. Figure D.1 in the Appendix shows the
average QMTE (-,v) for v € {.3,.4,.5,.6,.7}. Our results suggest that this function is always
positive for small values of the unobserved resistance to punishment, while it is always negative
for large values of v.

Overall, our QMTE point estimates suggest that designing sentencing guidelines that en-

courage strict judges to become more lenient could increase time-to-recidivism.
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5.2.2.3 Comparison with other available methods

Here, we compare our proposed methods against other available methods in the literature.
Differently from our approach, these estimates ignore that the outcome variable is right-censored
and provide different conclusions when compared against our proposed estimator. For brevity,
we focus our attention on the effects on the 25th and 50th percentiles (QMTE (.25,-) and
QMTE (.50, -) functions) in Figure 7.

Figure 7 focuses on the effect on the 25th and 50th percentiles of our outcome variable.
Our proposed methods are illustrated by the purple lines. We have the average QMTE (.25, -)
function in Figure 7a and the average QMTE (.50, -) function in Figure 7b (Corollary 4.1). The
light blue lines denote a “naive” version of our estimators that follows the same steps as described
in Section 4.2, but do not condition on the censoring variable. The orange lines denote the
standard method in the IV literature that accounts for endogenous selection into treatment but
ignores (or aggregates) treatment effect heterogeneity with respect to unobserved resistance to
treatment. The orange line in Figure 7a is the treatment coefficient of an IV quantile regression
(Kaplan and Sun, 2017) for the 25th percentile, while Figure 7b is the treatment coefficient of
an IV quantile regression (Kaplan and Sun, 2017) for the 50th percentile. Both IV quantile
regressions use the censored outcome variable as the left-hand side variable, control for court
district fixed effects, and use the judge’s punishment rate as the instrument for the defendant

being punished.

Figure 7: Comparing our Proposed Methods against Other Available Methods

\ 1000

IN
(=]
o

al
o
]

-500 -

\ -1000 -

03 0.4 05 06 07 03 04 05 06 07
V (Punishment Resistance) V (Punishment Resistance)

A
o
o
.,

Time-to—Recidivism (days)
o

Time—-to—Recidivism (days)
o

—800

IVQR(0.25) — Naive QMTE(0.25) [Ignoring C] — QMTE(0.25) IVQR(0.5) — Naive QMTE(0.5) [Ignoring C] — QMTE(0.5)

(a) QMTE (.25,-) against Other Available (b) QMTE (.50,-) against Other Available
Methods Methods

Notes: Our proposed methods are illustrated by the purple lines. We have the average QMTE (.25, ) function in Figure 7a and the
average average QMTE (.50, ) function in Figure 7b (Corollary 4.1). The light blue lines denotes a naive version of our estimators
that ignores censoring. The orange lines are the treatment coefficients of IV quantile regressions (Kaplan and Sun, 2017) for the
25th and 50th percentiles.

Analyzing Figures 7a and 7b, we find that the IV quantile regression does not capture the
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rich heterogeneity behind the treatment effects of fines and community service. In particular,
the IV quantile regression estimates suggest a negative effect, ignoring that the treatment
increases time-to-recidivism for some defendant types. Importantly, the IV quantile regression
estimates do not lie entirely within the 90%-confidence intervals of the correctly estimated
QMTE (.25,-) and QMTE (.50, -) functions (Figures D.4c and D.5b).

Moreover, in Figure 7a, we observe that our proposed estimator (purple line) and its naive
version (light blue line) reach similar point estimates. This finding is unsurprising because
the estimated QMT Ry (.25, ) functions are always smaller than 2.5 years, and all defendants
are observed for at least 2 years. Consequently, the censoring problem is not binding for low
percentiles. However, the censoring problem is binding for higher percentiles. In Figure 7b, we
focus on the QMT Ry (.50, ) function and find that our proposed estimator (purple line) and
its naive version (light blue line) differ in relevant ways. For example, the naive estimator finds
a QMTE function that is less steep, implying smaller treatment effects for extreme values of
punishment resistance. Importantly, the naive estimates do not lie entirely within the 90%-
confidence intervals of the correctly estimated QMTE (.50, -) function (Figure D.5b).

All in all, our results indicate that our proposed tools can provide detailed measures of
treatment effect heterogeneity of punishing misdemeanor offenses on time-to-recidivism that

other methods are not meant to capture.

6 Conclusion

In this paper, we identify the distributional marginal treatment effect (DMTFE) and the
quantile marginal treatment effect (QMTE) functions when the outcome variable is right-
censored. To do so, we extend the MTE framework (Heckman et al., 2006; Carneiro and Lee,
2009) to scenarios with duration outcomes. In this section, we discuss in which contexts our
proposed methodology can be used and deepen our empirical discussion.

Our methodology can be applied to many empirical problems that face two simultaneous
identification challenges: endogenous selection into treatment and right-censored data. In our
empirical application, we focus on the effect of misdemeanor punishment on defendants’ time-
to-recidivism. In this case, judges observe more information than the econometrician when
making their decisions, and time-to-recidivism is a right-censored variable. A similar problem
arises when analyzing the effect of rehabilitation programs on recidivism (Alsan, Barnett, Hull
and Yang, 2024). Furthermore, the same identification challenges appear in labor economics
when analyzing the effect of receiving unemployment benefits on unemployment spells (Chetty,
2008; Delgado et al., 2022) or in development economics when analyzing the impact of micro-
credit on firm survival (Banerjee, Karlan and Zinman, 2015). Moreover, in the health sciences,

when studying the effect of a drug on survival time, a researcher has to address both identifi-
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cation problems too (Sullivan, Zwaag, El-Zeky, Ramanathan and Mirvis, 1993; Spiegel, 2002;
Trinquart, Jacot, Conner and Porcher, 2016).

Concerning its empirical contribution, our work is inserted in the literature about the effect
of fines and community service sentences on future criminal behavior. Five recent papers in this
field were written by Huttunen et al. (2020), Giles (2023), Klaassen (2021), Possebom (2023),
Lieberman et al. (2023). They all focus on binary variables indicating recidivism within a pre-
specified period. Huttunen et al. (2020) and Giles (2023) find that this type of punishment
increases the probability of recidivism in Finland and Milwaukee (a city in the State of Wis-
consin in the U.S.), respectively. Klaassen (2021) finds that alternative sentences decrease the
probability of recidivism in North Carolina (a state in the U.S.). Possebom (2023) finds that
this type of punishment has a small and statistically insignificant effect on the probability of
recidivism in Sao Paulo, Brazil. Finally, Lieberman et al. (2023) analyzes five American states
and finds that court fees do not impact recidivism.

Differently from these five papers, our outcome variable is time-to-recidivism. Using a con-
tinuous outcome instead of binary indicators allows for a finer analysis of the heterogeneous
effects of fines and community service sentences on future criminal behavior, and may con-
ciliate the conflicting results in the previous literature. For example, we find that this type
of punishment increases time-to-recidivism for some individuals while decreasing it for other
individuals. If the first type of individual is more common in North Carolina than in Milwaukee

and Finland, our focus on essential heterogeneity may shed light on these conflicting results.
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A Proofs of the main results

We start by stating an auxiliary lemma that will be used to derive our main identification

results.

Lemma A.1. If Assumptions 1-4 hold, then, for any y < v¢, v € P and § € R, such that
y+0eC,

P[Yéy,Dz1\P(Z,C)='U,C=y+(5]zf P[Y*(1) <y|C=y+V =v]dv (Al
0

and
1

P[Yéy,D—O]P(Z,C)—U,C—y~|—(5]—J P[Y*(0) <y|C=y+4,V =v]dv, (A.2)

If Assumption 5 holds too, then, for any y < vc, ve€ P and 6 € R, such that y + d € C,
PlY <y, D=1P(ZC)=v,C=y+d] =f P[Y*(1) <y|V =v]dv (A.3)
0

and
1

P[Y <y, D —0|P(Z,C) = v,C =y + 6] :J PIY*(0) <y|V = v]dv.  (Ad)

v

A.1 Proof of Lemma A.1

Fix y < 7y¢, ve P and § € Ry, such that y + § € C. To prove (A.1), note that
PIY <y,D=1P(Z,C)=v,C =y+ /]
=E[1{Y <y}1{P(Z,C) =V} P(ZC)=0v,C=y+/|
by (3.1)
=E[1{Y" ) <y}l{v=V}P(Zy+d) =v,C=y+0]

because 1{Y'(1) <y} = 1{Y*(1) < y} when C >y
= :]E[l{Y*(l)<y}1{v>f)}\P(Z,y—|—6) =0,C=y+0,V =10|dv
by the Law of Iterated Expectations and Assumption 3

= r‘11{1)213}1@[1{3”‘(1) <y P(Zy+0)=0v,C=y+0,V =0]dv
= r‘UI[*][l{Y”‘(l) <y} P(Zy+d)=v,C=y+6§V =0]do

JO
v

— | P[Y*(1) <y|C=y+6,V=70]do

JO

by Assumption 1.
We can prove (A.2) analogously.
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To prove (A.3), observe that
PlY <y,D=1P(Z,C)=v,C=y+d]

:fppﬂm<mczy+&vzﬂw
0

- | Py <oy = oas
0
by Assumption 5.

We can prove (A.4) analogously.

A.2 Proof of Proposition 3.1

Fix y < v¢, ve P and 6 € R, such that y +d € C.
First, note that Equations (A.3) and (A.4) imply that
PY <y,D=1|P(Z,C)=0v,C=y+7]

pe =P[Y*(1) <y|V =] (A.5)

and
PY <y,D=0|P(Z,C)=0v,C=1y+7]
0z
according to the Leibniz Integral Rule.
Combining Equations (2.1) and (A.5)-(A.6), we prove that
PY <y,D=d|P(ZC)=v,C=y+/|
ov

— P[Y*(0) <y|V =] (A.6)

DMTR; (y,v) = (2d—1) -

for any d € {0, 1}.
Since the last equation holds for any 6 € R, such that y + § € C, we have that

TP OPY <y,D=d|P(Z = =
DMTR, (o) = 2a—1). [ FEERDZAPED =0Cod o0 de

Y

for any d € {0, 1}.
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B Regularity Conditions and Semiparametric Estimation

In this appendix we elaborate on standard regularity conditions for our proposed identifi-

cation and estimation results to work.

B.1 Main Regularity Conditions

Although identification does not rely on any parametric assumption, some of them aid the
estimation procedure. Covariates are easily incorporated when semiparametric assumptions
are made and the curse of dimensionality is avoided. Additionally, semiparametric assumptions
demand less data. In this appendix, we follow Rothe (2009) closely, but adapt his setting for
the case where the link function is known instead of unknown. For the rest of the section, we

assume an ¢.7.d sample. In this context, we introduce the following assumption:

Assumption B.1 (Semiparametric CDF). Let P|Y <y,D =d|P,C,X] = A(By(d,y) +
Bo (d,y)C + Bp(d,y) P + X'Bx (d,y)), where A() is a known link function up to a finite
dimensional vector (such as the logistic link), which is continuously differentiable in the indez.
Let N'(.) be the derivative of A(.), which is continuous.

For the sake of exposition, let W, ;= {Y <y,D =d}, H = {1,C, P, X}, H= {1,C, ]5,X},
HU = {17 O7U7X}7 ﬂd,y = (/BO (d7 y) aﬁC (d7 y) 7613 (d7 y) 7/8X (d’ y)) for any y and d € {07 ]-}
Taking the derivative with respect to P for A(-) for both W, ; and W, we get the DMTE(y,v)

as
DMTR:(y,v) = DMTRo(y, v) = N(ByHy)Bp (1, y) — N(BoyHy)Bp (0,9)

If P was known, it would be easy to estimate the DMTE as in the parametric part.
Since P is not known, we can estimate P in a semiparametric first stage, and obtain estimates
for 8,4, from the following maximum-likelihood procedure.?® We focus on d = 1 for the sake of

exposition and denote the semiparametric first-stage estimates by P. Define

1

Ln(ﬁw, 15) = rgax N Z Wy,l,ilag[A(Bl,yﬁi)] + (1 — Wy717i)10‘g[1 — A(ﬁl,yf{z)] (Bl)

with solution Bly(f?) If P was known, we could use the following unfeasible standard maximum

likelihood procedure:

1
LBy, P) = max Z Wypilog[A(Bry Hi)] + (1 = Wyai)log[l — A(Br,Hi)]  (B.2)

with solution £ ,(P).
To analyze our semiparametric estimator (B.1), we need to ensure that the unfeasible esti-

mator in (B.2) is well-behaved. To do so, we impose the following assumption:

261n the semiparametric first stage, we can estimate P using a standard series estimator.
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Assumption B.2 (Unfeasible Likelihood). The mazimum likelihood estimator of (B.2), follows
standard regularity conditions from Newey and McFadden (1994) for consistency and asymptotic

normality.

Assumption B.2 ensures that standard parametric inference could be performed if P was
observed, implying that Bl,y(P) RN B1,y- Since A is the logistic link, the result is standard.

To ensure that our semiparametric estimator is consistent and derive its asymptotic distri-
bution, we need to ensure that our propensity score estimator converges sufficiently fast and
satisfies some regularity conditions. To do so, we follow Rothe (2009) and impose the following

assumption.
Assumption B.3 (First stage assumptions). Let P satisfy:
1. P - P = %ijn(Zi,Ci,Xi,Zj,Cj,Xj)gbj + Ty with max; ||r,|| = op(N_%) and
max; |P; — P| = op(N_%) where ¢; = ¢(D;, Z;,C;,X;) is an influence function with

E[¢j|ZJ’,Cj,XJ’] =0 and E [(b?’ZjaCjan] < o and wezghts wn(Zi,Ci,Xi,Zj,Cj,Xj> =
o(N).

2. There exists a space P such that P(P € P) — 1 and §0 A/ Iog NP, [ [Jo)dA < o0
where N(A\, P, || - ||w) is the covering number with respect to the Lo, norm of the class of

functions P.

Assumption B.3 is analogous to Assumption 8 in Rothe (2009) and can be interpreted as
a high-level condition on the propensity score estimator. Assumption B.3(i) states that the
estimator admits a certain asymptotic expansion. Assumption B.3(ii) requires the propensity
score estimator to take values in some well-behaved function space with probability approaching
1. These are relatively mild conditions. Indeed, it is easy to show that series-based and kernel-

based estimators satisfy Assumption B.3; see, e.g., Rothe (2009, page 55), for a discussion.

B.2 Additional Regularity Conditions

Besides the previously mentioned conditions, which are the key components of the semi-
parametric procedure, we need to add additional regularity conditions to ensure that our pro-

cedures work.

Assumption B.4. Assume that P|Y <y,D =d| P,C,X]|,P|[D =d| P,C, X] are twice con-

tinuously differentiable in P.

Assumption B.5. Assume that the support of Z is known and is a Cartesian product of
compact connected intervals on which Z has a probability density function that is bounded away

from zero.
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Assumption B.6. Assume that 1;(z), forl e L are ry-times continuously differentiable on the

support of Z for ry = 2, where y(z) is used to approzimate ¢(z), an unknown function.
Assumption B.7. Assume that Y*(d) is continuous with respect to the Lebesque measure.

Assumption B.4 assures that we can apply the Leibniz Integral Rule to identify the DMTR
functions. Assumptions B.5 and B.6 are standard in the series estimation literature. In par-
ticular, Assumption B.6 implies that the asymptotic bias (due to the series approximation by
regression splines) converges to zero at a rate of L~"% as the number of approximation functions,
L, diverges to infinity. Assumption B.7 is a regularity condition that ensures point identification

for our quantile results.

B.3 Proof of Theorems 4.1 and H.1: Consistency and Asymptotic
Normality

To ensure our estimators of the DMTE, QMTE, MTE are consistent and asymptotically
normal, we first need to ensure consistency of the feasible estimator of all the components

of the DMTE. Then, we use functional approximation results to show asymptotic results for

DMTE,QMTE, MTE.

B.3.1 Consistency of the ;, estimators

We need to prove asymptotic equivalence between the solution of Equations (B.1) and (B.2).
Then, by Assumption B.2, we get the consistency of the feasible semiparametric estimator. Note
that

sup |Ln(ﬂl,y7 p) - Ln(ﬂl,ya P)|

Ly

< | inf min{A (B, Ho), A(Bry H). 1= ABuy Hi). 1= (B, Ho) (supmax (81, H) = A(B, Ho)) |

1y

N

|O1) (supma |A (B, 1) = A(Br, Hi)l) |

1,y

= Op(1)7

where the first inequality can be derived using standard algebraic manipulations. Moreover,
the second inequality holds because A(-) € (0,1). Furthermore, note that A(-) is continuous and
max; |H; — H,| converges due to Assumption B.3, implying that max; |A(8y,H;) — A(B1,H,)|
converges due to the continuous mapping theorem. Finally, since the supremum over /3, in
the third line is also continuous, we can apply the continuous mapping theorem again to prove
the last equality.

Furthermore, Ln(f,,P) is a standard parametric likelihood, implying that it converges

uniformly in /3, to its expectation (Newey and McFadden, 1994, Lemma 2.4). Formally, we
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have that

ISBUP [Ln(Bry, P) — L(B1y)| = 0p(1)

where L(S1,) = E[Ln(B1,] = E[Wy1.:log(A(BryH)) + (1 — Wy 1.:)log(l — A(B1,H))] is a non-
random function that is continuous in 3 ;. Taken together, it follows from the triangle inequal-

ity that

Sup [Ln(Bry, P) = L(Bry)| = 0,(1)

implying that BLy(P) is consistent whenever L(f;,) attains a unique maximum at the true
value of the parameter, which is the case by our identification results and Assumption B.1.

As a consequence, the consistency of our feasible semiparametric estimator follows from
Theorem 2.1 by Newey and McFadden (1994) via Assumption B.2.

B.3.2 Asymptotic distribution of the 3;, estimators

Now, we derive the asymptotic distribution of our semiparametric estimator in (B.1). Let

Ln(Bry, P;)g, Ln(B1y, Pi) g, L(B1,y, Pi)s be the derivative with respect to 8 of the individual’s
feasible log-likelihood, unfeasible log-likelihood and true log-likelihood respectively (the score).
Define similarly the second-order derivative.

From a standard second-order Taylor expansion of the semiparametric log-likelihood around

B1,y, we have that

\/N(Bly<P) - 51@) = [%ZL”(ﬁl,yag)ﬁ,ﬁ] W%ZLn(ﬂl,yv[}i)Ba (B-3)

where Bl,y is between the estimated and true values. By the first part of Assumption B.3 and

the consistency of Bl,y(p), we know that,

1 _ ~
[ﬁ Z Ln(Bry, Pi)s,s

Now, we focus on the last term in (B.3):

ZL"(ﬁl,mpi)B _ ZW N dlog[A (B, H;)] . WyJ,i)@log[l — A(B1,H,)]

-1

# E[L(Bry, P)ssl ' = 2.

B op

[ A (Bo(Ly)+Bc(1y)Ci+Bp(Ly) Pt Bx (Ly) Xi) )
A(Bo(L,y)+Bc (L,y)Ci+Bp(1y) Pi+Bx (1,y) X:)
A (Bo(Ly)+Bc(Ly)Ci+Bp(Ly) Pit+Bx (Ly) Xi
_ ZW s | ABoy)+Be(Ly)Ci+Bp (Ly) P+Bx (Ly)Xi) g
- S A B (Ly)+Be(Ly)CitBr(Ly) Pi+Bx (Ly) Xi) p
t A(Bo(Ly)+Bc(Ly)Ci+Bp (1y) Pi+Bx (Ly)Xi) ~ *
A (Bo(Ly)+Bc(Ly)Ci+Bp(Ly) Pit+Bx (Ly) Xi) 3
| A(Bo(1,9)+Bc(L,y)Ci+Bp(Ly) Pi+Bx (1,9)X;) = ¢
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_A/(ﬁo(lvy)""ﬁC(lvy)Ci+BP(1vy)ﬁ:i+/3X(Ly)Xi)
1-A(Bo(1,9)+Bc(1,y)Ci+Bp(1,y) Pi+Bx (1,y) Xs)
—A/(ﬁo(1vy)+5o(1,y)ci+ﬁP(Ly)}:}-ﬁ-ﬂx(Ly)Xi) .
+ (1 — W M.) 1-A(Bo(L,y)+Bc(1,y)Ci+Bp (Ly) Pi+Bx (Ly) Xs) ~°
vt —AN(Bo(Ly)+Bc(Ly)Ci+Bp(Ly) Pi+Bx (Ly) Xi) p
1_A(50(17y)+ﬁ0(17y)ci+513(Ly)FiJ"ﬁX(17y)Xi) ’
—A'(ﬂo(1:y)+ﬂc(Ly)Cz’-i-ﬁP(l,y)lfﬁﬁX(Ly)Xi)X.
L 1-A(Bo(Ly)+Bc(1y)Ci+Bp (Ly) Pi+Bx (1y) X;) "

Considering the path P, = (1 —¢)P + e[P — P], we take the path-wise derivative of
> Ln(B1,y, Pi)p at direction P — P (the derivative of the submodel P. evaluated at e = 0).
This object is denoted by >, Ln(f1, P;)s,p, and is equal to

Al((ﬁl-,yHi)A(Bl,yHi)_A,(BlyyH"')z 613 (17 y) [[31 — PL]

A By HOA G BN (B He)? ]

1.yt 1,y Hi)— 1,9 Hi ) 5

ZL"(Bl’y’P")ﬁ»Pi = ZWy,l,i A"(ﬁl,yHnA(ﬁl,yH?;flﬁ'(gi,):m)gp e (1;\%l()ﬂ£]:;{i) PZ]A (B.4)

' : [ A(B1,yHi)? iBe (Ly) + W] [P — P;]
A//(ﬁl,yHi)/}x((ﬂﬁll,ij{liz);/\/(ﬂl,yHi)Q XzﬁP (173/) [R i Pz]

A NN Bl 5, () s -
—AN"(B1,yH)[1=A(B1.H)]—N (B1,,H; >
+ D1 =Wys) _A"(/31yH-)([f;i(ﬂj[[iﬂl})(;%;&%ff)iﬂ . Ciﬁp(l—’/%/)(ﬁ[%;)Pi]A
5 [ A BT == Pibp (1y) + 17A(ﬁ11‘,2H1)] [P = F]
AR A NI X8 (1,y) [P~ P

We also define E [Ln(S,,, P;)s, p,| analogously.
With these results in hand, we go back to (B.3) and expand around the deviations of the

true first stage:
VM%A@—&Q=ZNW<%ZUWMJm+%§PM&@mMJ+%m (B.5)

where Zi%Ln(ﬁLy,Pi)ﬁ is the usual estimate of the score, which has mean 0. Thus,
if we can show that the second term also has mean 0, the asymptotic normality of
our semiparametric estimator follows by a standard multivariate C'LT for the vector
[% Zz Ln(ﬁl,yv Pi)ﬂv % Zz Ln(/Bl,w Pi)ﬁfi]'

Since all the components of (B.4) have a similar structure, we can focus on one of them and

the results are symmetric for the rest.

. A f A f iy i 2 A
Consider % D iWyii (Bry Hi) A((Bﬁlly;;))z (Bry ) Brp (1,y) [P, — B
" . N_ A’ 2
For notation simplicity, let A1y A A By Hi) —N (B .y Hi) Bp (1,y) = A(B1,,H,).

A(fgl ,yHi)Q
Note that
1 .
5 2 WondA(B, )P, — P

1 _1
= mzzwn(zh Ci, Z;, C )Wy 1, A(BryHi)pj + 0p,(N”2)
v g

1 _1
=~ 2B wn(Z:,Ci, Z, O)E (W1 :A(Bry Hi) H, Z,C1 | Zi, Ci) 6 + 0)(N72)
where the first equality is due to Assumption B.3 and the second equality is due to the U-
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statistics Hajek projection.

Now, by a standard law of large numbers, we have that

1 )
~ Z]E [w,(Z;, Ci, Z, CYE [W, 1, A(BryHi) | H, Z,C | Zi, C] i + 0p(N72)

5 ]E[]E [wn(Zi7 Ci7 Z7 O)E [Wy,l,iA(ﬁLyHi”Ha Za C] |Zi7 Cz] ¢z]
[E [wn(Z;, Ci, Z, OVE (W1, A(Bry Hi) | H, Z, O | Zi, Ci) ¢:| Zi, G
[wn(Zla 027 Z7 O)E [Wy,lﬂA(ﬂl,sz)‘Ha Za C] |Z17 OZ] E[¢2’Z27 CZ]]

E
E

E
E
0

where the last equality is due to Assumption B.3. Thus, a standard C'LT assures the asymptotic

normality of the estimator for the parametric part.

B.3.3 Asymptotic behaviour of the DMTE estimator

We derive the influence function of our estimator to be able to express the variance and to
apply functional limit theory results. Since DMTE is the difference of two DMT R functions,
we can focus on the influence function of one of the DMTR and then apply linearity to get
the influence function of the estimator for the DMTE. We will express the DMTR as an
unconditional moment that depends on two parameters (f4,, P) that are themselves expressed
as unconditional moments.

In particular, P is such that E(D|Z,C, X) = P. Omitting X for simplicity, we can express

the moment that determines P with some loss of efficiency as:
E[CZ(D - P)] =0 (B.6)
Similarly, recall that L(5,,) = E[Ln(51,)] = E[Wy1:log(A(Bry,H)) + (1 — Wy 1.4)log(1 — A(B1,H))]

is a non-random function that is continuous and differentiable in f;,. Note L(3;,) is itself a

function of P since P is inside H. We can rewrite this as a moment equality using the score as:

olog(A(BryH)) dlog(1 — A(Bi1,H))|
IS, [P)] = B |19, 0 el BT

Let N = (P,1{C >y}). Then, the moment that identifies the DMTR; is: DMTR, =
E[A(Bo (1, ) + Be (1,y) C + Bp (1,y) P)Bp (1,y) |N], or, using an unconditional representation
with some efficiency loss,

E[(A'(Bo (1,y) + Bo (L,y) C + Bp (1,y) P)Bp(1,y) = DMTR,) - P-1{C' >y}] =0 (B.8)

To be more specific, the relevant moments that define the parameters of interest are

+ (1 — Wy,lﬂ‘)

0= E[CZ(D — P)] (B.9)
_ A,(<5O (1,y) +ﬂC (1,y)C+ﬂp (Ly) P)
0=1E lWyvl A((Bo (1, y) + Be (1,y) C + Bp (1,y) P)
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_(1 - Wy,l)

N ((Bo (1,y) + B (1,y) C + Br (1,y) P) } (B.10)

1= A((Bo (1,y) + Be (1,y) C + Bp (1,y) P)

A((Bo (1,y) + Be (1,y) C + Bp (1,y) P)
TA((Bo (Ly) + Be (Ly) C + Bp (L,y) P)
N((Bo (L,y) + Be (1,y) C + Bp (1,y) P) ]
1= A((Bo (L,y) + Bc (1L,y) C + Bp (1,y) P)

OzElWy

_(1 - WyJ)

(B.11)

A((Bo (1,y) + Be (1,y) C + Bp (1,y) P)
A((Bo (1, y) + Be (1,y) C + Bp (1,y) P)

N((Bo (1,y) + Be (L,y) C + Bp (1,y) P) ]
L= A((Bo(1,y) + Bc (1,y) C + Bp (1,y) P)

0=FE [WyJ

_(1 - Wy,l)

(B.12)

0 =E[(A (B (1,y) + fe (1,y) C + Bp (1,y) P)Bp (1,y) = DMTRy) - P-1{C > y}] (B.13)
We follow Newey (1994), Ichimura and Newey (2022), and Ackerberg, Chen, Hahn and Liao
(2014). We will assume that standard conditions for the interchange of integration and differ-
entiation hold (such as dominated convergence theorem conditions).

Before proceeding, note that:

E[CZ(D — P)] - J ex(d— P)f(e, = d)du(c, =, d) — L cx(d— PYF(5)du(s)  (B.14)

CxZxD
This also holds for the rest of the moments, where ¢ is the full data vector. This is useful to be

able to replicate the form of Equation (3.10) in Newey (1994), which is instrumental in deriving
the influence functions.

We want to derive the influence function of DMTR,. Thus, we can start with (B.13) and
consider a parametric submodel ¢ for the nuisance parameters and differentiate. Let s(d) be
the score of the data.

O, [(A'(Bo (1, y) (t) + Be (1,y) C + Bp (1,y) P(1))Bp (1, y) (1) = DMTR)P)1{C > y}]
ot
= E[(A'(Bo (1 y) + Bo (1,y) C + Bp (1,y) P)Bp (1,y) = DMTR)P1{C > y} 5(0)]
L CE[A(Bo (L,y) (1) + Be (1,y) ()C + Bp (Ly) (1) P)Bp (1,y) (t) = DMTR)PL{C > y}]

t=0

ot t=0
L CELA(Bo (1, y) + Be (1,y) € + Br (1,y) P(t))Bp (1,y) — DMTR)P()1{C > y}]
ot =0
By the implicit function theorem, we have that
ODMTR,
ot t=0

= [-E[P1{C > y}]]_l[E[(A'(ﬁo (Ly) + Bc (L,y) C+ Bp (L,y) P)Bp (L,y) = DMTR)P1{C >y} s(6)]
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CE[(A'(Bo (1,y) () + e (1,y) 1)C + Bp (L, y) (1) P)Bp (1,y) (t) — DMTR,)P1{C > y}]
ot
ot ol
Now, we need to express the second two components as products with the score of the data to
apply Equation (3.10) of Newey (1994). We start with

CE[(A(Bo (L, 9) () + B (1,y) ()C + Bp (Ly) (£)P)Bp (1,y) (t) — DMTR,)P1{C > y}]
ot ’
which is the parametric part of the model. We have that

FE[(A'(Bo (L y) (¢) + Bc (1,y) ()C + Bp (1,y) (1) P)Bp (1, y) (t) - DMTR,)P1{C > y}|
ot
=E[A (6o (1,y) + B (1,y) C + Bp (1,y) P) - Bp (1,y) - P-1{C > y}
.<8ﬁo(1,y) O L By O ., By ,P)}
ot =0 ot =0 ot =0
We claim, and will become evident further on that is indeed true, that, using Equations
(B.9)-(B.12), we can express M = E[IF3,01,)5(0)], where IFg,(,) is the influence func-
tion of B4 (1,y) and A is a random variable.
Then, we have that
0DMTR;
ot t=0

= [-E[PL{C > y}]]
[ [(A'(Bo (L,y) + Be (1,y) C + Bp (1,y) P)Bp (1.y) = DMTR)P1{C > y} s(0)]
+ E[N(Bo (Ly) + Be (1,y) C + Bp (1,y) P)Bp (1,y) PL{C > y}
(B[ Fpy1,5)5(0)] + E[T Fpo1,4)5(0)]C + E[1 Fp,.(1,)5(9)] P)]

JE[(A'(Bo (1,y) + Bc (1,y) C + Bp (1,y) P(t))Bp (1,y) = DMTR,)P(1)1{C > y}]
ot

t=0

t=0

|
t=0

or, equivalently,

ODMTR,
ot t=0

= [FE[PL{C > y}]] [ E[{(N(B (1,9) + Bo (1,5) C + Bp (1,9)
+ E[A”(ﬁo (Ly) +Bc(1,y) C+ Bp(L,y) P)Bp (Ly))PL{C > y}) |1 Fpy1y)
E[A"(Bo (1,y) + Be (1,y) C + Bp (L,y) P)Br (1,y)) PL{C > y})CII Fso1y)
( L,y) P)Bp (L, y))PL{C > y}) PlI Fp,(1,)}5(9)]

)

P)Bp(1,y) — DMTR,)P1{C > y}

E[A"(Bo (1,y) + B (1,y) C + Bp (

JE[(A (5 (Ly) + B (1,y) C+ Bp (1,y) P(t)
ot

)
)
)
)Bp (1,y) — DMTR)P(t)1{C > y}]

_l’_
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Now, we need to derive the non-parametric component
ot
We assume that the conditions for the Riesz Representation Theorem hold for
ot

See, for example, Ackerberg et al. (2014) for such conditions as being a linear bounded func-

t=0

tional. Then, there is a unique b in a properly defined space with the inner product < by, by >=
E[b1b2] such that:

IE[(A'(Bo (1,y) + Bc (1,y) C + Bp (1,y) P(t))Bp (1,y) = DMTR,)P(t)1{C > y}]
ot

:EzNCﬂD—P@N}

i ot
OE[bCZ(D — P(t))]
ot

o) _5(5)5}7_(’5)]

ot
OE[b(0) P(1)]
_ o (B.15)

where b(0) = —bC Z.
To find the I F following Ichimura and Newey (2022), we need to find a ¢(d, P, «) such that:
OE[(A(Bo (Ly) + B (Ly) €+ Bp (Ly) P()Br (1,y) = DMTR)P(£)1 {C > y}]
ot
= ng(& P,a)G(dY) (B.16)

where G is a perturbation from the true CDF'.

Furthermore, from (B.9), we can see that
JE[CZ(D — P(t))]

0 — = :JCﬂD—PmM®+

JE[CZ(D — P(1))]
ot

or, equivalently,
CE[CZ(D — P(t))]
ot '
Thus, following Ichimura and Newey (2022), if we find an «(d) such that:

IE[(A'(Bo (1,y) + Bc (1,y) C + Bp (1,y) P(t))Bp (1,y) = DMTR,)P(1)1{C > y}]

ot
__E[a0)CZ(D - P, (B.17

Y

JCﬂD—PWW&z—

then we will get (B.16).

Furthermore, from (B.9), we can see that

EIOZD PO [2CUD =P g o5 PO L ELOPO) g

ot ot ot
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where a(6) = CZ.
From (B.15) and (B.18) combined with (B.17):
CE[b(O)P(t)] _  CE[a(d)a(6)P(t)]

o = o (B.19)

The equality in Equation (B.19) will be satisfied if it holds for every t. Since P(t) is in the

space of possible propensity scores, the condition will be satisfied if it holds for any P in the

space of possible propensity scores. Thus:
E[l;(é)P] = —E[a(d)a(d)P] (B.20)

or, equivalently,

0 = E[{b(0) + a(0)a(d)}P] = E [(—a(é)) {_a[zg) — a(é)} p

(B.21)

. 2
Thus, as in Ichimura and Newey (2022), the «(d) that minimizes E l(—a(é)) {76(5) - oz(5)} ]

satisfies

(6, P,a) = a(0)CZ(D — P).
Combining this result with the previous display, the Influence Function of DMT R, is given
by

IFpyrr,
= [-E[P1{C > y}]]‘l[(/\’(ﬁo (Ly) + Be (Ly)C+ Bp(Ly) P)Bp (L,y) = DMTR,)P1{C > y}
+E[A(Bo (1,y) + Be (L,y) C + Be (Ly) P)Bp (1,y)) PL{C > y})1 Fpy1y)
+E[A(Bo (1,y) + Be (Ly) C + Br (L,y) P)Bp (1,y)) PL{C > y})ClI Fpq1,)
+E[A(Bo (1,y) + Be (L,y) C + Be (L,y) P)Bp (1,y)) PL{C > y}) PlI Fj,q,,
+ (6, P,a)] (B.22)

The influence function will depend on the influence functions of the estimated coefficients.
Their influence function could be derived similarly to the nonparametric effect of P on DMTR;,
but using Equations (B.9)-(B.12). We could then use a similar logic as we did following Ichimura
and Newey (2022) and a form of Riezs representation. That would fully complete the represen-
tation, implying that our previous claim holds.

Since DMTE = DMTR, — DMTR,, we can then say that:

[FDMTE = IFDMTRl - [FDMTRO (B23)

where I Fpyrr, can be derived analogously to I Fpyrrg, -
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Then, we know that
— 1 &
VN(DMTE — DMTE) = T N IFpare(0:) + 0,(1) % N(0, Var(DMTE))

and
Var(DMTE) = E[IF} 78],

where convergence is due to standard results on influence functions (van der Vaart and Wellner,
1996; van der Vaart, 1998).

Following Frandsen (2015) and our influence function calculations, we can recover the asymp-
totic distribution of the QMTE [7,p]. The QMTR, as quantiles have the following standard
and known influence functions:

{DMTR (1,p) >y} — T

ODMTR4.DMTR, (r.p)p)
dy

implying that I Fonre@rp) = IFQuTR(rp) — TFQMTRy(rp)

TFQMTR(rp) =

VN(QMTE — QMTE) = \/iﬁ i [Founre () + 0,(1) % N(0,Var(QMTE))

and
Var(QMTE) = ]E[IFEQMTE],

where convergence is due to standard results on influence functions (van der Vaart and Wellner,
1996; van der Vaart, 1998).

By recalling that MTE(p) = S(l) QMTE(r,p)dr and the fact that we just provided asymp-
totic normality for QMTE(T,p) we can recover the distribution of the MTFE(p) following
Masten, Poirier and Zhang (2020).

At this point, it is worth being specific about the definition of Hadamard differentiability
and how it connects to the QTE and the MTE.

Definition 1. Let ¢ : D — E where D, E are Banach spaces. Say ¢ is Hadamard differentiable
atO@eD ifipy,: D — E,Yhe D, ift -0, ||lh— h|| — 0, then:

‘ &(0 + thy) — ¢(6)

t
In our context, we set D = C([0,1],[0,1]) and E = R, i.e., D is the space of continu-

ous functions where the first component refers to 7 and the second one to v. Then, we know that

QMTE(Hl+th1t,92+tth2t)—QMTE(91,62) — i QMTEél 92(h1> h2) and QMTE(T,92+th2tt)—QMTE(T,02)

QMTE;, (hy), where |||z denotes the norm of convergence. Furthermore, we have that

— 0

— ¢y(h)

E

"llllr

1
MTE(0; + thy) — MTE(6,) QMTE(7,05 + thy) — QMTE(T, 65)

= dr,
t t
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which, under the conditions for the dominated convergence theorem, implies that
1
MTE(0y + thy) — MTE(6,) QMTE(T,05 + thy) — QMTE(T,65)

= dr
t t

— QMTE;y, (ho)dr := MTEjp,(hs).
0
Consequently, the MTE is Hadamard differentiable, and we can apply the functional delta
method again to get the asymptotic Gaussian distribution of the MTE.

Furthermore, by the chain rule of influence functions,
1

IEyrER) = J TEQuTE ) dT
0

Although relevant to show the results for the MTFE, in our text, we also focus on the

RMTE(v) to avoid additional support assumptions. Thus, we can similarly derive the

asymptotic results for the RMTE, since RMTE(v) = — ] DMTE (y,v)dy. In the context
of the RMTE, we set D = C([0,7],[0,1]) and F = R, ie., D is the space of continu-
ous functions where the first component refers to y, v = min{vy;,7} and the second one

to v. Then, we know that 2MLEOT ot the) - DMTEG,.0) — [z DMTUE} 4 (hi,hs) and
. N R 1,02 ?

t
DMTE(r,05+thst)~ DMTE(y,0
(r.02+ 2;) (1:62) —lx DMTE}p,(hy), where [|||r denotes the norm of convergence.

Furthermore, we have that

(e
RMTE(0; + thy) — RMTE(0,) B DMTE(y, 0z + thy) — DMTE(y, 02)d
t - t Y,
Jo
which, under the conditions for the dominated convergence theorem, implies that
e
RMTE(0; + thy) — RMTE(0)) B DMTE(y,0s + thy) — DMTE(y, Hg)d
t B t Y
Jo
gl
— — DMTE;, (hy)dy := RMTEy, (hs).

0
Consequently, the RMTE is Hadamard differentiable, and we can apply the functional delta

method to get the asymptotic Gaussian distribution.

Furthermore, by the chain rule of influence functions,

Yo
TFrRyTER) = — f IEpymrEQyp)dy.
0
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B.4 Proof of Theorems 4.2 and H.2: Validity of the Weighted Boot-

strap

We generate {V;,i = 1,...,n} as a sequence of independent and identically distributed
non-negative random variables with mean one, variance one, and finite third moment (e.g.,
Vi ~ Exp(1)).

Based on this we estimate the propensity score by minimizing the weighted version of the
standard series minimization criteria,

2

n
ofs* — al;g min n~ ! Z Vi (DZ — g — X,(OCX — Ciac — ¢L(Zi)/aZ7)
0fseOfs i=1

(B.24)

where 6/ = (&% &%, 4%, a%)) and thus P* is a function of #/>*. Note then that by Corollary
3 in Ma and Kosorok (2005a) or Corollary 3.2.3 and Theorem 3.2.5 of van der Vaart and Wellner
(1996), P* converges to P;.

)

For the estimation of the (s, let:
Ln*(Byy, P) = max % Z ViWyalog[A(Bry Hy)] + Vi(1 — Wyaa)log[L — A(Bi,Hy)]  (B.25)
And, l
Ln* (B, P) = max % 2 ViWyilog[A(Bry Hi)] + Vi1 = Wiy )log[1 — A(Br, Hi)] - (B.26)

By a similar display as in the unweighted case, we know that:

sup |Ln* (81, P) — Ln*(B1,, P)| = 0,(1)

Ly

Where Ln*(f,, P) is a standard, but weighted parametric likelihood and thus by a second
application of Corollary 3 in Ma and Kosorok (2005a) or Corollary 3.2.3 and Theorem 3.2.5 of
van der Vaart and Wellner (1996), Bf‘y converges to [y,.

It then remains to show asymptotic normality of 57, and then of DMTR*. Since the V; are
independent of everything and Var (V;) = 1, we have v N (B{‘y — P1y) is asymptotically normal
as long as a version of Assumption B.3 holds with P.

Furthermore, since V; is independent of everything, similar calculations of the influence func-
tions for DMTE,QMTE, and RMTFE can be provided to obtain asymptotic normality of the
bootstrapped versions of these. Alternatively, one can note that DMTE , QMTE, and RMTFE
are all continuous and Hadamard differentiable functions of 3, ,, F;, with P* slower than root-n
via a bootstrap version of Assumption B.3 and thus functional delta methods and continuous

mapping theorems hold.
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C Constructing the Dataset

In this appendix, we summarize Appendix .2 of Possebom (2023), which provides a detailed
explanation of how the dataset used in our empirical application was constructed. We explain
the specific crime types included in our sample, the classification algorithms used to define which
defendants were punished, and the fuzzy matching algorithm used to define which defendants
recidivate. At the end, we explain how we constructed the extra covariates used to assess the
validity of our identifying assumptions.

The final dataset was created from three initial datasets.

1. CPOPG (“Consulta de Processos de Primeiro Grau”): It contains information about all
criminal cases in the Justice Court System in the State of Sao Paulo (TJ-SP) between
2010 and 2019.

2. CJPG (“Consulta de Julgados de Primeiro Grau”): It contains information about the last

decision made by a trial judge in all criminal cases in TJ-SP between 2010 and 2019.

3. CPOSG (“Consulta de Processos de Segundo Grau”): It contains information about all

appealing criminal cases in TJ-SP between 2010 and 2019.
Starting from the CPOPG dataset, we implement the following steps.

1. We only keep cases that are currently in the Appeals Court, closed, or whose status is

empty. Those cases are already associated with a trial judge’s sentence.

2. We only keep cases whose crime types are associated with sentences that must be less

than four years of incarceration.
3. We only keep cases that aim to analyze whether a defendant is guilty or not.
4. We only keep cases that were randomly assigned to trial judges.
5. We only keep cases whose starting date is after January 15, 2010.

After these steps, our dataset contains 98,552 cases. We then merged it with the CJPG
dataset using cases’ id codes. Since some cases do not have id codes, our dataset now contains
98,422 cases.

After this step, we randomly select 35 cases per year (2010-2019) for manual classification.
We manually classify them into five categories: “defendant died during the trial”, “defendant is
guilty”, “defendant accepted a non-prosecution agreement” (“transagao penal” in Portuguese),
“case was dismissed” (“processo suspenso” in Portuguese) and “defendant was acquitted”. Since

some sentences are missing or incomplete, we are able to manually classify only 325 sentences.
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Now, we use those 325 manually classified cases to train a classification algorithm. To do
so, we divide them into a training sample (216 cases) and a validation sample (109 sentences).

First, we design an algorithm to identify which defendants died during the trial. To do so,
we check whether the sentence contains any reference to the first paragraph of Article 107 from
the Brazilian Criminal Code. This deterministic algorithm perfectly classifies cases into the
category “defendant died during the trial”.

Second, we design an algorithm to identify which cases were dismissed. To do so, we check
whether the sentence contains any reference to Article 89 in Law n. 9099/95. This deterministic
algorithm correctly classifies 98% of the cases into the category “case was dismissed”.

Third, we design an algorithm to identify which defendants accepted a non-prosecution
agreement. To do so, we check whether the sentence contains any expression connected to
a non-prosecution agreement. This deterministic algorithm correctly classified almost all the
cases into the category “defendant accepted a non-prosecution agreement”, making only three
mistakes.

Finally, we design an algorithm to classify the remaining cases into two categories: “de-
fendant is guilty” and “defendant was acquitted”. To do so, we define a bag of words that
were found to be strong signals of acquittal and guilt when manually classifying the cases in
our samples. We then count how many times each one of those expressions appears in each
sentence, and we normalize those counts to be between 0 and 1.

Using the normalized counts, we train an L1-Regularized Logistic Regression using our
training sample. We then validate this algorithm using our validation sample and find that it
correctly classifies 98.8% of the cases. Given this high success rate, we use the L1-Regularized
Logistic Regression algorithm to define the treatment variable in our full sample.

Having designed the above algorithm, we use it to define the trial judge’s treatment variable
T in the full sample. First, we find which defendants died during their trials and drop them
from our sample. We then use the second and third algorithms to define which cases were
dismissed and which cases are associated with a non-prosecution agreement. Moreover, we use
the trained L1-regularized Logistic Regression algorithm to classify the remaining cases into
the categories “defendant is guilty” and “defendant was acquitted”. Finally, we combine the
categories “defendant was acquitted” and “case was dismissed” into the untreated group (“not
punished”, 7" = 0) and the categories “defendant accepted a non-prosecution agreement” and
“defendant is guilty” into the treated group (“punished”, T" = 1). At the end, our dataset
contains 96,225 cases.

Now, we merge our current dataset with the CPOSG dataset using each case’s id code.
When merging these datasets, we create an indicator variable that denotes which cases went to
the Appeals Court, i.e., which cases were matched. We then randomly select 50 cases per year

for manual classification (2010-2019) and divide them into three categories: “cases that went
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to the Appeals Court, but were immediately returned due to bureaucratic errors”, “cases whose

trial judge’s sentences were affirmed” and “cases whose trial judge’s sentences were reversed”.

Now, we use those 500 manually classified cases to train a classification algorithm. To do
so, we divide them into a training sample (300 cases) and a validation sample (200 sentences).

First, we design an algorithm to identify which cases went to the Appeals Court but were
immediately returned. To do so, we simply check whether the Appeals Court’s decision is
empty.

Finally, we design an algorithm to classify the non-empty cases into two categories: “cases
whose trial judge’s sentences were affirmed” and “cases whose trial judge’s sentences were re-
versed”. To do so, we define a bag of words that were found to be strong signals of sentence
reversal when manually classifying the cases in our sample. We then count how many times
each one of those expressions appears in each sentence, and we normalize those counts to be
between 0 and 1.

Using the normalized counts, we train an L1-Regularized Logistic Regression using our
training dataset. We then validate this algorithm using our validation sample and find that it
correctly classifies 96.2% of the cases. Given this high success rate, we use the L1-Regularized
Logistic Regression to define the treatment variable in our full sample.

Having designed the above algorithms, we use them to define the final treatment variable
D in the full sample. First, we set D = T if a case did not go to the Appeals Court or if a
case went to the Appeals Court, but was immediately returned. Second, we use the trained
L1-Regularized Logistic Regression algorithm to classify the remaining cases into the categories
“reversed trial judge’s sentence” and “affirmed trial judge’s sentence”. We, then, set D = T if
the trial judge’s sentence was affirmed and D = 1 — T if the trial judge’s sentence was reversed.
Moreover, we also drop the cases whose dates (starting date, trial judge’s sentence date and
Appeal Court’s decision date) are not appropriately ordered. At the end, our dataset contains
95,119 cases.

Now, our goal is to find the defendants’ names in each case. To do so, we use the variable
parties from the CPOPG dataset and search for names listed as defendants. Finally, we delete
names that are not a person’s name — such as district attorney offices, public defender offices
and “unknown author”. Our sample now contains 103,423 case-defendant pairs.

Furthermore, we repeat the steps in the last paragraph to find defendants’ names in a dataset
that contains all cases from the CPOPG dataset, including cases that are still open and cases
with severe crimes. This dataset contains 1,027,120 case-defendants pairs.

Now, we use these two datasets to define our outcome variable (Y = “time to recidivism”).
A defendant 7 in a case j in the smaller dataset recidivates if and only if defendant ¢’s full name
appears in a case j in the larger dataset. To match defendants’ names across cases, we use the

Jaro-Winkler similarity metric and we define a match if the similarity between full names in
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two different cases is greater than or equal to 0.95. If we find a match, we define the outcome
variable as the time difference between the second case’s start date and the first case’s final
date.

Furthermore, we delete the case-defendant pairs whose cases started in 2018 and 2019.
Consequently, our dataset contains 51,731 case-defendants pairs.

Lastly, we use the CPOPG dataset to create four covariates that are used to assess the
validity of our identifying assumptions in Section 5.1. Following Possebom (2023), we use the
defendant’s name to find whether the defendant has a typically male name according to the
Brazilian 2010 Census (R package genderBR). Following Laneuville and Possebom (2024), we
use each case’s events to find which defendants were caught red-handed when committing a
crime (in flagrante delicto), and we use each case’s list of parties to find which defendants used
public defenders. Moreover, we also use information on the type of crime to create an indicator

variable of whether the defendant was accused of theft.
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D Additional Empirical Results

Figure D.1: QMTE (-,v) forve {.3,.4,...,.7}
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Notes: Solid lines are the point estimates for the average QMTE (-,v) functions indicated in the legend. These results are based
on Corollary 4.1.
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D.1 Confidence Intervals for DMTE, QMTE and RMTE functions

Figure D.2: 90%-Confidence Intervals for DMTE (y, -) for y € {1,2,3,4}
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Notes: Solid lines are the point estimates for the average DMTE (y, -) functions indicated in the caption of each subfigure. These
results are based on Corollary 4.1. Moreover, point-wise 90%-confidence intervals are reported using dashed lines. These confidence
intervals were computed using the weighted bootstrap clusterized at the court district level (Subsection 4.2) using 399 repetitions.
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Figure D.3: 90%-Confidence Intervals for DMTE (y,-) for y € {5,6,7,8}
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Notes: Solid lines are the point estimates for the average DMTE (y, -) functions indicated in the caption of each subfigure. These
results are based on Corollary 4.1. Moreover, point-wise 90%-confidence intervals are reported using dashed lines. These confidence
intervals were computed using the weighted bootstrap clusterized at the court district level (Subsection 4.2) using 399 repetitions.
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Figure D.4: 90%-Confidence Intervals for QMTE (r,-) for 7 € {.10, .15, .25, .30}
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Notes: Solid lines are the point estimates for the average QMTE (7,-) functions indicated in the caption of each subfigure. These
results are based on Corollary 4.1. Moreover, point-wise 90%-confidence intervals are reported using dashed lines. These confidence
intervals were computed using the weighted bootstrap clusterized at the court district level (Subsection 4.2) using 399 repetitions.
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Figure D.5: 90%-Confidence Intervals for QMTE (r,-) for 7 € {.40,.50,.75} and RMTE (-)
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Notes: Solid lines are the point estimates for the average QMTE (7,-) and RMTE (-) functions indicated in the caption of each
subfigure. These results are based on Corollary 4.1. Moreover, point-wise 90%-confidence intervals are reported using dashed lines.
These confidence intervals were computed using the weighted bootstrap clusterized at the court district level (Subsection 4.2) using
399 repetitions.
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D.2 Robustness Check: Cases after 2014

In this exercise, we verify the robustness of our empirical results to violations of Assumption
5 (Random Censoring). The main concern is that the potential recidivism status is not sta-
tionary, i.e., its distribution varies over time. If this is the case, then the DMTFE and QMTE
functions may vary when we change the sampling period.

In particular, temporal changes in the distribution of potential recidivism may be due to
changes in the public defender office. For example, better access to publicly provided high-
quality defense may boost the defendant’s fairness perception and incentivize them to behave
properly after the trial. If this is the case, then the potential recidivism distribution will
be different in scenarios with a small or a large number of public defenders. This setting
is particularly relevant in our empirical context because the number of public defends varies
substantially in the state of Sao Paulo during our sample period: 500 in 2011, 501 in 2012, 610
in 2013, 719 in 2014, 718 in 2015, 717 in 2016, 721 in 2017, 749 in 2018 and 748 in 2019.

Having in mind the discrete jump in the number of public defenders in 2014, we re-estimate
our target parameter using a sample that starts in 2014. Naturally, we cannot re-estimate all
the DMTFE and QMTUFE functions that we estimated in Sections 5.2.2.1 and 5.2.2.2 because
we have a shorter sample period. For this reason, we re-estimate the DMTE function for the
first four years and the QM T E function for the first decile, the first quartile and the median.

Figure D.6 presents these results. They are very similar to the results in Sections 5.2.2.1 and
5.2.2.2, indicating the robustness of our results against violations of Assumption 5 (Random

Censoring).

Figure D.6: DMTFE and QMTE results using cases that started after 2014
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Notes: In Figure D.6a, solid lines are the point estimates for the average DMTE (y, -) functions indicated in the legend. In Figure
D.6b, solid lines are the point estimates for the average QMTE (7,-) functions indicated in the legend. All results are based on
Corollary 4.1.
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E Relevance of MTE for Duration Outcomes

In this appendix, we justify focusing on the marginal treatment effect (MTE) for duration
outcomes using two arguments.

In Appendix E.1, we develop a theoretical model with a policymaker who selects a treatment
assignment rule that minimizes the cost of recidivism for the target population of defendants.

In Appendix E.2, we provide a simple example where the treatment benefits most agents
in our population. In this example, our proposed focus on quantile treatment effects for dura-
tion outcomes correctly highlights that this treatment benefits society. However, focusing on
short-time horizons, as usually done in the crime economics literature, leads to the opposite

conclusion.

E.1 Theoretical justification of relevance of MTE for duration Out-

comes

Following Kitagawa and Tetenov (2018), the policymaker has to choose a treatment rule
that determines whether individuals with variables W = {Z,V,C} in our target population
will be assigned to the treatment group or the comparison group. The policymaker chooses
non-randomized treatment rules described by decision sets G < W, where W is the support
of W. These decision sets determine the group of individuals {WW € G} to whom treatment is
assigned. We denote the collection of candidate treatment rules by G = {G < W}.

The policymaker’s goal in our context is to select a treatment assignment rule that minimizes
the cost of recidivism for the target population of defendants. Assuming that the policymaker
discounts cost inter-temporally, she chooses the treatment rule that maximizes Y* for each
individual in the target population.

Specifically, we impose that the policymaker chooses the decision set G € G that minimizes
K(G) —E [m {b[Y*u)-l{WeGHY*(o>'1{W¢G}] . k}]

where k € R, is the fixed cost of recidivism and b € (0,1) is the policymaker’s discount rate.

Rearranging the last equation, we find that
K(G)=Wn{} - E[Y*(1)-1{WeG}+Y*(0) -1{W ¢ G}]| + In{k}
=In{b} - E[(Y*(1)=Y™*(0)-1{W e G} +In{b}-E[Y*(0)] + In {k}
Consequently, the policymaker’s problem is equivalent to
maxE[(Y* (1) = Y* (0)) - 1{W € G)].
Moreover, note that

E[(Y* (1) =Y*(0)) - 1{W e G}]
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~E[E[(Y* (1) = Y* (0)) - 1{W € G}| V. Z.]]
by the Law of Iterated Expectations

=E[E[(Y"(1) =Y (0)|V,2,C]- 1{W e G}]

=E[E[(Y* (1) =Y*(0)|V,C]-1{W € G}]
by Assumption 1

—E[E[(Y*(1) = Y* (0))|V]- 1{W e G}]
by Assumption 5

=E[MTE (V) -1{W e G}].

Therefore, the policymaker’s problem is equivalent to
rggng [MTE (V) -1{W € G}],
implying that focusing on the MTE of duration outcomes is relevant when the policymaker

wishes to minimize the cost of recidivism over time. Importantly, we discuss how to identify

the MTE of duration outcomes in Appendix H.

E.2 Illustrating the relevance of duration outcomes

When analyzing the impact of judicial decisions on recidivism, many authors (Agan et al.,
2023; Bhuller et al., 2020; Giles, 2023; Huttunen et al., 2020; Klaassen, 2021; Possebom, 2023)
focus on a short time horizon, using a small set of outcome variables that indicate whether
the defendant recidivated within a pre-specified number of years. In this paper, we advocate
moving beyond this short time horizon and focusing on quantile or average treatment effects of
duration outcomes.

In this appendix, we illustrate why focusing on duration outcomes may provide more infor-
mation than the standard approach in the empirical literature in crime economics. To do so, we
abstract from the MTE heterogeneity (variable V') and focus exclusively on the heterogeneity
arising from the distribution of the potential outcomes (Y* (0),Y™* (1)).

We illustrate the relevance of quantile and average treatment effects of duration outcomes
by analyzing a simple example with discrete random variables. In this example, focusing on
short-term outcomes or long-term quantile treatment effects lead to different conclusions about
our policy of interest.

We denote potential time-to-recidivism by Y* (0) and Y* (1) and measure it in years. Table
E.1 shows the joint probability mass function of (Y*(0),Y* (1)) and their marginal distribu-
tions.

Note that, in this example, our judicial decision benefits most defendants. For instance,
this treatment strictly increases time-to-recidivism for 50% of the defendants (Y* (0) < Y™ (1)).
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Table E.1: Joint Probability of (Y*(0),Y™* (1)) and their Marginal Distributions

Y*(0) =
PY*(0)=-Y*(1)=]] 1 2 3 10 20|P[Y*(1)="]

1 10 0 .10 0 0 20

2 0 .10 .10 0 0 20

Y*(1) = 3 0O 0 0 0 0 0
10 0 0 0 .10 0 10

20 05 05 0 40 O 50

PY* (0) = 15 15 20 50 0 1

Note: The last column reports the marginal distribution of Y* (1). The last row reports the marginal distri-
bution of Y* (0). The cells in the center of the table report the joint distribution of (Y* (0),Y* (1)).

Moreover, only 20% of the defendants are harmed by this treatment (Y* (0) > Y* (1)).

However, a short-time horizon analysis would conclude that this treatment is harmful. For
example, this treatment increases the probability of recidivism within one year by 5 p.p. and the
probability of recidivism within two years by 10 p.p, i.e., P[Y* (1) < 1] -=P[Y*(0) < 1] = 0.05
and P[Y* (1) <2] -P[Y*(0) < 2] =0.1.

Differently from the standard empirical analysis, we advocate for focusing on quantile and
average treatment effects of duration outcomes. For example, the Quantile Treatment Effect
on the Median is equal to seven years because the median of Y* (1) equal ten years and the
median of Y* (0) equals three years. Moreover, the average treatment effect equals 5.55 years
in this example.

Therefore, our proposed analysis would correctly highlight that this treatment benefits at

least some agents in our society.
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F Identification without Restrictions on Censoring

In this appendix, we focus on which parameters can be point-identified when we do not
impose any restriction on the relationship between the censoring variable and the potential
outcomes. To compensate for not imposing Assumption 5 nor Assumptions G.1-G.2, we need
to allow the DM TR function to depend on the censoring variable.

Specifically, our causal parameter is given by:
DMTRy (y,v,¢c) =P[Y*(d) <y|V =v,C = (|

for any d € {0, 1}, y < 7o, v € [0, 1] and ¢ € C. Note that our causal parameter is interpretable as
a conditional distributional marginal treatment response. In particular, the censoring variable
C' acts similarly to a covariate in the standard MTE analysis (Carneiro et al., 2011).

In our empirical application, conditioning on the censoring variable is equivalent to con-
ditioning on the defendant cohort or time-fixed effects. Considering that most studies about
judicial decisions (Agan et al., 2023; Bhuller et al., 2020; Huttunen et al., 2020; Klaassen, 2021)
condition on district-by-time fixed effects, they identify the conditional DMTR function for
a pre-specified value of y. In this appendix, we discuss how to extend their analysis to con-
sider conditional quantile marginal treatment effects and marginal treatment effects (Remark
4).  We also discuss the advantages of formally addressing censoring by imposing Assumption
5 (Remark 5). Lastly, we discuss the implicit assumptions behind this standard approach in
the empirical literature (Remark 6).

To point-identify the conditional DMT R function, we eliminate Assumption 5 and impose

Assumptions 1-4 only.

Proposition F.1. If Assumptions 1-/ hold, then

P|Y <y,D=d|P(ZC)=p,C=1y+d]
ov

for any de {0,1}, y < vo, ve P and § € R,y such that y + 9 € C.

Remark 4. A direct consequence of Proposition F.1 is the identification of the quantile
marginal treatment response function QMT R, (7,p,y + 0) conditional on the censoring vari-
able for any 7 € (0,74 (p,y + 9)), where 74 (p,y + ) := DMTRy (yc,p,y + 0). Additionally, if
we impose Assumptions H.1 and H.2, then we straight-forwardly identify the MTE function

conditional on the censoring variable.

Remark 5. The comparison between Propositions 3.1 and F.1 illustrates the identify-
ing power of Assumption 5. It allows us to combine multiple values of the censor-

ing variable to identify a single point of the DMTR function through the integral of
PY <y,D=d|P(Z,C)=p,C=y+4]

ov

tion, it means that we can combine multiple defendant cohorts to identify a single evaluation

over different values of §. In our empirical applica-
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point in the DMT R function, increasing statistical power by being transparent about censoring
assumptions.

In contrast, the standard empirical practice frequently defines a set of time periods, creates
binary outcome variables for each time horizon, and only keeps observations that are observed
for a period longer than their longest time horizon of interest. Due to this desire to keep the
sample consistent across outcome variables, the existing empirical practice effectively reduces

power when analyzing shorter horizons.

Remark 6. Proposition F.1 controls for time effects non-linearly without relying on implicit
separability assumptions. In contrast, existing empirical strategies focusing on time to event-
date make use of linear models with time-fixed effects. Hence, they rely on implicit separability
assumptions. In case of failure of such assumptions, the estimands from these time-fixed effects
models are unlikely to be a relevant causal parameter.

Differently from this standard empirical practice, our approach recovers causal effects of
interest by bypassing separability assumptions and relying on Random Censoring. We do so
by connecting time effects and treatment effects in an explicit and transparent way under the
assumption that there are no endogenous time effects once we control for the individual latent

punishment resistance.

Proof. For brevity, we show the proof of Proposition F.1 when d = 1.
Fix y < v¢, ve P and 6 € R, such that y + § € C. Note that

PlY <y, D=1|P(Z,C)=v,C =y+ /]

=E[1{Y <y}1{P(Z,C) =V} P(ZC)=v,C=y+]
by (3.1)
E[1{Y*(1) <y}1{p =V} P(Z,y+6) =p,C =y +9]

because Y;* is not censored when C' > y

rl
= | E[1{Y"(1)<y}l{p=v}|P(Z,y+0)=p,C=y+6V =v|dv
Jo

by the Law of Iterated Expectations and Assumption 3

rl
= 1{p=vlE[1{Y*(1) <y}|P(Z,y+9)=p,C=y+4V =v]dv
J
rr
= | E[1{Y*() <y}|P(Zy+06) =p.C =y +4,V =v]dv
Jo
rp
=| P[Y*(1)<y|lC=y+6,V =0v]dv
Jo

by Assumption 1.
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Consequently, the Leibniz Integral Rule implies that
OP|Y <y,D=1|P(Z,C)=p,C =y+ 4]
ov

=P[Y*(1) <y|C=y+6,V =p]

We can prove the same result for d = 0 analogously. m
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G Partial Identification Strategies

In some empirical applications, Assumption 5 may be too strong, while in others, it may be
plausible. Since this is very context-specific, it is worth coming up with alternative identification
strategies that accommodate dependent censoring mechanisms. In this appendix, we discuss
two alternative assumptions that restrict the dependence between the censoring variable and
the latent heterogeneity, but not to the point of imposing censoring independence. Section G.1
imposes that potential outcomes are negatively regression-dependent on the censoring variable,

while Section G.2 intuitively imposes that the censoring problem is not too severe.

G.1 Partial identification under regression dependence

In this subsection, we impose that potential outcomes are negatively regression-dependent
on the censoring variable. This alternative assumption restricts the relationship between the

latent heterogeneity, the censoring variable, and the potential outcomes.?”

Assumption G.1 (Regression Dependence). Conditional on V', the potential outcomes are
negatively regression dependent on the censoring variable, i.e., P[Y*(d) < y|C =¢V =v] =
P[Y*(d) <y|C =¢c,V =v] for any d € {0,1}, any v € (0,1) and any (c,¢) € C* such that
c<c.

In our empirical application, Assumption G.1 imposes that the potential outcomes of more
recent cases first-order stochastically dominate the potential outcomes of older cases. Intuitively,
this restriction imposes that defendants are committing fewer crimes over time and is plausible

given that the state of Sao Paulo became safer during our sampling period.?

To derive bounds around the DM T R functions, define the following auxiliary quantities:
LB4(y,v,0) = Ply+d<C)-(2d—1)- vy, v,y +9)
UBy(y,v,0) = P(C<y)+Ply+d<C)
+P(y < C<y+9) (2d—1) yaly,v,y +9),
where 6 € R, ;. The next proposition describes the bounds around the DMT R functions when
potential outcomes are negatively regression-dependent on the censoring variable.
Proposition G.1. Suppose that Assumptions 1-4 and G.1 hold. Then,
DMTR, (y,v) € [rgg%x LBy4(y,v,0), Igé%l UB4(y,v, 6)]

2TRelated assumptions have been used by Chesher (2005), Jun, Pinkse and Xu (2011), and Kedagni and
Mourifie (2014) in different contexts. For more information on the definition of regression dependence and other
concepts of statistical dependence, see Lehmann (1966).

28In a different empirical context, positive regression dependence may be more plausible than negative re-
gression dependence. Similar bounds can be derived based on this alternative assumption.
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for any de€ {0,1}, y < voc and v e P, where D:={§ e R, ,: y+ 0 €C}.

Proof. See Appendix G.1.1. =

First, one can see that the bounds in Proposition G.1 do not “collapse” to point identifi-
cation when Assumption 5 holds. That is because the regression-dependence in Assumption
G.1 is compatible with dependent censoring but does not directly restrict the amount of depen-
dence between the potential outcomes and the censoring random variable. In order words, the
nature of Assumption G.1 is different from Assumption 5 and does not constitute “continuous
relaxations” of the independence assumption.

Second, Assumption G.1 allows us to exploit the information in ~,4(y, v,y + &) even under
dependent censoring because of the (stochastic) monotonicity in C'. Since this monotonicity
property holds for different values of C' less than the ¢, we take the supremum and infimum
over ¢, so the bounds are tighter.

Third, the identification region will functionally depend on the propensity score (and thus
the instrument), as reflected in the presence of v4(y, v,y +9) in the bounds. This will determine
the shape of it.

Furthermore, the bounds’ length depends on the proportion of censored observations close
to the value of the particular y, reflecting that regions with heavier censoring data tend to have
wider bounds.

From the partial identification of the DMT R, (y,v) functions, it also follows the partial
identification of a range of QMTE (7,v) across 7 and the RMTE(v), just like before. If one
further imposes Assumptions H.1 and H.2, partial identification results for the MTE function
will also follow. For these functions, though, it is important to ensure that the lower and upper
bounds in Proposition G.1 are monotone in y, which can be enforced using a similar approach
as in Manski and Molinari (2021). More specifically, for a grid of weakly increasing y’s, if
maxsep LBi(Yki1,¢, ) < maxsep LBy(yx, ¢, d), we can simply redefine maxsep LBg(yg11,¢,0) =
maxgsep LBy(yk, ¢, d); the analogous is true for the upper bound. Alternatively, one can use the
rearrangement procedure as in Chernozhukov et al. (2009). We state these results as corollaries

for convenience.

Corollary G.1. Suppose that Assumptions 1-4, B.7 and G.1 hold. Then,
(a) QMTE (1,v) is partially identified for any v e P and 7 € (0,7 (v)).
(b) the RMTE(v) function is partially-identified for any v € P.

Corollary G.2. If Assumptions Assumptions 1-4, G.1, H.1 and H.2 hold, then MTE (v) is
partially identified for any v e P.

Finally, the bounds in Proposition G.1 can be estimated using methods similar to the meth-

ods described in Subsection 4.2. The main difference between the estimators of the bounds and
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the point-estimators (Subsection 4.2) is that, when estimating the bounds, we take either the
maximum or the minimum over values of ¢ in Step 5 instead of taking the mean. Consequently,

these estimators will converge in probability to the bounds in Proposition G.1.

G.1.1 Proof of Proposition G.1

Fix de {0,1}, y < yc, ve P and § € Ry, such that y + ¢ € C.
Note that Equations (A.1) and (A.2) imply that
PlY <y,D=1|P(Z,C)=v,C=y+4]
ov

=P[Y*(1) <y|C=y+6,V =] (G.1)
and
PlY <y,D=0|P(Z,C)=v,C=y+4]

ov
according to the Leibniz Integral Rule.

— P[YH0) <y C=y+aV =v]  (G2)

Combining the last two equations, we have that
PY <y,D=d|P(Z,C)=v,C=vy+7]

ov ]
(G.3)

PI[Y*(d) <y|lC=y+0,V =v]=(2d-1)-

Moreover, observe that:

PY*(d) <y|V = v]
— (Prye(@) <ylC =&V = o] fo (@) dz
by the Law of Iterated Expectations
- [Pr@<yic=ev=pfo@da
because V' I C' by Assumption 3

Ty <yl = v = pl o (0)de

JO

y+6
+j PIY*(d) <y|C =&V = p] fo (©) dé

Y

+J OO]P>[Y*(d) <ylC=2¢V =p]fc(c)de,

y+9
implying, by Assumption G.1, that

P[Y*(d) <y|V =p] <P(C<y)+Py+<C)
+Py<C<y+)P[Y*d) <y|C=y+4V =p] (G.4)
and

P[Y*(d) <y|V=p|=2Ply+d<CO)P[Y*d) <y|C=y+4V =p] (G.5)
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Thus, combining Equations (G.4) and (G.5) with (G.3), we have that
DMTR,(y,v)

€ P(?J+5<C)-(2d_1).OP[Yg%D:d\Pa(Z,C):U,O:y+5]7
v

P(C<y)+Py+0d<C)

PlY <y, D=d|P(Z = =
+P(y<0<y+5)-(2d_1).a[ Y, d|P(Z,C)=v,C=y+0]

Since the bounds above hold for any § € R, , such that y + d eag , we have that
DMTRy (y,v)
€ [I?EELDX{]P)(Q+(5< C)-(2d—1)- P <v.D= d|Pa<f’C> :U’C:y+5]},
| PC<y)+Py+5<CO)+Ply<C<y+9)
min '(Qd_l)‘é‘]P’[Y<y,D=d|Pa(f,C)=U,C=y~|—(5] ;

where D :={de R, :y+JeC}.

G.2 Partial identification under a continuous violation of random cen-
soring

In this subsection, we impose that the conditional distribution of the potential outcomes

given the censoring variable and the latent heterogeneity variable is close to the conditional

distribution of the potential outcomes given only the latent heterogeneity variable.?? Differ-

ently from Assumption G.1, the following assumption constitutes a “continuous relaxation” of

censoring independence (Assumption 5).

Assumption G.2 (“Continuous Relaxation”). The conditional distribution of the potential
outcomes gqiven the censoring variable and the latent heterogeneity variable is similar to the

conditional distribution of the potential outcomes given only the latent heterogeneity variable

i.e., there exists B € Ry, such that
P[Y*(d) <y|C=y+,V=0]-P[Y*d)<y|V=0]]<B
foranyyeY,vel0,1],0eD={eR,,:y+IeC} and de {0,1}.

Using this assumption, we can derive bounds around the DMTR functions.

Proposition G.2. Suppose that Assumptions 1-4 and G.2 hold. Then,
DMTRy(y,v) € [LBqy (y,v,B),UBqy (y,v,B)]

29A similar assumption is used by Kline and Santos (2013) in a sample selection context.
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where
LBy, (y, U,E) =B+ <2d — 1) -max v4(y, v,y + 0)
6eD
and
UBy (y, U,E) = B + (2d — 1) -minyy(y, v,y + 0)
6eD
for any de {0,1}, y < vc and v e P.

Proof. See Appendix G.2.1. =

First, the bounds in Proposition G.2 can be estimated using methods similar to the methods
described in Subsection 4.2. The main difference between the estimators of the bounds and
the point-estimators (Subsection 4.2) is that, when estimating the bounds, we take either the
maximum or the minimum over values of ¢ in Step 5 instead of taking the mean. Consequently,
these estimators will converge in probability to the bounds in Proposition G.2.

Second, differently from Proposition G.1, the bounds in Proposition G.2 “collapse” to point
identification when Assumption 5 holds. In this case, we have that B = 0 and maxsep vq4(y, v, y+
) = mingep v4(y, v,y + 9).

Third, we take the supremum and infimum over ¢ to tighten the bounds because our con-
tinuous relaxation of censoring independence holds for every value of C' greater than .

Finally, the identification region will functionally depend on the propensity score (and thus
the instrument), as reflected in the presence of v4(y, v,y +9) in the bounds. This will determine
the shape of it.

Furthermore, the bounds’ length depends on the choice of B. We recommend choosing B
based on the bounds around the DMTFE function and defined in Corollary G.3.

Corollary G.3. Suppose that Assumptions 1-4 and G.2 hold. Then,
DMTE (y,v) € [A (4,0.5) .5 (5. B)]

where

A (y,v,E) = LB (y,v,?) — UB, (y,v,?)
and

A (y,v,E) =UB, (y,v,?) — LBy (y,v,?)
for any y < v and v e P.

Corollary G.3 may be used to choose B according to a breakdown analysis (Kline and Santos,

2013; Masten and Poirier, 2018). For example, the researcher may be particularly interested
in DMTE (y,-) for some value of 5 € ). If, based on Proposition 3.1, DMTE (y,v) # 0 for

some v € P, then the researcher can choose the smallest value of B (%) such that the bounds

in Corollary G.3 contain the zero function, i.e., 0 € [A (y,v,ﬁ@)) A (y,U,E@))] for every
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v e P. This value of B (7) is known as the breakdown point.*

Figure G.1 shows the Breakdown Points B (y) for y < 8 years. Note that the breakdown
points for short-run recidivism (small values of y) are smaller than the breakdown point for
mid-run recidivism (values of y around 2000 days or 5 years approximately). This finding
suggests that our results for mid-run recidivism are more robust to violations of the random

censoring assumption than our results for short-run recidivism.

Figure G.1: Breakdown Point B (y) for y < ¢

0.3

0.24

Breakdown Point

0.1+

0.0+

0 1000 2000 3000
Duration (days)

Notes: For y < 8 years, the breakdown point B (y) is the smallest value of B (y) such that the bounds in Corollary G.3 contain the
zero function, i.e., 0 € [é (y, v, B (y)) JA (y,v, B (y))] for every v € P.

More importantly, Figure G.1 suggests that the results in Section 5.2.2.1 are robust to
violations of the random censoring assumption. Considering that the largest possible value of
the breakdown point is one, we believe that a breakdown point larger than 0.1 (i.e., B (y) = 0.1)
suggests that the estimated DMTE (y, -) is robust against continuous relaxations of Assumption
5. We highlight that this condition holds for most time horizons in Figure G.1.

To directly inspect the bounds in Corollary G.3, we can plot them for a few values of B.
Figures G.2 and G.3 plot A (y, -,E) and A (y, -,E) for B e {E(y)/Q,E (y)} Solid lines are the
point estimates for the average DMTFE (y, -) functions indicated in the caption of each subfigure
(Corollary 4.1). Dashed lines are the bounds around the average DMTE (y,-) functions that
use the estimated breakdown point in their construction, i.e., A (y, B (y)) and A (y, B (y))

Dotted lines are the bounds that use half of the estimated breakdown point in their construction,

39Conducting inference about the breakdown point is beyond the scope of this paper.
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ie., Ay, -, Bwk) and A (y,-, Bw)).

Figure G.2: Bounds around DMTE (y, ) for y € {1,2, 3,4}
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[a) [a)
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-1.04 -1.0
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1*B 0.5*B Point Estimate = = 1*B --+ 0.5*B = Point Estimate
(c) DMTE (3,-) (d) DMTE (4, )

Notes: Solid lines are the point estimates for the average DMTE (y, -) functions indicated in the caption of each subfigure. These
results are based on Corollary 4.1. Dashed lines are the bounds around the average DMTE (y, -) functions that use the estimated
breakdown point in their construction, i.e., é(y, -,E(y)) and Z(y, -,E(y)). Dotted lines are the bounds around the average
DMTE (y,-) functions that use half of the estimated breakdown point in their construction, i.e., A (y, -, B (v)/2) and A (y, -, B (v)/2).
All bounds are based on Corollary G.3.

When focusing on A (y,-,Bw)/2) and A (y, -, B®)2) (dotted lines), we find that the results
in Section 5.2.2.1 are robust to violations of the random censoring assumption. For example,
it is not possible to fit a flat line between these bounds. This finding suggests that there is
heterogeneity with respect to the punishment resistance even when we allow for continuous
relaxations of Assumption 5.

Beyond discussing bounds around the DMTFE functions and their breakdown points, the
partial identification of the DMT Ry (y,v) functions (Proposition G.2) also implies the partial
identification of a range of QMTE (7,v) across 7 and the RMTE(v), just like before. If one
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Figure G.3: Bounds around DMTE (y, ) for y € {5,6,7, 8}
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Notes: Solid lines are the point estimates for the average DMTE (y, -) functions indicated in the caption of each subfigure. These
results are based on Corollary 4.1. Dashed lines are the bounds around the average DMTE (y, -) functions that use the estimated

breakdown point in their construction, i.e., é(y7 ~,§(y)) and Z(y7 -,E(y)).

Dotted lines are the bounds around the average

DMTE (y,-) functions that use half of the estimated breakdown point in their construction, i.e., A (y, -, B (v)/2) and A (y, -, B (v)/2).

All bounds are based on Corollary G.3.
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further imposes Assumptions H.1 and H.2, partial identification results for the MTE function
will also follow. For these functions, though, it is important to ensure that the lower and upper
bounds in Proposition G.2 are monotone in y, which can be enforced using a similar approach
as in Manski and Molinari (2021). Alternatively, one can use the rearrangement procedure as

in Chernozhukov et al. (2009). We state these results as corollaries for convenience.
Corollary G.4. Suppose that Assumptions 1-4, B.7 and G.2 hold. Then,

(a) QMTE (1,v) is partially identified for any v e P and 7 € (0,7 (v)).

(b) the RMTE(v) function is partially-identified for any v € P.

Corollary G.5. If Assumptions Assumptions 1-4, G.2, H.1 and H.2 hold, then MTE (v) is
partially identified for any v e P.

G.2.1 Proof of Proposition G.2

Fix de {0,1}, y < yc, ve P and § € Ry, such that y + ¢ € C.
To derive the upper bound, observe that
DMTR; (y,v) =P[Y*(d) <y|V =]
by definition
<SB+P[Y*d)<ylC=y+4V =1]
according to Assumption G.2

P|Y <y,D=d|P(Z,C)=v,C=y+/]

=B+ (2d—-1)- o

according to (G.3)
=B+ (2d—1) - v4(y,v,y + 6)
by definition.
Since the bounds above hold for any § € R, , such that y + 6 € C, we have that
DMTRy (y,v) < B + <2d — 1) : rgé%lvd(y,v,y +0).

We can derive the lower bound analogously.
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H Exploring Average Marginal Treatment Effects

In this appendix, we explore two types of average marginal treatment effects. Section H.1
defines truncated and untruncated versions of the marginal treatment effect. Section H.2 states
the assumptions that are necessary to identify the untruncated version of the marginal treatment
effect function. Section H.3 describes how to identify both types of marginal treatment effect
functions, while Section H.4 describes how to estimate them. Lastly, Section H.5 analyzes our
empirical application through the lenses of these types of average marginal treatment effect

functions.

H.1 Definition

We define the average marginal treatment response function as
AMTR; (v) = E[Y*(d)|V =], (H.1)
where d € {0,1} and v € [0, 1]. These counterfactual parameters provide the average time-to-
recidivism under treatment d among defendants with punishment resistance v.

Based on these counterfactual objects, it is straightforward to define the Average Marginal

Treatment Effect function:

1
MTE (v) = AMTR, (v)— AMTR,(v) = f QMTE (7,v) dr. (H.2)
0
We also note that one can express MT E(v) as a function of the DMTE (y,v),3!
MTE(w)=—-| DMTE (y,v)dy.
Ry

Positive values of the MTE functions indicate that punishment by fines and community
services increases the defendant’s time-to-recidivism compared to no punishment (so treatment
is working as intended).

Since we are dealing with a duration outcome subject to right-censoring, it is important to
recognize that recovering MT E(v) may be challenging, as it requires identifying the potential
outcomes’ entire (conditional) counterfactual distribution. To somehow sidestep this limitation,
it is common in the survival analysis literature to focus on a restricted version of the mean.*?
Following this rationale, we introduce a restricted version of the MTFE(v) function below,
though we recognize that it is potentially less interesting than the MTFE(v).

Let ¢ denote the upper-bound of the support of the censoring variable C', that is, y¢ =

31This follows from the fact that, for any non-negative random variable I, E[I] = Sﬂh (1 -P[I < ul)du.

32Gee, e.g., Karrison (1987), Zucker (1998), Chen and Tsiatis (2001), Zhang and Schaubel (2012), among
many others.
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inf {c € R: P[C < ¢] = 1}. Define the restricted AMTR function as
RAMTR, (v) == E[min{Y*(d),vc}|V = v], (H.3)
and the restricted average marginal treatment effect as
RMTE (v) = RAMTR; (v) — RAMTR,(v). (H.4)
The RMTE is also connected with the DMTE function:
RMTE(v) = — J’YC DMTE (y,v) dy,
0

which follows from the fact that, for a generic non-negative outcome W, E [min{W, yc}| V = v] =
§0¢ (1 —=P(W < y|V =v)dy. Of course, if y¢ = o0 or if the support of Y*(d) is contained in
the support of C' (for the given v), then RMTE (v) = MTE (v).

H.2 Assumptions

Although Assumptions 1-5 are sufficient to identify the RMTE parameter, we require two
extra assumptions to identify the MTE function. These additional support restrictions (As-
sumptions H.1 and H.2) guarantee the identification of the entire DMTE and QMTE functions,
implying that the MTE is also identified.?

Assumption H.1 (Finite Moments). Conditional on C, the potential outcome variables have
finite first moments, i.e., E[|Y (d)||V =v,C =¢| < w0 for any d € {0,1}, any v € [0,1] and

any c € C.

Assumption H.1 is a regularity condition that allows us to apply standard integration the-

orems and ensures that average treatment effects are well-defined.

Assumption H.2 (Support Restriction). The support of the uncensored potential outcomes
is smaller than the support of the censoring variable, i.e., v = +0 or v4 < ¢ for any
d € {0,1}, where yc == inf {ce R: P[C < c] = 1} and 74 = inf {y e R: P[Y* (d) < y] = 1} for
any d € {0, 1}.

Assumption H.2 restricts the support of the potential outcomes of interest to be smaller
than the censoring variable’s support. In our empirical application, this assumption imposes
that all defendants recidivate within ten years, which is the longest observation period in our
sample. Formally, this restriction imposes that 74 < 7¢ = 10 years for any d € {0,1}. This
rule out the possibility of defendants not recidivating until they die, and it is therefore not very
plausible in our specific contest. We still present results using this assumption as they may be

appropriate in empirical contexts different from ours.

33The last support assumption may be restrictive in most applications, but we include it for completeness.
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H.3 Identification

In this section, we state two identification results. The first one identifies the restricted
marginal treatment effect function using only Assumptions 1-5 and a regularity condition. Its
proof is a direct consequence of the Proposition 3.1 and the relationship between distribution
functions and expected values of non-negative variables. The second result identifies the average

marginal treatment effect function after imposing additional support restrictions.

Corollary H.1. Suppose that Assumptions 1-5 and Assumption B.7 listed in the Appendix B
hold. Then, the RMTE(v) function (Equation (H.4)) is point-identified for any v e P.

Notice that, under Assumptions 1-5, we cannot point-identify the MTE function (Equation
(H.2)). The rationale for this “negative” result is that we may never observe realizations of Y*
beyond v when the support of C' is smaller than the support of Y*. In those cases, we cannot
identify the right-tail of the distributional marginal treatment response, i.e., we cannot identify
DMTR, (y,v) for y = vo. Of course, when the support of C' is contained in the support of
Y*(d), this situation does not arise, and we can identify the MTE function as long as it is well-
defined. This is precisely what Assumptions H.1 and H.2 impose. We summarize this result in

the next corollary.

Corollary H.2. Suppose that Assumptions 1-H.2 and Assumption B.7 listed in the Appendix
B hold. Then, MTE (v) is point-identified for any v € P.

H.4 Estimation and Inference

In this section, we provide algorithms on how to semiparametrically estimate the MTE and
RMTE functions based on the identification results described in Corollary H.2. We also provide
practical methods to conduct point-wise inference around these two target parameters.

Using the DMTE estimator described in Algorithm 4.2, we can estimate the RMTE (v, x)

function according to
— e
RMTE(v,x) = —J DMTE(y,v,x)dy. (H.5)
0
Importantly, this estimator is asymptotically normal as formalized by Theorem H.1

Theorem H.1. Suppose that Assumptions 1-5 and Assumptions B.1-B.7 listed in Appendiz B

hold. Then, as n — o, for each fired v e P, and x € X,
NG (R?\ZTE@, ) — RMTE(v, x)) N0, V),

with RWE(U, ) as defined in Equation (H.5) and V"¢ as defined in Appendiz B.

Although Theorem H.1 indicates that one can potentially conduct inference using plug-in

estimates of the variance, this procedure would involve estimating additional nuisance functions
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and could be cumbersome in practice. To avoid this issue, we propose using a weighted bootstrap
procedure as in Ma and Kosorok (2005b) and Chen and Pouzo (2009). This bootstrap procedure

is very straightforward to implement, as described in the next algorithm.

Algorithm H.1 (Weighted-Bootstrap Implementation).

1.
2.

Estimate DMTE and RMTE according to Algorithm 4.2 and Equation (H.5).

Generate {w;,i = 1,...,n} as a sequence of independent and identically distributed non-
negative random variables with mean one, variance one, and finite third moment (e.g.,

w; ~ Exp(1)).

Compute the propensity score coefficients associated with Equation (4.1) by minimizing
the weighted least squares functz’on i€,

ofs* = = argmin n_ sz — o — Xlax — Ciae — ¥ (Z) ay, )2 (H.6)
0fse@fs i=1
where 6% = (ag, Q% , ag, a%)). Denote its trimmed fitted propensity score values by 131*
as defined in Equation (4.4), but with 0/5* in place of 67.

Consider the same grid of values for the duration outcome Y as defined in Step 2 of
Algorithm 4.2.

For each k € {0,..., K} and each d € {0,1}, estimate the conditional distribution func-
tion of Y - 1{D = d} given P(Z,C), C, and X using the distribution regression model
(Equation (4.5)) with estimated coefficients

6* (y,d) = arg max —Zwl Inly(1{Y; <y,D; =d}, X;,C;, ]%*;y,d). (H.7)
[Z5C] —1

Follow Steps 4-9 of Algorithm 4.2 and Equation (H.5) using 6 (y,d) instead of 0 (y,d).
Denote by DMTE (yx,v,x) and RMTE (v, x) the distributional and restricted marginal
treatment effects estimates.

Repeat Steps 2-6 B times, e.q., B = 399, and collect { <D/]\ﬁE*(yk, v, x))b b=1... ,B}.
Do the same for the RMTE" (v, x).

Obtain the (1 — «) quantile 0f{’<DMTE (Yg, v, ) — DMTE(yk,U x) ) ' b=1. B},

cdmie (g v, x; ). Compute the analogous critical values based on RMTE" (v, ).

Construct the 1—a (pointwise) confidence interval for DMTE (yy, v, x) as Cdmte (Y, v, ) =
[DMTE (yg, v, z) £ c™*(yp, v, z;a)]. Define CT™™(v, z; ) analogously.

The next theorem establishes that the above bootstrap procedure has asymptotically correct

coverage.

Theorem H.2. Under the assumptions of Theorem H.1, for any 0 < a < 1, and for eachv € P,
reX,y<n~c, and 1 € (0,7(v,x)), forn — oo, P <RMTE(U,I) e Crmie(y, a)) - 1—a.
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Note that the functionals in Theorems H.1 and H.2 provide a covariate-specific treatment
effect. In our application’s context, we can get court-district-specific RMTE estimates of the
effect of fines and community service sentences on time-to-recidivism. However, it may be
desirable to further aggregate the MTE functionals as a way to summarize these effects.

As explained at the end of Section 4.2, we decided to aggregate the court-district-specific
DMTE functionals across court districts using the proportion of cases per court district as
weights. Analogously, let RMTE™I(v) = — gc DMTE®I(y,v)dy be the average restricted
marginal treatment effect. This functional can be straightforwardly estimated using functionals
of

DWRng(y,v) = Z Wy, DWRd(y,v,x),
reX

with Dde(y,v,x) as in Equation (4.10), just like in Equations (4.11) and (H.5). Their
large-sample properties follow from the delta method and are summarized in the following

corollary.

Corollary H.3. Suppose that Assumptions 1-5 and Assumptions B.1-B.7 listed in Appendiz B
hold. Then, as n — oo, for each fized v e P,

Vi (RRTE" (v) — RMTE"5(0) ) SN (0, V™).

It is also straightforward to construct a weighted-bootstrap confidence interval for these
functionals by using 0¥ = n~' " w; 1{X; = z} as weights for the MTE functionals. We omit

a detailed description to avoid repetition.

H.5 Empirical Results

H.5.1 Assessing the plausibility of our assumptions

The interpretation of the RMTE function relies strongly on Assumption H.2. If such an
assumption is not plausible, we must interpret our results accordingly and avoid jumping from
restricted MTE functionals to overall MTE ones.

In this subsection, we use descriptive statistics to assess the plausibility of our support
restriction.?® To do so, we analyze how the conditional share of no recidivism varies with the
censoring variable. More precisely, Figure H.1 shows the probability that a defendant does not
recidivate during our sampling period, given the value of her censoring variable. Conditioning
on the defendants who stay the longest in our sample (large values of C'), we still find a 30%
probability that they do not recidivate during the observation period. This result suggests that

our support restriction in Assumption H.2 is not valid in this context, implying that we should

34The credibility of our other identifying assumption is discussed in Section 5.1.
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interpret our restricted marginal treatment effect estimates accordingly. In any event, this
result does not invalidate our DMTE and QMTE procedures since they rely on Assumptions

1-5 only. It just stresses that censoring is an important complication we must address.

Figure H.1: Probability of No Recidivism during the Sampling Period: P[Y™* > C| (]

0.6

0.4+

Prob of No Recivism

0.2+

1000 2000 3000
C = End Period - Sentence's Date

Notes: Figure H.1 shows the probability that a defendant does not recidivate during our sampling period given the value of her
censoring variable. This nonparametric function was estimated using a local linear regression with an Epanechnikov kernel based
on Calonico et al. (2019). The bandwidth was optimally selected according to the IMSE criterion. The dotted lines are robust
bias-corrected 95% confidence intervals.

H.5.2 Estimated RMTE function

To estimate the RMTE functions in our empirical application, we flexibly account for court
district fixed effects. More precisely, we estimate 193 district-specific functions for each of our
treatment effect parameters (Theorem H.1). Although very flexible, this strategy makes it
challenging to concisely report a summary result. The way we proceeded was to average these
district-specific functions over court districts using the proportion of cases per court district
as weights, as in Corollary H.3. In this section, we report the average RMTE function and
compare our proposed methods against standard methods in the literature.

The main advantage of the RMTE (-) in comparison to the DMTE and QMTE functions
is its ability to summarize all results in one single function. Figure H.3 plots the point estimates
of this function in purple. Before discussing this result, we must understand how restricted is
the RMTE function (Equations (H.3) and (H.4)) compared to the overall MTE function. If the
support of C'is “too small” compared to the support of the time-to-event outcome, RMTE may
be further away from the MTE function, affecting its interpretability.

Figure H.2 plots the estimated maximum identifiable quantile: 7 (v) := min {T¢ (v) , 71 (v)}
where 74 (v) == DMTRy(vc,v) for any d € {0,1} and ¢ = inf {ceR: P[C' <] =1}. If

the maximum identifiable quantile, 7 (-) is “far away” from 1, then the support of C' is “small”
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compared to the support of time-to-event outcome.

Figure H.2: Maximum Identifiable Quantile: 7 (v)

1.004

0.95

tau(v)

0.85 -

0.80 -

03 0.4 05 0.6 07
V (Punishment Resistance)

Notes: The orange line plots the estimated maximum identifiable quantile, 7 (v), for each value of the unobserved resistance to
treatment. The definition of 7 (v) can be found in Corollary 3.1.

Figure H.2 shows that the RMTE function is almost an unrestricted mean for v € (.5, .6).
However, the censoring problem is binding for small and large values of the unobserved re-
sistance to treatment. Consequently, the RMTE is further away from the MTE function for
extreme values of punishment resistance.

Now, analyzing the point estimates of the RMTE function (purple line in Figure H.3), we find
that the estimated restricted average marginal treatment effects decrease with the unobserved
resistance to treatment. This result is statistically significant at the 10% significance level
according to Figure D.5d). This result is similar to the QMTE results in Section 5.2.2.2.

Furthermore, Figure H.3 compares our proposed methods against other available methods in
the literature. Differently from our approach, these estimates ignore that the outcome variable is
right-censored and provide different conclusions when compared against our proposed estimator.
The light blue line denotes a “naive” version of our estimator that follows the same steps as
described in Section 4.2 but does not condition on the censoring variable. The orange line is
the treatment coefficient of a two-stage least squares (2SLS) regression that uses the censored
outcome variable as the left-hand side variable, controls for court district fixed effects, and uses
the judge’s punishment rate as the instrument for the defendant being punished. The dark blue
line is the estimated average MTE function based on a parametric estimator (Cornelissen et
al., 2016, Appendix B.2) that imposes a linear MTE curve and ignores censoring concerns by
directly using the level of the censored outcome variable.

Figure H.3 highlights three interesting results. First, the standard MTE method’s estimates
(dark blue line) tend to be larger than the estimated RMTE function that accounts for censor-
ing (purple line). Second, the naive estimator (light blue line) finds a RMTFE function that is
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Figure H.3: RMTE against Standard Methods
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2SLS = Naive MTE (Level of Y) Naive RMTE (Ignoring C) = RMTE

Notes: The purple line shows the average RMTE function (Corollary 4.1). The light blue line denotes a naive version of our
estimators that ignores censoring. The orange line is the treatment coefficient of a 2SLS regression. The dark blue line is the
estimated average MTE function based on a parametric estimator (Cornelissen, Dustmann, Raute and Schonberg, 2016, Appendix
B.2) that directly uses the level of the censored outcome variable.

less steep. Importantly, both blue lines do not lie entirely within the 90%-confidence intervals
of the estimated RMTE function that accounts for censoring (Figure D.5d). Third, the 2SLS
estimate (orange line) finds a negative effect of punishment on time-to-recidivism, suggesting
that punishing defendants with fines and community service has led to faster recidivism. This
2SLS result does not capture that punishing defendants with alternative sentences may increase
time-to-recidivism for some defendant types, as suggested by our preferred RMTE estimate
(purple line). Importantly, the 2SLS estimate does not lie entirely within the 90%-confidence
intervals of the estimated RMTE function (Figure D.5d).
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