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Abstract

This paper presents new econometric tools to unpack the treatment effect heterogeneity
of punishing misdemeanor offenses on time-to-recidivism. We show how one can identify,
estimate, and make inferences on the distributional, quantile, and average marginal treat-
ment effects in setups where the treatment selection is endogenous and the outcome of
interest, usually a duration variable, is potentially right-censored. We explore our pro-
posed econometric methodology to evaluate the effect of fines and community service
sentences as a form of punishment on time-to-recidivism in the State of São Paulo, Brazil,
between 2010 and 2019, leveraging the as-if random assignment of judges to cases. Our
results highlight substantial treatment effect heterogeneity that other tools are not meant
to capture. For instance, we find that people who most judges would punish take longer to
recidivate as a consequence of the punishment, while people who would be punished only
by strict judges recidivate at an earlier date than if they were not punished. This result
suggests that designing sentencing guidelines that encourage strict judges to become more
lenient could reduce recidivism.
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To owe his life to a malefactor, to accept that debt and to repay it; to be, in spite of himself,
on a level with a fugitive from justice, and to repay his service with another service; to
allow it to be said to him, “Go,” and to say to the latter in his turn: “Be free”; to sacrifice
to personal motives duty, that general obligation, and to be conscious, in those personal
motives, of something that was also general, and, perchance, superior, to betray society
in order to remain true to his conscience; that all these absurdities should be realized and
should accumulate upon him,—this was what overwhelmed him.

Les Misérables by Victor Hugo

1 Introduction

Understanding how different types of sanctions impact the behavior of defendants is a critical
area of research in the field of Economics of Crime. For misdemeanors, which are relatively
minor offenses, we know relatively little about the causal effects of prosecution on defendants’
subsequent criminal justice involvement (Agan, Doleac and Harvey, 2023), and arguably even
less about the effect of alternative sentences on defendants’ recidivism.1 This is a particularly
important topic, as a misdemeanor charge is often the point of entry of individuals to the
criminal justice system. If they are convicted, they will then acquire a criminal record. This
could “lower the cost” of committing other crimes, or work as intended and prevent future
criminal behavior. In practice, it is unclear which direction dominates, and it is likely that this
varies from individual to individual. Being able to understand the types of defendants that are
on either side is therefore desirable and policy-relevant.

In this article, we propose econometric tools that are tailored to highlight treatment ef-
fect heterogeneity with respect to the unobserved punishment resistance on time-to-recidivism.
These tools can then be used to shed light on to whom punishments are working as intended
in terms of avoiding (or postponing) recidivism. Importantly, our tools account for the fact
that (i) time-to-recidivism is a duration outcome that is subject to right-censoring, i.e., not all
defendants recidivate by the end of the sampling period (but may do it later on); (ii) treat-
ment selection is endogenous and judges are likely to have more information about the case
than researchers; (iii) individuals may be inherently heterogeneous (essential heterogeneity);
(iv) one may be interested in causal effects beyond local average treatment effect parameters;
(iv) distributional features of time-to-recidivism may also be relevant.

We achieve these goals by extending the marginal treatment effects (MTE) framework de-
veloped by Heckman and Vytlacil (1999, 2005) to setups in which the outcome variable is

1See Huttunen, Kaila and Nix (2020), Giles (2021), Klaassen (2021), Possebom (2022), and Lieberman, Luh
and Mueller-Smith (2023) for some advances in this area.

1



right-censored. The main requirement to use our tools is having access to a continuous instru-
ment such that the propensity score has large support.2 In the context of crime economics, this
instrument is usually given by the trial judge’s leniency rate. Our tools can be used to recover
average, distributional, and quantile MTE (Carneiro and Lee, 2009).

In our view, the MTE framework is particularly attractive to studying the effect of pun-
ishments on time-to-recidivism. For example, it allows one to assess the treatment effect of
punishment on recidivism for defendants on a margin of indifference between being punished or
not. By considering different degrees of unobserved punishment resistance, the MTE provides
a detailed picture of how punishments heterogeneously affect recidivism and can be used to
design better sentencing criteria and/or train judges to follow a specific protocol. For example,
suppose that one finds a negatively sloped MTE function with some positive and negative ef-
fects. This would suggest that defendants who would be punished even by very lenient judges
— i.e., defendants with low unobserved punishment resistance — would take more time to
recidivate as a result of the punishment (punishment is working as intended). On the other
hand, defendants who would be fined only by very strict judges — i.e., defendants with high
unobserved punishment resistance — would recidivate sooner than if they were not punished
(punishment is not effective, perhaps because of scaring effects of a criminal record). Such
degree of heterogeneity is usually washed out when using single summaries of treatment effects
such as local average treatment effect (LATE) (Imbens and Angrist, 1994). However, even
when one is interested in summary measures of causal effects, one can use the MTE function to
construct them (Heckman and Vytlacil, 2005; Heckman, Urzua and Vytlacil, 2006). It is also
interesting to mention that exploring a continuous instrument makes the definition of “com-
plier” less clear than in the binary instrument case, which could potentially make the LATE
results harder to interpret formally. The MTE does not focus on “compliers”, so it avoids this
potential limitation.

Dealing with time-to-recidivism, or more generally, a duration variable that is subject to
right-censoring, introduces some interesting challenges depending on the censoring mechanism.
For instance, if censoring is independent of potential outcomes, we are able to point-identify
the distributional marginal treatment effect (DMTE) and quantile marginal treatment effect
(QMTE) functions for some but not necessarily all distribution support points or quantiles.
Nonparametrically identifying the entire DMTE and QMTE functions, which are required to
identify the average MTE (henceforth MTE for simplicity), is only possible if the support
of the censoring variable is at least as large as the support of the duration outcome. When
this restriction is not satisfied, one can only nonparametrically point-identify truncated MTE
functions. Addressing these challenges, we propose semiparametric estimators and inference

2See Brinch, Mogstad and Wiswall (2017) and Mogstad, Santos and Torgovitsky (2018) for extensions of
the MTE framework that does not require this support condition.

2



procedures for the DMTE, QMTE, and (truncated) MTE functions and establish their large
sample properties.

Now, if censoring is potentially dependent on the potential outcomes, point-identification
of DMTE and QMTE functions is not feasible without additional assumptions and data re-
quirements. In such cases, we provide alternative assumptions that ensure partial identification
of the target parameters. First, we consider the restriction that defendants are committing
fewer crimes over time, which is implied by a negative regression dependence between potential
outcomes and censoring variables (Lehmann, 1966). Second, we discuss a continuous relaxation
of the independent censoring assumption.

In some setups, to bypass the challenges associated with right censored time-to-recidivism,
researchers may focus on recidivism within a given time frame, say two years. Although this
is convenient and generically valid, the choice of cutoff is arbitrary, and it may be the case
that punishment has no effect on recidivism within two years but then has an effect within two
years and a half or within one year.3 One can interpret our DMTE results as an extension
of this “binarization” approach that aims to avoid choosing arbitrary cutoffs and, instead,
consider recidivism within y periods for a continuum of y P R`. Our QMTE and MTE results
“transform” our DMTE results so the underlying treatment effects are expressed in the same
units as the time-to-recidivism outcome, which can lead to additional insights. Furthermore,
when a policymaker is interested in minimizing the cost of recidivism inter-temporally, they may
discount the cost of recidivism more strongly if the time-to-recidivism is longer. Therefore,
to make more informed treatment allocations (or recommendations), the policymaker needs
information on time-to-recidivism beyond whether or not a defendant recidivates within two
years (see Appendix E.1 for a discussion). In such cases, however, one needs to tackle the
censoring problem directly. Failing to do so may lead to misleading conclusions.

We show how our causal inference tools can be used in practice by evaluating the effect of
fines and community service sentences as a form of punishment on time-to-recidivism in the
State of São Paulo, Brazil, between 2010 and 2019.4 Our treated group (punished group) is
the defendants who were fined or sentenced to community services, and our untreated group
(unpunished group) contains defendants who were acquitted or whose cases were dismissed.
To measure recidivism, we check whether the defendant’s name appears in any criminal case
within the sample period after the final sentence’s date. More precisely, our outcome variable is
the time between the final sentence and a subsequent criminal case. Since the sampling period

3In Appendix E.2, a simple example illustrates that focusing on quantile and average treatment effects for
duration outcomes may provide different conclusions than focusing on short-run recidivism indicators.

4São Paulo is the largest state in Brazil, with a population above 44 million people according to the Brazilian
Census in 2022. Moreover, analyzing the impact of judicial policies on criminal behavior in this state is relevant
due to its relatively high criminality. For example, according to São Paulo Public Safety Secretary, there were
6.48 murders, 878.83 thefts, and 490.23 robberies per 100,000 inhabitants in 2020. Importantly, theft is one of
the most common crimes in our sample.
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is finite, the outcome variable is right-censored.
To deploy our proposed methodology, we need a continuous instrumental variable since

we do face endogenous selection into punishment. We use the trial judge’s leave-one-out rate
of punishment (or “leniency rate”) as an instrument for the trial judge’s decision (Bhuller,
Dahl, Loken and Mogstad, 2019; Agan et al., 2023). Importantly, this instrumental variable is
continuous with large support, and is independent of the defendant’s counterfactual criminal
behavior because judges are randomly assigned to cases conditional on court districts according
to state law in São Paulo. Our outcome data — time-to-recidivism — is right-censored by
construction, requiring a methodology that accounts for this identification challenge.

We find that the QMTE functions for .10, .15, .25, .40, .50 and .75 quantiles and the restricted
MTE function averaged across all court districts are heterogeneous with respect to unobserved
punishment resistance: the treatment effects being sometimes positive and sometimes negative.
More precisely, we find that people who would be punished by most judges (those with low
punishment resistance) take longer to recidivate as a consequence of the punishment, while
people who would be punished only by strict judges (high punishment resistance) recidivate at
an earlier date than if they were not punished. This result suggests that designing sentencing
guidelines that encourage strict judges to become more lenient could increase time-to-recidivism.

We also compare our results with methods that ignore the time-to-recidivism being right-
censored. In particular, we find that using a linear MTE estimator exacerbates the treatment
effects across the unobserved punishment resistance variable. We find the same issue when
ignoring the censoring problem and estimating the MTE model semiparametrically. If one were
to use two-stage least squares or IV quantile regressions (ignoring censoring), one would find
that treatment effects are slightly negative but would not be able to highlight heterogeneity
as in the QMTE and RMTE functions. These differences highlight that our tools can indeed
bring new insights to policy discussions.

Related literature: This article contributes to different branches of literature. Concerning
its theoretical contribution, our work contributes to the literature on MTE by extending the
MTE framework of Heckman and Vytlacil (1999, 2005), Heckman et al. (2006), and Carneiro
and Lee (2009) to a setting with right-censored data.5 We also contribute to the literature
on duration outcomes; see, e.g., Khan and Tamer (2009), Frandsen (2015), Tchetgen, Walter,
Vansteelandt, Martinussen and Glymour (2015), Sant’Anna (2016, 2021), Beyhum, Florens and
Keilegom (2022), Delgado, Garcia-Suaza and Sant’Anna (2022). None of these papers consider
MTE-type parameters as we do. Among these, the closest work to ours is Frandsen (2015),
which considers the case where the censoring variable is observed and shows how one can identify

5The MTE framework has also been extended to settings with sample selection (Bartalotti, Kedagni and
Possebom, 2022), misclassified treatment variables (Acerenza, Ban and Kédagni, 2021; Possebom, 2022), dis-
crete instrumental variables (Brinch et al., 2017; Mogstad et al., 2018; Acerenza, 2022), and possibly invalid
instruments (Mourifie and Wan, 2020).
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distributional and quantile local treatment effects, assuming that censoring is exogenous. Our
results can be interpreted as an extension of Frandsen (2015) to the MTE framework, possibly
allowing for endogenous censoring.

Concerning its empirical contribution, our work is inserted in the literature about the effect
of fines and community service sentences on future criminal behavior; see, e.g., Huttunen et al.
(2020), Giles (2021), Klaassen (2021), Possebom (2022), and Lieberman et al. (2023). They
all focus on binary variables indicating recidivism within a pre-specified period. Within these,
as we build on his dataset, Possebom (2022) is the closest to ours. However, his focus is very
different from ours, and he does not handle duration outcomes as we do.

This paper is organized as follows. Section 2 describes the data and explains why focusing
on long-term recidivism is useful in our empirical application. Section 3 presents our structural
model, discusses our identifying assumptions and provides our identification results with a right-
censored outcome variable. Moreover, Section 4 explains how to semiparametrically estimate
the objects that are necessary to implement the identification strategy described in the previous
section. Finally, Section 5 discusses the empirical results, while Section 6 concludes.

This paper also contains an online supporting appendix. Our main identification proofs are
detailed in Appendix A. Appendix B derives the asymptotic distribution of our semiparametric
estimators. In Appendix C, we summarize how we constructed our dataset. Additional em-
pirical results can be found in Appendix D. Appendix E provides two arguments that justify
focusing on the MTE function of duration outcomes. Appendix F identifies a conditional ver-
sion of our target parameters under weaker assumptions than the ones used in the main text.
Finally, Appendix G proposes alternative partial identification strategies.

2 Empirical Context, Data, and Target Parameters

We study the effect of alternative sentences in the form of fines and community service on
time-to-recidivism in the state of São Paulo, Brazil. Towards this end, we collect data from all
criminal cases brought to the Justice Court System in the State of São Paulo, Brazil, between
January 4th, 2010, and December 3rd, 2019.6 According to Brazilian law, criminal charges whose
maximum prison sentence is less than four years must be punished with a fine or a community
service sentence if the defendant is found guilty. As we are particularly interested in the effect
of these alternative sentences, we focus on these specific criminal cases. We also restrict our
sample to cases that started between 2010 and 2017 to ensure that every defendant is followed
up for at least two years after their case is brought to trial. Based on these restrictions, the
most common types of crime in our sample are theft and domestic violence.

6See Appendix C for an overview of the data-construction.
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There are 332 court districts in the state of São Paulo. Criminal complaints are analyzed by
a trial judge working at the court with geographic jurisdiction over the location of the alleged
offense. Moreover, there are 862 trial judges during our sample period. Out of these, we keep
642 judges who analyzed more than 20 cases. In court districts that have more than one judge,
the case is randomly allocated to one of the judges. Out of the 332 court districts in our sample,
193 have more than one judge who analyzed more than 20 cases. Given that our econometric
procedure explores the random allocation of judges to criminal cases and their different leniency
levels, we restrict our attention to court districts with more than two judges who analyzed 20
cases or more. After imposing these two restrictions, our sample has 525 trial judges.

Figure 1 shows the distribution of the number of judges for every court district in São
Paulo (Subfigure 1a) and the distribution of the number of cases for every judge in São Paulo
(Subfigure 1b). The average number of cases per judge is 120 in our full sample and 159 after
we focus on judges who analyzed more than 20 cases. Furthermore, the average number of
judges per court district is 2.2 judges in full sample and 3.0 judges in our restricted sample.

Figure 1: Descriptive Statistics for the Number of Judges and the Number of Cases
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(b) Histogram of the Number of Cases per Trial
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Notes: Subfigure 1a plots the histogram of the number of judges per court district in our full sample, while Subfigure 1b plots the
histogram of the number of cases per trial judge in our full sample.

2.1 Defining the variables of interest

In our dataset, we observe the defendant’s full name, the defendant’s court district, the case’s
starting date, the assigned trial judge’s full name, the case’s final ruling, and the case’s final
ruling’s date. All our variables of interest will be constructed from these pieces of information.
Henceforth, let X denote the full set of court district dummies, which will play the role of
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covariates in our analysis.
Let us start with our treatment variable, D, which denotes the final ruling in the case.

Defendants who were fined or sentenced to community services because they were either con-
victed or signed a non-prosecution agreement according to the final ruling in their case belong
to our treatment group, D “ 1. Defendants who were acquitted or their cases were dismissed
according to the final ruling in their case belong to our comparison group, D “ 0.

In this article, our outcome of interest, Y ˚, is the “time-to-recidivism”, i.e., the number of
days it takes for a defendant to appear in court once again after the case’s final ruling’s date.
Here, note that our outcome of interest is a duration variable and that some defendants may
not recidivate by the end of our sampling period, though they may recidivate later. Putting
it simply, we do not always observe Y ˚, but rather observe a right-censored version of Y ˚,
Y “ minpY ˚, Cq, where C is a right-censoring variable. In our context, C is the follow-
up period for each defendant, i.e., the number of days from their case’s final ruling date to
December 3rd, 2019.

Apart from the censoring problem, it is important to be explicit about how we define
recidivism. In this paper, a defendant i in a case j recidivated by the end of our sample if and
only if defendant i’s full name appears in a case j̄ whose starting date is after case j’s final
sentence’s date.7 Then, we measure our outcome variable as the number of days between case
j’s final ruling’s date and case j̄’s starting date.8 If defendant i did not recidivate by the end
of the sampling period, then Y “ C.

At this stage, it is important to stress that we are not adopting a more restrictive notion of
“short-run” recidivism based on a fixed period, say two years, which could potentially allow us
to “ignore” the censoring problem. Instead, we decide to focus on time-to-recidivism directly,
which, in our view, entails some important advantages. For instance, we do not need to pick a
threshold to define (short-run) recidivism arbitrarily. Doing so may lead to potentially sensitive
conclusions, as illustrated in an example in Appendix E.2. If almost all defendants who recidi-
vate do it in the short run, then focusing on short-run measures would be sufficient. However,
this is an empirical matter and should be handled as so. To assess if this is the case in our
data, Figure 2 displays estimates of the right tail of the probability mass function (PDF) of
the uncensored potential outcome (Y ˚) among cohorts defined based on the censoring variable.
These descriptive results reveal that, in the case of the state of São Paulo, a non-negligible share
of defendants have their first recidivism event in their fifth, sixth, or seventh year after their
sentence’s date, implying that analyzing long-term recidivism is relevant and that tackling the

7To match defendants’ names across cases, we follow the same procedure as in Possebom (2022) and define
a fuzzy match if the similarity between full names in two different cases is greater than or equal to 0.95 using
the Jaro–Winkler similarity metric.

8Case j̄ can be about any type of crime, including more severe crimes with a maximum sentence of over
four years, while case j has to be about a crime whose a maximum sentence is at most four years.
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censoring problem directly is important. See Appendix E.1 for additional motivations from a
welfare maximizer decision-maker perspective.

Figure 2: PDF of the Uncensored Outcome given the Defendant’s Cohort
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Notes: This figure shows the right tail of the probability mass function of the uncensored potential outcome (Y ˚) given cohorts
based on the censoring variable, P ry1 ď Y ˚ ď y2|Cs where y1 and y2 define the bins indicated in the x-axis. In particular, these
conditional PDFs are evaluated at six bins of the uncensored potential outcome. For example, “Third Year” denotes that the first
recidivism event occurred between 730 days (“ y1) and 1095 days (“ y2), while “Fourth year” denotes that the first recidivism event
occurred between 1095 days (“ y1) and 1460 days (“ y2). Each color denotes a different cohort: orange denotes defendants who
are observed for at least four years and at most five years during our sampling period, purple denotes defendants who are observed
for at least five years and at most six years, light blue denotes defendants who are observed for at least six years and at most seven
years, dark blue denotes defendants who are observed for at least seven years and at most eight years, and gray denotes defendants
who are observed for at least eight years and at most nine years. The y-axis denotes the value of the PDF.

As it will be clear in the next sections, our causal inference procedures leverage the avail-
ability of an instrumental variable Z with large support. In our context, the instrument Z is
the trial judge’s leniency rate. This variable equals the leave-one-out rate of punishment for
each trial judge, where the defendant’s own decision is excluded from this average. We ensure
that the minimum and maximum values of the Z are the same across both treatment arms to
enforce better overlap properties.

Our final sample has 43,468 case-defendant pairs, and some summary statistics are presented
in Table 1. It shows the outcome’s mean, 1st decile, 1st quartile and median for all defendants,
for the defendants who were punished (treated group), and for the defendants who were not
punished (control group). It also shows the sample size of each one of these three groups.
The comparison between the treated and control groups suggests that being punished slightly
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harms defendants. However, this naive comparison ignores endogenous selection-into-treatment,
right-censoring, and heterogeneous treatment effects. As so, one should be careful with such a
comparison, as these descriptive statistics may not have a causal interpretation.

Table 1: Descriptive Statistics — Outcome Variable

Unconditional Treated Group Control Group
Mean 1,081 1,047 1,116

1st Decile 77 69 86
1st Quartile 364 321 430

Median 1082 1047 1127
Number of Observations 43,468 22,060 21,408

Note: The treated group receives a punishment, i.e., its defendants were fined or sentenced to community services because they
were either convicted or signed a non-prosecution agreement. The control group did not receive a punishment, i.e., its defendants
were acquitted or its cases were dismissed. The outcome variable measures the number of days between the case’s final ruling’s
date and the first recidivism event if the defendant recidivates or the number of days between the case’s final ruling’s date and the
end of the sampling period if the defendant did not recidivate. An observation is a case-defendant pair.

2.2 Causal Questions of Interest

For each defendant i, let Y ˚
i p1q be the potential time-to-recidivism if defendant i were

punished with a fine or community service, and let Y ˚
i p0q be the potential time-to-recidivism if

defendant i were not punished with a fine or community service. Defendant i’s treatment effect
is therefore θi “ Y ˚

i p1q´Y ˚
i p0q. Ideally, we would like to learn θi for all defendants, though that

is very challenging (if not impossible) when we allow for (a) heterogeneous treatment effects
across defendants and (b) whether a defendant is punished or not being related to θi (“Essential
Heterogeneity” as in Heckman et al., 2006).

Due to these challenges, it is common for researchers to focus on aggregated summary mea-
sures of θi, such as the average treatment effect among “compliers” (Imbens and Angrist, 1994),
defined as LATE “ E rY ˚p1q ´ Y ˚p0q|Complierss (see, e.g., Agan et al., 2023; Bhuller et al.,
2019; Huttunen et al., 2020).9 Although interesting and policy-oriented, such aggregated mea-
sures of causal effects are unsuitable for highlighting important types of treatment effect hetero-
geneity. In particular, these parameters cannot answer questions related to whether defendants
with high punishment resistance (i.e., defendants who would only be punished by very strict
judges) would take longer to recidivate if they were punished. The same goes for defendants
with lower punishment resistance. These are the key causal questions we are trying to answer
in this paper. More specifically, we want to provide a more detailed picture of how alternative
punishments heterogeneously affect recidivism with respect to the defendant’s (unobserved)

9As discussed before, these papers use a different outcome of interest Y ˚ that bypass the censoring issues
we face, but, we can ignore these issues while discussing our causal questions of interest (as this does not play
a prominent role on it).
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punishment resistance, which we denote by V . Here, punishment resistance may capture the
evidence gathered against the defendant and additional defendant-specific characteristics.

One can measure the causal effect of fines and community services on time-to-recidivism
for defendants with a given punishment resistance using the notion of distribution, quantile,
and average treatment effects. We cover them all, as they can be used to answer complemen-
tary policy-relevant questions (Heckman and Vytlacil, 2005, Carneiro and Lee, 2009, Carneiro,
Heckman and Vytlacil, 2011). All these causal parameters build on the Marginal Treatment
Effects framework of Heckman and Vytlacil (2005). We now carefully define these and highlight
how one can interpret them.

For d P t0, 1u, let the distributional, quantile, and average marginal treatment response
functions be defined as

DMTRd py, vq :“ P rY ˚
pdq ď y|V “ vs , (2.1)

QMTRd pτ, vq :“ infty P R` : P rY ˚
pdq ď y|V “ vs ě τu, (2.2)

AMTRd pvq :“ E rY ˚
pdq|V “ vs , (2.3)

where y P R`, τ P p0, 1q and v P r0, 1s. All these counterfactual parameters have a clear
interpretation. For instance, DMTRd py, vq gives the proportion of defendants with punishment
resistance v who would have already recidivated after y periods since the court’s final ruling
if there were treated (d “ 1) or not (d “ 0). Analogously, QMTRd pτ, vq and AMTRdpvq

respectively provide the τ ’s quantile and the average of the time-to-recidivate under treatment
d, among defendants with punishment resistance v.

Based on these counterfactual objects, it is straightforward to define the Distributional,
Quantile, and Average Marginal Treatment Effect functions:

DMTE py, vq :“ DMTR1 py, vq ´ DMTR0 py, vq , (2.4)

QMTE pτ, vq :“ QMTR1 pτ, vq ´ QMTR0 pτ, vq , (2.5)

MTE pvq :“ AMTR1 pvq ´ AMTR0 pvq “

ż 1

0

QMTE pτ, vq dτ. (2.6)

We also note that one can express MTEpvq as a function of the DMTE py, vq,10

MTEpvq “ ´

ż

R`

DMTE py, vq dy.

Positive values of the QMTE and MTE functions indicate that punishment by fines and
community services increases the defendant’s time-to-recidivism compared to no punishment
(so treatment is working as intended). On the other hand, positive values of the DMTE function
indicate that punishment by fines and community services leads to an increase in the proportion
of defendants who recidivate by time y compared to no punishment (so treatment is not working
as intended). Putting it simply, for policy effectiveness in our context, positive values of QMTE

10This follows from the fact that, for any non-negative random variable I, E rIs “
ş

R`
p1 ´ PrI ď usqdu.
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and MTE are “good”, while negative values of DMTE are “good”.
Since we are dealing with a duration outcome subject to right-censoring, it is important to

recognize early on that recovering MTEpvq may be challenging, as it requires identifying the
potential outcomes’ entire (conditional) counterfactual distribution. To somehow sidestep this
limitation, it is common in the survival analysis literature to focus on a restricted version of
the mean.11 Following this rationale, we introduce a restricted version of the MTEpvq function
below, though we recognize that it is potentially less interesting than the MTEpvq.

Let γC denote the upper-bound of the support of the censoring variable C, that is, γC :“

inf
␣

c P R : P rC ď cs “ 1
(

. Define the restricted AMTR function as

RAMTRd pvq :“ E rmintY ˚
pdq, γCu|V “ vs , (2.7)

and the restricted average marginal treatment effect as

RMTE pvq :“ RAMTR1 pvq ´ RAMTR0 pvq . (2.8)

The RMTE is also connected with the DMTE function:

RMTEpvq “ ´

ż γC

0

DMTE py, vq dy,

which follows from the fact that, for a generic non-negative outcomeW , E rmintW, γCu|V “ vs “
şγC
0

p1 ´ PpW ď y|V “ vq dy. Of course, when γC “ 8 or if the support of Y ˚pdq is contained
in the support of C (for the given vq, RMTE pvq “ MTE pvq.

Remark 1. Note that, when analyzing the impact of judicial decisions on recidivism, many
papers12 focus on distributional marginal treatment effects for small values of y (short-term
analysis). In this paper, we advocate for moving beyond this short-term horizon by either
considering a richer set of y’s or by focusing on quantile or average marginal treatment effects
of duration outcomes. In Appendix E.2, we numerically exemplify why focusing on duration
outcomes may provide more information than the standard approach in Crime Economics.

3 Econometric Framework and Identification Results

We face some challenges in identifying the causal parameters of interest described in the
previous section. As usual, potential outcomes are only (potentially) observed under one treat-
ment status, i.e., Y ˚

i “ Y ˚
i p1q ¨ Di ` Y ˚

i p0q ¨ p1 ´ Diq. Furthermore, our outcome of interest
is subject to right-censoring, implying that we do not always observe Y ˚ but rather observe
Yi “ mintY ˚

i , Ciu, where C is the censoring variable. In the case of draws, we assume that Y ˚
i

happens before Ci, as is customary in survival analysis. Finally, we also expect that treatment
11See, e.g., Karrison (1987), Zucker (1998), Chen and Tsiatis (2001), Andersen, Hansen and Klein (2004),

Zhang and Schaubel (2012), among many others.
12See, e.g., Agan et al. (2023), Bhuller et al. (2019), Giles (2021), Huttunen et al. (2020), Klaassen (2021),

and Possebom (2022).
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statuses are related to the potential outcomes and potentially related to the censoring variable
as well. Therefore, treatment is endogenous.

To tackle all these issues in a unified manner, we build on the MTE framework of Heckman
and Vytlacil (2005) and extend it to handle duration outcomes.13 Towards this end, we consider
a threshold-crossing treatment selection model

D “ 1 tP pZ,Cq ě V u , (3.1)

where Z is an observed instrumental variable (with support Z Ă R), C is an observed censoring
variable (with support C Ă R`, and V is a latent heterogeneity that captures the unobserved
treatment resistance (with support p0, 1q). The function P : Z ˆ C Ñ P Ď r0, 1s is unknown
and captures the willingness to take the treatment for each value of Z and C. Importantly,
our treatment selection model (3.1) imposes monotonicity (Imbens and Angrist, 1994; Vytlacil,
2002).

In order to better understand (3.1), let us go back to our empirical context and explain each
component of it. Our instrumental variable Z is a measure of the trial judge’s leniency, which
arguably does not affect time-to-recidivism other than through the judge’s decision to punish
or not, especially when the judge’s allocation to the case is random, as in our application.
Our censoring variable C captures the length of time between the defendant’s sentence date
and the end of our sampling period, as is observed for all defendants. This variable can also
capture seasonality patterns, as they are fully determined depending on the sentence’s date.
The function P captures the trial judge’s punishment criteria, and it allows trial judges to
update their punishment criteria over time (Bhuller and Sigstad, 2022) as it includes C as an
argument. Finally, the variable V can be interpreted as unobserved punishment resistance, and
it captures, among other things, the amount of criminal evidence in the defendant’s favor. The
higher the V , the less likely the defendant will be punished, everything else equal. As already
discussed before, Y ˚ captures the length of time between the defendant’s sentence date and her
next criminal case’s starting date, and Y is the minimum of Y ˚ and time from the sentence’s
date to the end of our sampling period, C.

3.1 Assumptions

In our setup, the available data for the researcher are tYi, Ci, Di, Ziu
n
i“1, while Y ˚

i p0q, Y ˚
i p1q,

Y ˚
i and Vi are latent variables. Henceforth, we assume that tYi, Ci, Di, Ziu

n
i“1 are independently

and identically distributed as pY,C,D,Zq. For simplicity, we drop exogenous covariates from
the model and focus on the case with a single instrument. All results derived in the paper hold

13For duration models with and without endogeneity, see, e.g., Powell (1986); Chernozhukov and Hong (2002);
Chernozhukov, Fernández-Val and Kowalski (2015); Frandsen (2015); Sant’Anna (2016); Delgado et al. (2022);
Chen and Wang (2023); Fernández-Val, van Vuuren, Vella and Peracchi (2023). None of these papers build on
the MTE framework as we do, or consider “irregular” parameters of interest.
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conditionally on covariates and can be extended to the case with multiple instruments.14 Since
we are dealing with a duration outcome variable, Y is non-negative by construction.

In what follows, we present a set of five assumptions (Assumptions 1-5) that will allow
us to point-identify the DMTE and the QMTE functions across a range of thresholds and
quantile points. They also allow one to identify the RMTE parameter. These assumptions are
related to those imposed by Heckman and Vytlacil (2005) and Frandsen (2015) and involve
assuming that censoring is not related to the potential outcomes Y ˚pdq. Finally, we introduce
additional support restrictions (Assumptions 6 and 7) that guarantee the identification of the
entire DMTE and QMTE functions, implying that the MTE would also be identified.15 The
last support assumption may be restrictive, but we include it for completeness.

Let us start with the first five assumptions and contextualize each of them to our empirical
setup.

Assumption 1 (Random Assignment). Conditional on C, the potential outcomes Y ˚ p0q, Y ˚ p1q

and V are independent of the instrument Z, i.e.,

Z KK pY ˚
p0q , Y ˚

p1q , V q|C.

Assumption 1 is an exogeneity assumption and is common in the literature about instru-
mental variables with censored outcomes (Frandsen, 2015). In our empirical application, this
assumption holds conditional on the court district because trial judges are randomly assigned
to cases within each court district.

Note also that Assumption 1 allows the instrument to depend on the censoring variable.
In our empirical application, this flexibility is useful because the trial judge’s punishment rate
may depend on the case’s sentence date if judges who entered the Judiciary more recently are
more lenient than judges who retired at the beginning of our sampling period.

Assumption 2 (Propensity Score is Continuous). Conditional on C, P pz, cq is a nontrivial
function of z and the random variable P pZ, cq|C “ c is absolutely continuous in Z, with support
given by an interval P :“

“

p, p
‰

Ď r0, 1s for any c P C.16

Assumption 2 is a rank condition, intuitively imposing that the instrument is locally relevant.
In addition, we implicitly assume that the support of the propensity score does not vary with
the value of C. In our application, this implicit assumption is plausible because the judges
are mostly the same over time. Furthermore, the judge’s lenience rate has a good amount of
variation.

14As discussed by Mogstad, Torgovitsky and Walters (2021), the single threshold crossing model imposes
strong homogeneity restrictions when we allow for multiple instruments.

15In Appendix G, we discuss three assumptions that allow censoring dependence and ensure partial identifi-
cation.

16The assumption that P is an interval is made for notational simplicity. All the proofs can be easily extended
to the case where P is a set with a non-empty interior.
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Assumption 3 (V is continuous). The distribution of the latent heterogeneity variable V con-
ditional on C is absolutely continuous with respect to the Lebesgue measure.

Assumption 3 is a regularity condition that allows us to normalize the marginal dis-
tribution of V |C to be the standard uniform. Consequently, we can write P pz, cq “

P rD “ 1|Z “ z, C “ cs for any z P Z and c P C. Moreover, this normalization implies that V
is independent of C.

Assumption 4 (Overlap). Conditional on C, all treatment groups exist, i.e., P rD “ d|C “ cs P

p0, 1q for any d P t0, 1u and any c P C.

Assumption 4 is a regularity condition. It extends the standard overlap assumption in the
policy evaluation literature to the setting with a duration outcome.

Assumption 5 (Random Censoring). The censoring variables are independent of the uncen-
sored potential outcomes given the latent heterogeneity V , i.e.,

C KK pY ˚
p0q , Y ˚

p1qq|V.

Assumption 5 is an exogeneity assumption and is common in the literature about duration
outcomes (Frandsen, 2015; Sant’Anna, 2016; Delgado et al., 2022). When combined with As-
sumption 3, Assumption 5 implies that C is unconditionally independent of the uncensored
potential outcomes, i.e., C KK pY ˚ p0q , Y ˚ p1qq. In our empirical application, this restriction
imposes that the case’s sentence date is independent of the defendant’s decision to commit
another crime in the future.

Importantly, Assumption 5 imposes that controlling for V accounts for all sources of endo-
geneity coming through the censoring variable. This assumption can be restrictive since en-
dogeneity might still be present once controlling for the latent heterogeneity. If the researcher
believes that this assumption is too strong in a particular application, she can use alternative
assumptions that are sufficient to partially identify the distributional marginal treatment effect
and some quantile marginal treatment effects when the outcome variable is right-censored. We
discuss these alternative partial identification strategies in Appendix G.

Assumptions 1-5 are sufficient to identify the DMTE and QMTE functions across a range
of thresholds y and quantiles τ . These are also sufficient to identify the RMTE parameter.
However, to identify the marginal treatment effect (or the entire DMTE and QMTE functions),
we need to impose the following additional restrictions.

Assumption 6 (Finite Moments). Conditional on C, the potential outcome variables have
finite first moments, i.e., E r |Y pdq||V “ v, C “ cs ă 8 for any d P t0, 1u, any v P r0, 1s and
any c P C.
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Assumption 6 is a regularity condition that allows us to apply standard integration theorems
and ensures that average treatment effects are well-defined.

Assumption 7 (Support Restriction). The support of the uncensored potential outcomes is
smaller than the support of the censoring variable, i.e., γC “ `8 or γd ă γC for any d P t0, 1u,
where γC :“ inf

␣

c P R : P rC ď cs “ 1
(

and γd :“ inf
␣

y P R : P rY ˚ pdq ď ys “ 1
(

for any d P

t0, 1u.

Assumption 7 restricts the support of the potential outcomes of interest to be smaller than
the censoring variable’s support. In our empirical application, this assumption imposes that all
defendants recidivate within ten years, which is the longest observation period in our sample.
Formally, this restriction imposes that γd ă γC “ 10 years for any d P t0, 1u. This rule out the
possibility of defendants not recidivating until they die, and it is therefore not very plausible in
our specific contest. We still present results using this assumption as they may be appropriate
in empirical contexts different from ours.

3.2 Identification

We present our point-identification results that rely on Assumptions 1-5, 6 and 7.
First, define

γdpy, v, cq “
d

dv
P rY ď y,D “ d|P pZ,Cq “ v, C “ cs .

We now state our main identification result: point-identification of the DMTR functions.

Proposition 3.1. Suppose that Assumptions 1-5 hold. Then, for any d P t0, 1u, y ă γC and
v P P,

DMTRd py, vq “ p2d ´ 1q ¨ E rγdpy, p, Cq|P pZ,Cq “ v, C ą ys .

Proof. See Appendix A.2.
The above proposition shows how we can point-identify the distributional marginal treat-

ment response for a given unobserved treatment resistance v. It involves first taking the deriva-
tive of the conditional joint distribution of the realized outcome Y and treatment status D
given the propensity score P “ v and the censoring variable being above y (C “ y ` δ for
δ ą 0) with respect to v, and then integrating over all values δ ą 0 such that the y` δ remains
in the support of the censoring variable C. Contrary to the results in Carneiro and Lee (2009)
and Carneiro et al. (2011), we need to tackle the right-censoring problem, which manifests in
our results by having to condition on C “ y ` δ, so that C ą y, and then integrating over δ.

Furthermore, our results are specific to the DMTRdpy, vq function, and not for a generic
transformation of Y ˚pdq, say GpY ˚pdqq as in Carneiro and Lee (2009). This follows from the
fact that we may not be able to identify the DMTRdpy, vq over all values of y in the support of
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Y ˚pdq, as a consequence of the censoring problem. Having said that, there are several functions
that we can actually nonparametrically point-identify without additional restrictions and under
standard regularity conditions, including the QMTE functions for a range of quantiles and the
RMTE function. We state these results as a corollary for convenience. The proof is a direct
consequence of the previous proposition, the definition of quantiles and the relationship of
quantiles and expected values.

Corollary 3.1. Suppose that Assumptions 1-5 and Assumption B.7 listed in the Appendix B
hold. Then

(a) the QMTE pτ, vq function as defined in (2.5) is point-identified for any v P P and τ P

p0, τ pvqq, where τ pvq :“ min tτ 0 pvq , τ 1 pvqu and τ d pvq :“ DMTRd pγC , vq for any d P

t0, 1u.

(b) the RMTEpvq function as defined in (2.8) is point-identified for any v P P.

Notice that since the right-tail of the DMTRdp¨, vq may be differentially affected by the
censoring problem, implying that τ 1 pvq may be different from τ 0 pvq. As a consequence, we can
only identify the QMTE pτ, vq over the common range of identified quantiles among treated
and untreated units.

Another related remark worth stressing is that, under Assumptions 1-5, we cannot point-
identify the MTE function (2.6). The rationale for this “negative” result is that we may never
observe realizations of Y ˚ beyond γC when the support of C is smaller than the support of
Y ˚.17 In those cases, we cannot identify the right-tail of the distributional marginal treatment
response, i.e., we cannot identify DMTRd py, vq for y ě γC . Of course, when the support of
C is contained in the support of Y ˚pdq, this situation does not arise, and we can identify the
MTE function as long as it is well-defined. This is precisely what Assumptions 6 and 7 impose.

Corollary 3.2. Suppose that Assumptions 1-7 and Assumption B.7 listed in the Appendix B
hold. Then, MTE pvq is point-identified for any v P P.

4 Estimation and Inference

In this section, we provide algorithms on how to semiparametrically estimate the DMTE,
QMTE, MTE, and RMTE functions based on the identification results described in Proposition
3.1 and Corollaries 3.1 and 3.2. We discuss two sets of results in this section. First, we present
generic algorithms to estimate the marginal treatment effect functionals that remain agnostic

17Recall that γC :“ inf
␣

c P R : P rC ď cs “ 1
(

denotes the least-upper bound of the censoring random variable
C.
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about the type of estimators used to estimate the nuisance functions. These results are useful
to pin down the intuition and to provide templates for the type of flexible estimation procedures
one can adopt. However, pinning down the asymptotic properties of such estimators at that level
of generality is rather challenging, especially when it comes to inference. To ameliorate this,
we provide estimation and inference procedures based on a more restricted class of estimators
for the nuisance functions, though we formally establish their large sample properties.

4.1 Generic estimation procedure

We first present a generic algorithm one can use to estimate DMTE functions across a grid
of threshold points tyku

K
k“0. The algorithm will make use of an estimator for the propensity

score, P pZ,Cq “ E rD|Z,Cs, and the conditional distribution of Y ¨ 1 tD “ du given P pZ,Cq

and C, d P t0, 1u. This algorithm builds on Proposition 3.1. Recall that our data consist of iid
observations tYi, Ci, Di, Ziu

N
i“1.

Algorithm 4.1 (Generic Estimation of DMTE function).

1. Semiparametrically (or nonparametrically) estimate the propensity score P : Z ˆ C Ñ

r0, 1s. Denote the fitted propensity score values by pPi.

2. Define a grid of values for the duration outcome Y , tyku
K
k“0, such that yk ą yk´1 for any

k P t1, . . . , Ku and K P N.

3. For each k P t0, . . . , Ku and each d P t0, 1u, estimate the conditional distribution function
of Y ¨ 1 tD “ du given P pZ,Cq, and C, that is,

ΓpP,C; yk, dq “ E r1 tY ď yk, D “ du |P,Cs .

Since the propensity score for unit i, Pi, is unknown, use the estimated fitted values from
Step 1. Denote the estimated fitted values by pΓp pPi, Ci; yk, dq “ pΓd,k,i.

4. For each k P t0, . . . , Ku and d P t0, 1u, estimate the derivative of ΓpP,C; yk, dq with respect
to P . Since ΓpP,C; yk, dq is unknown, use the estimated pΓd,k,i. Denote the estimated
derivative evaluated at P “ v, C “ c, by pγdpyk, v, cq, where v P P, and c P C.

5. For each k P t0, . . . , Ku and each d P t0, 1u, estimate DMTRd pyk, vq by averaging p2d ´

1qpγd pyk, v, cq over values of c such that c ě yk,

{DMTRd pyk, vq “ p2d ´ 1qpE
”

pγd pyk, v, Cq|C ą yk, pP “ v
ı

,

where pEr¨|¨s is a generic estimators for a conditional expectation.

6. For each value v P P and d P t0, 1u, ensure that {DMTRd pyk, vq is non-decreasing in yk,
and bounded between zero and one.
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7. For each k P t0, . . . , Ku, estimate DMTE pyk, vq using

{DMTE pyk, vq :“ {DMTR1 pyk, vq ´ {DMTR0 pyk, vq .

Building on Algorithm 4.1, it is straightforward to compute the QMTE functions. More
specifically, from Step 6, we have that for both d “ 1 and d “ 0, DMTRd py, vq is monotone in
y for a given v, as any cumulative distribution function should be. Thus, one can invert these
to compute the quantile marginal treatment response functions, and then take their differences
to compute the QMTE function. More precisely, for each d P t0, 1u and a quantile τ , a generic
estimator of the QMTRd pτ, vq is given by

{QMTRd pτ, vq :“ min
kPt0,...,Ku

!

yk : {DMTRd pyk, vq ě τ
)

.

The QMTE estimator for any τ P r0, τ pvqq is given by

{QMTR pτ, vq “ {QMTR1 pτ, vq ´ {QMTR0 pτ, vq .

One can also use get the RMTE function from the DMTE function by integrating the DMTE
over y up to γC , that is,

{RMTEpvq “ ´

ż γC

0

{DMTE py, vq dy.

If the support of C is contained in the support of Y ˚, as in Assumption 7, then RMTEpvq “

MTEpvq.

Remark 2. The above procedures do not explicitly account for covariates X. However, every
single step of Algorithm 4.1 can be thought as implicitly conditioning on covariate values
X “ x. In such cases, one would get a conditional version of the DMTE function, and,
consequentially, a conditional version the QMTE, RMTE and MTE functions. If one were
interested in the “unconditional” version of these functionals, all one needs to do is integrate
the DMTE functional over values of the distribution of X given the propensity score P “ v, and
then follow the same steps as described in the paragraphs after Algorithm 4.1. If covariates are
of moderate dimensions or data for each covariates strata is not-so-large to justify asymptotic
approximations, one may be interested in imposing additional restrictions to bypass the “curse-
of-dimensionality”. We follow this path in the next section.

4.2 Semiparametric Estimation and Inference Procedures

This section provides a more specific procedure to semiparametrically estimate the marginal
treatment effect functionals discussed before. The steps we follow are similar to those in Al-
gorithm 4.1, but we are more specific about the choice of nuisance functions. This degree of
specificity allows us to establish large-sample statistical guarantees and provide asymptotically
valid inference procedures for the target functionals of interest. Here, we also allow for addi-
tional covariates X to enter into the model, so we have data on tYi, Ci, Di, Zi, X

1
iu
N
i“1. In the
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context of our application to the effect of alternative punishments to misdemeanor offenses on
time-to-recidivism in Brazil, X is a set of court district indicators. For this reason, we focus on
the case where all X’s are discrete.

We start discussing how we estimate the propensity score. Similar to Carneiro and Lee
(2009), we model P pZ,C,Xq :“ E rD|Z,C,Xs using an additive partially linear series regression

P pZ,C,Xq “ α0 ` X 1
iαX ` CiαC ` φpZq, (4.1)

where pα0, α
1
X , αCq1 are unknown finite-dimensional parameters, and φ is an unknown (infinite-

dimension) function. In our context, the partially linear additive specification (4.1) allows one
to pool information from different court districts and run a single propensity score model for
all courts. Alternatively, one could use a different propensity score model for each district, at
the cost of getting arguably much less precise estimates.18

In practice, one would approximate φp¨q using a linear combination of the vector of basis
functions ψLpzq “ pψ1pzq, ψ2pzq, . . . , ψLpzqq

1, for L P N. That is, φpzq « ψLpzq1αZ , such that,
as L Ñ 8, the approximation error shrinks to zero. For simplicity, we pick a polynomial basis
function, ψLpzq “

`

z, z2, . . . , zL
˘1, though other options such as B-splines are also possible;

see, e.g., Chen (2007). Note that all the series coefficients can be estimated via ordinary least
squares, i.e.,

θ̂fs “ argmin
θfsPΘfs

n´1
n
ÿ

i“1

`

Di ´ α0 ´ X 1
iαX ´ CiαC ´ ψLpZiq

1αZ ,
˘2 (4.2)

where θ̂fs “ ppα0, pα
1
X , pαC , pαZqq1. Thus, we can compute the fitted propensity score values

rPi “ rP pZi, Ci, Xiq “ pα0 ` X 1
ipαX ` CipαC ` ψLpZiq

1
pαZ . (4.3)

In finite samples, rPi might be negative or larger than one. To handle this, we follow Carneiro
and Lee (2009) and use the trimmed version of rPi as our estimator,

pPi “ rPi ` p1 ´ ϵ ´ rPiq1t rPi ą 1u ` pϵ ´ rPiq1t rPi ă 0u, (4.4)

for a sufficiently small ϵ. In our application, we use ϵ “ 0.01. In our application, this is not
material as only one single observation is trimmed.

Next, we move into the estimation of the conditional distribution function of Y ¨ 1 tD “ du

given P,C,X for d P t0, 1u. Here, we follow the distribution regression approach introduced by
Foresi and Peracchi (1995) and further formalized by Chernozhukov, Fernández-Val and Melly
(2013). The idea is to pose a model with “varying coefficients” for the conditional distribution
of Y ¨ 1 tD “ du, d P t0, 1u,

ΓpP,C,X; y, dq ” E r1 tY ď y,D “ du |P,C,Xs

18Alternatively, one could use semiparametric logit model P pZ,C,Xq “

exptα0 `X 1
iαX ` CiαC ` φpZqu{ p1 ` exptα0 ` α1

X Xi ` αC Ci ` φpZquq. In the Appendix, we show that our
regularity conditions could still be satisfied. The same is true for a fully nonparametric series estimator.
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“ Λ pβ0 py, dq ` X 1βXpy, dq ` CβCpy, dq ` PβP py, dqq a.s. (4.5)

where θ0p¨, ¨q “ pβ0 p¨, ¨q , βX p¨, ¨q1 , βC p¨, ¨q , βP p¨, ¨qq1 ÞÑ Θ Ď R3`kX is a vector of nonparametric
functions, kX is the dimension of X, and Λ is a known link function.19 For concreteness, we
focus on a logistic link function, Λp¨q “ expp¨q

L

p1 ` expp¨qq.
In order to estimate these unknown functions, we first need to acknowledge that the propen-

sity score Pi is not observed. However, we can use the “generated regressor” pPi in (4.4). Once
we replace Pi with pPi, we can then leverage the insights of Foresi and Peracchi (1995) and
Chernozhukov et al. (2013) by noticing that, for a fixed y and d, (4.5) is a binary regres-
sion problem, allowing us to pointwise estimate these by maximizing the (feasible) conditional
likelihood function

Q̂pθ; y, dq “
1

n

n
ÿ

i“1

ln ℓθp1tYi ď y,Di “ du, Xi, Ci, pPi; y, dq (4.6)

with

ℓθpb, x, c, p; y, dq “ Λ pw1θq
b

p1 ´ Λ pw1θqq
1´b

,

and w “ p1, x1, c, pq1. Thus, the distribution regression (DR) estimator of θ0py, dq is given by

θ̂ py, dq “ argmax
θPΘ

Q̂n pθ; y, dq . (4.7)

Notice that computing the DR estimators for several py, dq points only requires running a
sequence of binary regressions. This can be performed in any statistical software.

Next, note that the derivative of (4.5) with respect to P can computed in closed-form for
each py, dq,

γdpy, v, c, xq :“
d

dv
Γpv, c, x; y, dq “ βP py, dq Γpv, c, x; y, dqp1 ´ Γpv, c, x; y, dqq, (4.8)

where we explored that Λ is the logistic link function. Denote the DR estimated fitted values
of γdpy, v, c, xq by

pγdpy, v, c, xq “ pβP py, dq pΓpv, c, x; y, dqp1 ´ pΓpv, c, x; y, dqq, (4.9)

where the DR coefficients are as in (4.7), and

pΓpv, c, x; y, dq “

exp
´

pβ0 py, dq ` x1
pβXpy, dq ` cpβCpy, dq ` vpβP py, dq

¯

1 ` exp
´

pβ0 py, dq ` x1pβXpy, dq ` cpβCpy, dq ` vpβP py, dq

¯ .

With (4.9) on hand, we can estimate

DMTRdpy, v, xq :“ P rY ˚
pdq ď y|V “ v,X “ xs .

Let nd,x,y “
řn
i“1 1tDi “ d,Xi “ x,Ci ą yu denote the sample size with treatment status d,

covariate value x, and censoring variable above y. Our proposed estimator for DMTRdpy, v, xq

19This class of distribution regression models nests and extends many traditional duration models such as
Cox (1972) proportional hazard model and Kalbfleisch and Prentice (1980) accelerated time model; see Delgado
et al. (2022) for a discussion.
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is given by

{DMTRdpy, v, xq “ p2d ´ 1q

řn
i“1 1tDi “ d,Xi “ x,Ci ą yu pγdpy, v, Ci, xq

nd,x,y
. (4.10)

Since {DMTRdpy, v, xq is an estimator for a conditional distribution, it needs to be non-
decreasing in y for all pd, v, xq P t0, 1u ˆ P ˆ X . In finite samples, though, this may not be the
case. We recommend using the rearrangement procedure of Chernozhukov, Fernandez-Val and
Galichon (2009), also adopted by Wüthrich (2019).

Based on (4.10), we can then estimate the DMTEpy, v, xq :“ DMTR1py, v, xq ´

DMTR0py, v, xq using

{DMTEpy, v, xq :“ {DMTR1py, v, xq ´ {DMTR0py, v, xq. (4.11)

Analogously, one can estimate QMTEpτ, v, xq and RMTEpv, xq functionals using

{QMTEpτ, v, xq “ {QMTR1pτ, v, xq ´ {QMTR0pτ, v, xq (4.12)

{RMTEpv, xq “ ´

ż γC

0

{DMTEpy, v, xqdy, (4.13)

respectively, where {QMTRdpτ, v, xq “ infty P R` : {DMTRdpy, v, xq ě τu.
We summarize all these estimation steps in the following algorithm.

Algorithm 4.2 (Semiparametric Estimation of MTE functionals).

1. Semiparametrically estimate the propensity score using the series partially linear model
(4.1). Denote its trimmed fitted propensity score values by pPi as defined in (4.4).

2. Define a grid of values for the duration outcome Y , tyku
K
k“0, such that yk ą yk´1 for any

k P t1, . . . , Ku and K P N.

3. For each k P t0, . . . , Ku and each d P t0, 1u, estimate the conditional distribution function
of Y ¨ 1 tD “ du given P pZ,Cq, C, and X using the distribution regression model (4.5),
with estimated DR coefficients (4.7).

4. For each k P t0, . . . , Ku and d P t0, 1u, estimate the derivative of DR model with respect
to P as in (4.8). Denote its estimated fitted value for a given x by pγdpyk, v, c, xq as in
(4.9).

5. For each k P t0, . . . , Ku and each d P t0, 1u, compute {DMTRdpyk, v, xq as in (4.10).

6. For each value v P P, d P t0, 1u, and for a given x, ensure that {DMTRdpyk, v, xq is
non-decreasing in yk, and bounded between zero and one.

7. For each k P t0, . . . , Ku, estimate the DMTE pyk, v, xq using (4.11).
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8. Estimate the QMTE pτ, v, xq using (4.12), with

{QMTRdpτ, v, xq “ minty P tyku
K
k“0 : {DMTRdpy, v, xq ě τu, d P t0, 1u.

9. Estimate the RMTE pv, xq using (4.13).

The next theorem establishes the large-sample properties of our proposed estimators. We
defer all the regularity conditions to the appendix to streamline the presentation. Let τ pv, xq :“

min tτ 0 pv, xq , τ 1 pv, xqu and τ d pv, xq :“ DMTRd pγC , v, xq for any d P t0, 1u.

Theorem 4.1. Suppose that Assumptions 1-5, and Assumptions B.1-B.7 listed in Appendix B
hold. Then,

(a) for each fixed y ă γC, v P P, and x P X ,
?
n
´

{DMTEpy, v, xq ´ DMTEpy, v, xq

¯

d
ÑNp0, V dmte

y,v,x q,

with {DMTEpy, v, xq as defined in (4.11) and V dmte
y,v,x as defined in Appendix B.

(b) for each fixed τ P p0, τ pv, xqq, v P P, and x P X ,
?
n
´

{QMTEpτ, v, xq ´ QMTEpτ, v, xq

¯

d
ÑNp0, V qmte

τ,v,x q,

with {QMTEpτ, v, xq as defined in (4.12) and V qmte
τ,v,x as defined in Appendix B.

(c) for each fixed v P P, and x P X ,
?
n
´

{RMTEpv, xq ´ RMTEpv, xq

¯

d
ÑNp0, V rmte

v,x q,

with {RMTEpv, xq as defined in (4.13) and V rmte
v,x as defined in Appendix B.

Theorem 4.1 follows from first deriving the influence function of the DMTR functions
(4.10), paying particular attention to quantifying the estimation effect arising from replacing
the true propensity score with the estimated one. After this step, all the results follow from the
functional delta method and the continuous mapping theorem. The proof strategy is similar to
Rothe (2009).

Although Theorem 4.1 indicates that one can potentially conduct inference using plug-
estimates of the variance, in practice, that involves estimating additional nuisance functions
and can be cumbersome. We propose using a weighted bootstrap procedure as in Ma and
Kosorok (2005a) and Chen and Pouzo (2009) to avoid that. This bootstrap procedure is very
straightforward to implement, as described in the next algorithm.

Algorithm 4.3 (Weighted-Bootstrap Implementation).

1. Estimate DMTE, QMTE, and RMTE according to Algorithm 4.2.
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2. Generate tVi, i “ 1, . . . , nu as a sequence of independent and identically distributed non-
negative random variables with mean one, variance one, and finite third moment (e.g.,
Vi „ Exp p1q).

3. Compute the propensity score coefficients associated with (4.1) by minimizing the weighted
least squares function, i.e,

θ̂fs,˚ “ argmin
θfsPΘfs

n´1
n
ÿ

i“1

Vi
`

Di ´ α0 ´ X 1
iαX ´ CiαC ´ ψLpZiq

1αZ ,
˘2 (4.14)

where θ̂fs,˚ “ ppα˚
0 , pα

˚,1
X , pα

˚
C , pα

˚
Zqq1. Denote its trimmed fitted propensity score values by pP ˚

i

as defined in (4.4), but with θ̂fs,˚ in place of θ̂fs.

4. Consider the same grid of values for the duration outcome Y as defined in Step 2 of
Algorithm 4.2.

5. For each k P t0, . . . , Ku and each d P t0, 1u, estimate the conditional distribution function
of Y ¨ 1 tD “ du given P pZ,Cq, C, and X using the distribution regression model (4.5)
with estimated DR coefficients

θ̂˚
py, dq “ argmax

θPΘ

1

n

n
ÿ

i“1

Vi ln ℓθp1tYi ď y,Di “ du, Xi, Ci, pP
˚
i ; y, dq. (4.15)

6. Follow Steps 4-9 of Algorithm 4.2 using θ̂˚ py, dq instead of θ̂ py, dq. Denote by
{DMTE

˚

pyk, v, xq, {QMTE
˚

pτ, v, xq, and {RMTE
˚

pv, xq the distributional, quantile,
and restricted marginal treatment effects estimates.

7. Repeat Steps 2-6 B times, e.g., B “ 999, and collect
!´

{DMTE
˚

pyk, v, xq

¯

b
, b “ 1 . . . , B

)

.

Do the same for the {QMTE
˚

pτ, v, xq and {RMTE
˚

pv, xq.

8. Obtain the p1 ´ αq quantile of
!
ˇ

ˇ

ˇ

´

{DMTE
˚

pyk, v, xq ´ {DMTEpyk, v, xq

¯

b

ˇ

ˇ

ˇ
, b “ 1 . . . , B

)

,

cdmte,˚pyk, v, x;αq Compute the analogous critical values based on {QMTE
˚

pτ, v, xq and
{RMTE

˚

pv, xq.

9. Construct the 1´α (pointwise) confidence interval for DMTEpyk, v, xq as pCdmtepyk, v, xq “

r {DMTEpyk, v, xq ˘ cdmte,˚pyk, v, x;αqs. Define pCqmtepτ, v, x;αq and pCrmtepv, x;αq analo-
gously.

The next theorem establishes that our weighted bootstrap procedure has asymptotically
correct coverage.

Theorem 4.2. Under the assumptions of Theorem 4.1, for any 0 ă α ă 1, and for each v P P,
x P X , y ă γC, and τ P p0, τpv, xqq, for n Ñ 8,
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(a) P
´

DMTEpyk, v, xq P pCdmtepyk, v, x;αq

¯

Ñ 1 ´ α,

(b) P
´

QMTEpτ, v, xq P pCqmtepτ, v, x;αq

¯

Ñ 1 ´ α,

(c) P
´

RMTEpv, xq P pCrmtepv, x;αq

¯

Ñ 1 ´ α.

Note that all functionals in Theorems 4.1 and 4.2 provide a covariate-specific treatment
effect. In our application’s context, we can get court-district-specific DMTE, QMTE, and
RMTE estimates of the effect of fines and community service sentences on time-to-recidivism.
An advantage of this approach is that one can better understand treatment effect heterogeneity
across districts. However, with 193 court districts in the State of São Paulo, it may be desirable
to further aggregate the MTE functionals as a way to summarize the obtained effects.

There are several potential aggregations one could entertain. In our specific context, we
decided to aggregate the court-district-specific MTE functionals across court districts using the
proportion of cases per court district as weights. Let wx “ PpX “ xq denote the probability
of a covariate X takes the value x, which, in our case, denotes the true proportion of cases
assigned to a court district x. Let pwx “ n´1

řn
i“1 1tXi “ xu be the plugin estimator of wx .

For each d P t0, 1u, y P Y and v P P , let

DMTRavg
d py, vq “ E rDMTRdpy, v,Xqs “

ÿ

xPX
wx DMTRdpy, v, xq.

Analogously, let DMTEavgpy, vq “ DMTRavg
1 py, vq ´ DMTRavg

0 py, vq, QMTEavgpτ, vq “

QMTRavg
1 pτ, vq ´ QMTRavg

0 pτ, vq, and RMTEavgpvq “ ´
şγC
0
DMTEavgpy, vqdy, where

QMTRavg
d pτ, vq :“ infty P R` : DMTRavg

d py, vq ě τu. All these functionals can be straightfor-
wardly estimated using functionals of

{DMTR
avg

d py, vq “
ÿ

xPX
pwx {DMTRdpy, v, xq,

with {DMTRdpy, v, xq as in (4.10), just like in Equations (4.11)-(4.13). Their large-sample
properties follow directly from the delta method and are summarized in the following corollary.

Corollary 4.1. Suppose that Assumptions 1-5, and Assumptions B.1-B.7 listed in Appendix B
hold. Then,

(a) for each fixed y ă γC, and v P P,
?
n
´

{DMTE
avg

py, vq ´ DMTEavg
py, vq

¯

d
ÑNp0, V dmte,avg

y,v q.

(b) for each fixed τ P p0, τ pv, xqq, and v P P,
?
n
´

{QMTE
avg

pτ, vq ´ QMTEavg
pτ, vq

¯

d
ÑNp0, V qmte,avg

τ,v q.

(c) for each fixed v P P,
?
n
´

{RMTE
avg

pvq ´ RMTEavg
pvq

¯

d
ÑNp0, V rmte,avg

v q.
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It is also straightforward to construct a weighted-bootstrap confidence interval for these
functionals by using pw˚

x “ n´1
řn
i“1 Vi 1tXi “ xu as weights for the MTE functionals. We omit

a detailed description to avoid repetition.

Remark 3. We note that other aggregations of the covariate-specific marginal treatment effect
functionals do exist, but may be more challenging to estimate. For instance, one may be
interested in functionals of the “unconditional” DMTRdpy, vq, defined as

DMTRdpy, vq “ E rDMTRdpy, P,Xq|D “ d, P “ vs

“

ż

DMTRdpy, v, x̄qfX|D,P px̄|D “ d, P “ vqdx̄.

It should be clear that DMTRdpy, vq is different from DMTRavg
d py, vq, though the latter can

be more easily estimated as it does not require estimation of conditional densities as the former
does. If one were to focus on DMTRdpy, vq, all the uncertainty in estimating it would come
from the estimation of the conditional density of X. This follows from Theorem 4.1 establish-
ing that DMTRdpy, v, xq is

?
n-consistent with discrete X’s, while fX|D,P converges at slower

rates. Developing a higher-order asymptotic analysis for estimators for DMTRdpy, vq would be
interesting. We leave a detailed analysis of it for future research.

5 Empirical Application

In our empirical application, we answer the question: “Do alternative sentences such as fines
and community service impact time-to-recidivism?”. In Subsection 5.1, we assess the plausibility
of our identifying assumptions while, in Subsection 5.2, we describe the results of our empirical
analysis using our proposed tools.

5.1 Assessing the Plausibility of our Assumptions

In this subsection, we use some descriptive statistics to assess the plausibility of two of our
identifying assumptions: Random Censoring as in Assumption 5, and the support restriction
introduced in Assumption 7.

Figure 3 focuses on assessing the plausibility of Assumption 5. Although it is not possible
to directly that the potential uncensored outcomes pY ˚ p0q , Y ˚ p0qq are independent of the
censoring variable given the value of the latent heterogeneity V , it is possible to test whether
the realized uncensored outcome (Y ˚) is (approximately) independent of the censoring variable.

To do so, Sub-figure 3a shows the cumulative distribution function (CDF) of the uncensored
outcome (Y ˚) given cohorts based on the censoring variable. If Y ˚ is independent of the
censoring variable, then this CDF should not vary across cohorts. Taking into account the
sampling uncertainty, this figure shows that defendants’ cohorts are independent of the realized
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outcome, indirectly suggesting that the censoring variable may be independent of the potential
outcomes as imposed by Assumption 5.20

Figure 3: Assessing the Plausibility of Assumption 5
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Notes: Subfigure 3a shows the cumulative distribution function (CDF) of the uncensored potential outcome (Y ˚) given cohorts
based on the censoring variable. Each color denotes a different cohort: orange denotes defendants who are observed for at least four
years and at most five years during our sampling period, purple denotes defendants who are observed for at least five years and at
most six years, light blue denotes defendants who are observed for at least six years and at most seven years, dark blue denotes
defendants who are observed for at least seven years and at most eight years, and gray denotes defendants who are observed for at
least eight years and at most nine years. These conditional CDFs are evaluated at four values of the uncensored potential outcome
(one, two, three or four years), and these evaluation points are denoted in the x-axis. The y-axis denotes the value of the CDF,
while black lines denote point-wise 99%-confidence intervals around the values of the CDF.

Subfigure 3b shows, as a solid dark blue line, the probability that the defendant has a typically male name as a function of
their censoring variable. This nonparametric function was estimated using a local linear regression with an Epanechnikov kernel
based on Calonico, Cattaneo and Farrell (2019). The bandwidth was optimally selected according to the IMSE criterion. The
dotted dark blue lines are robust bias-corrected 99%-confidence intervals. The dashed orange line is the unconditional probability
of having a typically male name.

Another way to assess the plausibility of the random censoring assumption is to use a
covariate-balancing test. In particular, we can analyze the relationship between the censoring
variable and an excluded covariate — having a typically male name according to the Brazilian
2010 Census (R package genderBR). Figure 3b shows the probability of having a typically
male name given the defendant’s censoring variable (dark blue line). We find that, regardless
of the censoring variable, this probability is close to the unconditional share of male names
(orange line). Consequently, there is indirect and suggestive evidence that our random censoring
restriction (Assumption 5) is valid.

Figure 4 shows the probability that a defendant does not recidivate during our sampling
period given the value of her censoring variable. Conditioning on the defendants who stay the

20More clearly, this figure suggests that the potential outcomes are negatively regression dependent on the
censoring variable as imposed in Appendix G.1.
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longest in our sample (large values of C), we still find a 30% probability that they do not
recidivate during the observation period. This result suggests that our support restriction in
Assumption 7 is not valid in this context. Although this result does not invalidate the analysis
of the quantile marginal treatment effect, it implies that the restricted marginal treatment
effect estimates should be interpreted carefully and should not be confused with estimates for
the overall marginal treatment effect function.

Figure 4: Probability of No Recidivism during the Sampling Period: P rY ˚ ą C|Cs
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Notes: Subfigure 4 shows the probability that a defendant does not recidivate during our sampling period given the value of her
censoring variable. This nonparametric function was estimated using a local linear regression with an Epanechnikov kernel based
on Calonico et al. (2019). The bandwidth was optimally selected according to the IMSE criterion. The dotted lines are robust
bias-corrected 95% confidence intervals.

5.2 Empirical Results

In this section, we present our empirical results. Section 5.2.1 contains the information
about the first stage of our estimation procedure, Equation (4.1). Section 5.2.2 presents our
estimates of the target parameters in Corollary 4.1.

5.2.1 First Stage Results

We start by presenting the results of the first stage regression in our empirical analysis. In
our model, the treatment variable D (“final ruling”) is a function of the instrument Z (“trial
judge’s punishment rate”), the censoring variable C, and court district fixed effects. Following
Subsection 4.2, we use a polynomial series to approximate the propensity score and report the
estimated coefficients of a quadratic model in Table 2. Note that our instrument is strong
according to the F-statistic of the first-stage regression. This result implies that Assumption 2
is plausible.
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Table 2: First Stage Results

Z Z2 C
Coefficient 0.663*** 0.096 0.012***

Clusterized S.E. (0.235) (0.208) (0.004)
F-statistic 817

Note: The left-hand side variable is our treatment variable, i.e., D ““punished according to the final ruling in the case”. The
standard errors are clusterized at the court district level. The third line reports the F-Statistic of a hypothesis test whose null is
that the coefficients associated with Z and Z2 are equal to zero. The first stage regression controls for court district fixed effects.
To improve readability, we multiply the coefficient of the censoring variable (and its standard error) by 365. This transformation
is equivalent to measuring the censoring variable in years instead of days.

We also report the distribution of the estimated propensity score in Figure 5. The blue
histogram shows the distribution of the estimated propensity score given that defendant was
punished (treated group) while the white histogram shows the distribution of the estimated
propensity score given that defendant was not punished (control group). We find that most
defendants have a probability of being punished around 50%. However, some defendants are
more unlikely to be punished (estimated propensity score around 30%) and others are more
likely to be punished (estimated propensity score around 70%). These widely spread propen-
sity score distributions are positive for identification and estimation because they allow us to
discuss DMTE, QMTE, and RMTE functions evaluated at many different points of the latent
heterogeneity variable.

The vertical lines denote the unconditional 5th and 95th percentiles of the estimated propen-
sity score. When discussing our results about the DMTE, QMTE and RMTE functions, we
only report the estimates for latent heterogeneity values between these two percentiles. We do
so to avoid extrapolation bias and to ensure the plausibility of Assumption 2.

5.2.2 Estimated Target Parameters

To estimate the DMTE, QMTE and RMTE functions in our empirical application, we
need to control for court district fixed effects. Consequently, we estimate 193 district-specific
functions for each one of our treatment effect parameters (Theorem 4.1). To summarize our
results, we average these functions over court districts using the proportion of cases per court
district as weights, as in Corollary 4.1. We report the average DMTE function in Section
5.2.2.1, the average QMTE function in Section 5.2.2.2, and the average RMTE function in
Section 5.2.2.3. Moreover, we compare our proposed methods against standard methods in the
literature in Part 5.2.2.4.

5.2.2.1 Estimated DMTE function

Figure 6 shows the estimated average DMTE py, ¨q functions for y P t1, 2, . . . , 8u, where
instead of measuring time-to-recidivism in days we measured it in years, which enhances read-
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Figure 5: Distribution of the estimated propensity score given treatment status
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Notes: The blue histogram shows the distribution of the estimated propensity score given that the defendant was punished (treated
group). The white histogram shows the distribution of the estimated propensity score given that the defendant was not punished
(control group). The vertical lines denote the unconditional 5th and 95th percentiles of the estimated propensity score.

ability.21 These point estimates show relevant heterogeneity with respect to the treatment
resistance (horizontal axis denotes values of V ) and with respect to the recidivism horizon
(different colors denote different values of y).

On the one hand, the DMTE py, ¨q functions are increasing in the short-run (y P t1, 2, 3u).
This functional behavior indicates that defendants whom almost all judges would punish are
less likely to recidivate, while defendants who would be punished only by tough judges are more
likely to recidivate, at least in a given short-run time frame. This conclusion is supported by
our 90%-confidence intervals (Figures D.2a-D.2c) since it is not possible to fit a horizontal line
within them.

On the other hand, theDMTE py, ¨q functions are increasing in the long-run (y P t5, 6, 7, 8u),
which is the sharp contrast to the “short-run” analysis. This functional behavior indicates
that defendants whom almost all judges would punish would recidivate faster because of the
punishment, while defendants who would be punished only by tough judges would take longer
to recidivate as a result of being punished via alternative sentencing.

21In our data, we observe time-to-recidivism in days. To illustrate the readability improvements of writ-
ing the DMTE function in years instead of days, we focus on one value of the time-to-recidivism vari-
able. The DMTE py, ¨q function when y “ 2 shows the distributional marginal treatment effect given by
P rY ˚p1q ď 2 ¨ 365 days |V “ vs ´ P rY ˚p0q ď 2 ¨ 365 days |V “ vs.
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Figure 6: DMTE py, ¨q for y P t1, 2, . . . , 8u
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Notes: Solid lines are the point estimates for the average DMTE py, ¨q functions indicated in the legend of each
subfigure. These results are based on Corollary 4.1. Moreover, point-wise 90%-confidence intervals are reported
in Appendix D.1. These confidence intervals were computed using the weighted bootstrap, clustered at the
court district level (Subsection 4.2).

This rich heterogeneity illustrates the importance of considering different time horizons and
treatment resistance levels. If policymakers care more deeply about short-run recidivism, our
point estimates suggest that designing sentencing guidelines that encourage strict judges to be-
come more lenient could increase time-to-recidivism. However, if policymakers care more deeply
about long-run recidivism, our point estimates suggest that designing sentencing guidelines that
encourage lenient judges to become stricter could increase time-to-recidivism. Importantly, the
results above highlight that if two researchers were to focus only on a specific but different
time frame when defining whether a defendant recidivates or not may get very different an-
swers, highlighting that the common practice of “binarizing” duration outcomes may come with
important caveats.

Given that the shape of the DMTE functions with respect to V varies a lot when one changes
the threshold y, one may wonder if DMTEs are the most informative summary measures of
heterogeneous treatment effects with respect to unobserved punishment resistance. Although
DMTEs answer well-posed and policy-relevant questions, it may indeed be hard to convey the
main takeaway of the application. In the end, did fines and community services help increase
the time-to-recidivism or not? Based on Figure 6, one would need to answer “depends”, which
is less than optimal. In what follows, we show that these limitations can be minimized by
focusing on other functionals of interest such as QMTE and RMTE.
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5.2.2.2 Estimated QMTE function

To have a deeper understanding of the time trade-offs associated with the effect of punish-
ment on time-to-recidivism, we now focus on the average quantile marginal treatment effect
functions. These objects are easier to interpret than the DMTE functions because they express
the underlying treatment effects in the same units as the time-to-recidivism outcomes, i.e., days
before the first recidivism event.

Figure 7 shows the estimated average QMTEpτ, ¨q functions for τ P t.10, .15, .25, .30, .40, .50, .75u.
Once more, these point estimates show relevant heterogeneity with respect to the punishment
resistance (horizontal axis denotes values of V ). However, the time horizon heterogeneity, now
captured by the different quantiles, seems less relevant when compared with Figure 6.

Figure 7: QMTE pτ, ¨q for τ P t.10, .15, .25, .30, .40, .50, .75u and RMTE p¨q
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Notes: Solid lines are the point estimates for the average QMTE pτ, ¨q and RMTE p¨q functions indicated in
the legend of each subfigure. These results are based on Corollary 4.1. Moreover, point-wise 90%-confidence
intervals are reported in Appendix D.1. These confidence intervals were computed using the weighted bootstrap
clusterized at the court district level (Subsection 4.2).

Although the level of the estimated QMTE pτ, ¨q functions depends on the quantile, all
functions are decreasing in the unobserved resistance to punishment. These point estimates
suggest that defendants whom almost all judges would punish would take longer to recidivate,
while defendants who would be punished only by tough judges would recidivate faster compared
to situations that they would not be punished. This result is statistically significant for τ P

t.10, .15, .25, .30, .40, .50u at the 10% significance level, see Figures D.4, D.5a and D.5b in the
Appendix.

We reach a similar conclusion when we analyze theQMTE p¨, vq as a function of the quantiles
for specific values of unobserved resistance to treatment. Figure D.1 in the Appendix shows the
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average QMTE p¨, vq for v P t.3, .4, .5, .6, .7u. We find that this function is always positive for
small values of the unobserved resistance to punishment, while it is always negative for large
values of v.

Overall, our QMTE point estimates suggest that designing sentencing guidelines that en-
courage strict judges to become more lenient could lead to increasing time-to-recidivism.

5.2.2.3 Estimated RMTE function

To have a single function that summarizes our results, we focus on the average RMTE p¨q.
Figure 7b plots the point estimates of this function in purple. Before discussing this result, we
must understand how restricted is the RMTE function (Equations (2.7) and (2.8)) compared
to the overall MTE function. If the support of C is “too small” compared to the support
of time-to-event outcome, RMTE may be further away from the MTE function, affecting its
interpretability.

Figure 8 plots the estimated maximum identifiable quantile: τ pvq :“ min tτ 0 pvq , τ 1 pvqu

where τ d pvq :“ DMTRd pγC , vq for any d P t0, 1u and γC :“ inf
␣

c P R : P rC ď cs “ 1
(

. If the
maximum identifiable quantile, τ p¨q is “far away” from 1, then the support of C is “too small”
compared to the support of time-to-event outcome.

Figure 8: Maximum Identifiable Quantile: τ pvq
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Notes: The orange line plots the estimated maximum identifiable quantile, τ pvq, for each value of the unobserved
resistance to treatment. The definition of τ pvq can be found in Corollary 3.1.
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Figure 8 shows that the RMTE function is almost an unrestricted mean for v P p.4, .5q.
However, the censoring problem is binding for small and large values of the unobserved re-
sistance to treatment. Consequently, the RMTE is further away from the MTE function for
extreme values of punishment resistance.

Now, analyzing the point estimates of the RMTE function (purple line in Figure 7b), we
also find that the estimated restricted average marginal treatment effects decrease with the
unobserved resistance to treatment. However, these point estimates are small in magnitude
and statistically insignificant (Figure D.5d).

5.2.2.4 Comparison with Other Available Methods

Here, we compare our proposed methods against other available methods in the literature.
Differently from our approach, these estimates ignore that the outcome variable is right-censored
and provide different conclusions when compared against our proposed estimator. For brevity,
we focus our attention on the effects on the 25th and 50th percentiles (QMTE p.25, ¨q and
QMTE p.50, ¨q functions) in Figure 9 and on the restricted average effect (RMTE function) in
Figure 10.

Figure 9 focuses on the effect on the 25th and 50th percentiles of our outcome variable.
Our proposed methods are illustrated by the purple lines. We have the average QMTE p.25, ¨q

function in Figure 9a and the average QMTE p.50, ¨q function in Figure 9b (Corollary 4.1).
The light blue lines denote a “naive” version of our estimators that follow the same steps
as described in Section 4.2, but do not control for the censoring variable. The orange lines
denote the standard method in the IV literature that takes into consideration endogenous
selection into treatment but ignores (or aggregate) treatment effect heterogeneity with respect
to unobserved resistance to treatment. The orange line in Figure 9a is the treatment coefficient
of an IV quantile regression (Kaplan and Sun, 2017) for the 25th percentile, while Figure 9b
is the treatment coefficient of an IV quantile regression (Kaplan and Sun, 2017) for the 50th
percentile. Both IV quantile regressions use the censored outcome variable as the left-hand
side variable, control for court district fixed effects and use the judge’s punishment rate as the
instrument for the defendant being punished.

Analyzing Figures 9a and 9b, we find that the IV quantile regression does not capture the
rich heterogeneity behind the treatment effects of fines and community service. In particular,
the IV quantile regression estimates suggest a negative effect, ignoring that the treatment
increases time-to-recidivism for some defendant types. Importantly, the IV quantile regression
estimates do not lie entirely within the 90%-confidence intervals of the correctly estimated
QMTE p.25, ¨q and QMTE p.50, ¨q functions (Figures D.4c and D.5b).

Moreover, in Figure 9a, we observe that our proposed estimator (purple line) and its naive
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Figure 9: Comparing our Proposed Methods against Other Available Methods

−500

0

500

0.3 0.4 0.5 0.6 0.7
V (Punishment Resistance)

T
im

e−
to

−
R

ec
id

iv
is

m
 (

da
ys

)

IVQR(0.25) Naive QMTE(0.25) [Ignoring C] QMTE(0.25)
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Notes: Our proposed methods are illustrated by the purple lines. We have the average QMTE p.25, ¨q function
in Figure 9a and the average average QMTE p.50, ¨q function in Figure 9b (Corollary 4.1). The light blue lines
denotes a naive version of our estimators that ignores censoring. The orange lines are the treatment coefficients
of IV quantile regressions (Kaplan and Sun, 2017) for the 25th and 50th percentiles.

version (light blue line) reach similar point estimates. This finding is unsurprising because
the estimated QMTRd p.25, ¨q functions are always smaller than 2.5 years, and all defendants
are observed for at least 2 years. Consequently, the censoring problem is not binding for low
percentiles.

However, the censoring problem is binding for higher percentiles. In Figure 9b, we focus on
the QMTRd p.50, ¨q function and find that our proposed estimator (purple line) and its naive
version (light blue line) differ in relevant ways. For example, the naive estimator finds a much
more negative effect for individuals with a high punishment resistance. Importantly, the naive
estimates do not lie entirely within the 90%-confidence intervals of the correctly estimated
QMTE p.50, ¨q function (Figure D.5b).

Figure 10 focuses on the restricted average effect (RMTE function). Our proposed method
(Corollary 4.1) is illustrated by the purple line. The light blue line denotes a “naive” version of
our estimator that follows the same steps as described in Section 4.2, but does not control for
the censoring variable. The orange line is the treatment coefficient of a 2SLS regression that
uses the censored outcome variable as the left-hand side variable, controls for court district
fixed effects and uses the judge’s punishment rate as the instrument for the defendant being
punished. The dark blue line is the estimated average MTE function based on a parametric
estimator (Cornelissen, Dustmann, Raute and Schonberg, 2016, Appendix B.2) that imposes
a linear MTE curve and ignores censoring concerns by directly using the level of the censored
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outcome variable.

Figure 10: RMTE against Standard Methods
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Notes: The purple line shows the average RMTE function (Corollary 4.1). The light blue line denotes a naive
version of our estimators that ignores censoring. The orange line is the treatment coefficient of a 2SLS regression.
The dark blue line is the estimated average MTE function based on a parametric estimator (Cornelissen et al.,
2016, Appendix B.2) that directly uses the level of the censored outcome variable.

Analyzing Figure 10, we find two interesting results. First, the standard MTE method (dark
blue line) and the naive version of our estimator (light blue line) exacerbate the heterogeneity
that exists in the estimated RMTE function (purple line), finding much larger estimates in
magnitude. Importantly, both blue lines do not lie entirely within the 90%-confidence intervals
of the correctly estimated RMTE function (Figure D.5d).

Second, the 2SLS estimate finds a more negative effect of punishment on time-to-recidivism,
suggesting that punishing defendants with fines and community service has led to faster recidi-
vism than those obtained using our preferred method. Importantly, the 2SLS estimate does
not lie entirely within the 90%-confidence intervals of the correctly estimated RMTE function
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(Figure D.5d).

6 Conclusion

In this paper, we identify the distributional marginal treatment effect (DMTE), the quantile
marginal treatment effect (QMTE) and the restricted marginal treatment effect (RMTE)
functions when the outcome variable is right-censored. To do so, we extend the MTE framework
(Heckman et al., 2006; Carneiro and Lee, 2009) to scenarios with duration outcomes. In this
section, we discuss in which contexts our proposed methodology can be used and deepen our
empirical discussion.

Our methodology can be applied to many empirical problems that face two simultaneous
identification challenges: endogenous selection into treatment and right-censored data. In our
empirical application, we focus on the effect of a fine on defendants’ time-to-recidivism. In this
case, judges observe more information than the econometrician when making their decisions
and time-to-recidivism is a right-censored variable. In labor economics, the same identification
challenges appear when analyzing the effect of receiving unemployment benefits on unemploy-
ment spells. Moreover, in the health sciences, when studying the effect of a drug on survival
time, a researcher has to address both identification problems too.22

Concerning its empirical contribution, our work is inserted in the literature about the effect
of fines and community service sentences on future criminal behavior. Five recent papers in
this field were written by Huttunen et al. (2020), Giles (2021), Klaassen (2021), Possebom
(2022), Lieberman et al. (2023). All of them focus on binary variables indicating recidivism
within a pre-specified time period. Huttunen et al. (2020) and Giles (2021) find that this type of
punishment increases the probability of recidivism in Finland and Milwaukee (a city in the State
of Wisconsin in the U.S.), respectively. Klaassen (2021) finds that alternative sentences decrease
the probability of recidivism in North Carolina (a state in the U.S.). Possebom (2022) finds
that this type of punishment has a small and statistically insignificant effect on the probability
of recidivism in São Paulo, Brazil. Finally, Lieberman et al. (2023) analyze five American states
and find that court fees have no impact on recidivism.

Differently from these five papers, our outcome variable is time-to-recidivism. Using a con-
tinuous outcome instead of binary indicators allows for a finer analysis of the heterogeneous
effects of fines and community service sentences on future criminal behavior and may concil-
iate the conflicting results in the previous literature. For example, we find that this type of
punishment increases time-to-recidivism for some individuals while decreasing it for other in-

22The effect of unemployment benefits is discussed by Chetty (2008) and Delgado et al. (2022). Medical
treatments are analyzed by Sullivan, Zwaag, El-Zeky, Ramanathan and Mirvis (1993), Spiegel (2002) and
Trinquart, Jacot, Conner and Porcher (2016).
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dividuals. If the first type of individual is more common in North Carolina than in Milwaukee
and Finland, our focus on essential heterogeneity may shed light on these conflicting results.

References

Acerenza, Santiago, “Partial Identification of Marginal Treatment Effects with Discrete Instruments
and Misreported Treatment,” 2022. Working Paper.

, Kyunghoon Ban, and Désiré Kédagni, “Marginal Treatment Effects with Misclassified Treat-
ment,” 2021.

Ackerberg, Daniel, Xiaohong Chen, Jinyong Hahn, and Zhipeng Liao, “Asymptotic Efficiency
of Semiparametric Two-step GMM,” The Review of Economic Studies, 04 2014, 81 (3), 919–943.

Agan, Amanda Y., Jennifer L. Doleac, and Anna Harvey, “Misdemeanor Prosecution,” Quar-
terly Journal of Economics, 2023, Forthcoming.

Andersen, Per Kragh, Mette Gerster Hansen, and John P. Klein, “Regression analysis of
restricted mean survival time based on pseudo-observations,” Lifetime Data Analysis, 2004, 10 (4),
335–350.

Bartalotti, Otavio, Desire Kedagni, and Vitor Possebom, “Identifying Marginal Treatment
Effects in the Presence of Sample Selection,” Journal of Econometrics, 2022. Available at https:

//doi.org/10.1016/j.jeconom.2021.11.011.

Beyhum, Jad, Jean-Pierre Florens, and Ingrid Van Keilegom, “Nonparametric Instrumental
Regression With Right Censored Duration Outcomes,” Journal of Business & Economic Statistics,
2022, 40 (3), 1034–1045.

Bhuller, Manudeep and Henrik Sigstad, “Feedback and Learning: The Causal Effects of Reversals
on Judicial Decision-Making,” January 2022. Available at https://papers.ssrn.com/sol3/papers.
cfm?abstract_id=4000424.

, Gordon B. Dahl, Katrine V. Loken, and Magne Mogstad, “Incaceration, Recidivism, and
Employment,” Journal of Polical Economy, 2019, 128 (4), 1269–1324. Forthcoming.

Brinch, Christian N., Magne Mogstad, and Matthew Wiswall, “Beyond LATE with a Discrete
Instrument,” Journal of Political Economy, 2017, 125 (4), 985–1039.

Calonico, Sebastian, Matias D. Cattaneo, and Max H. Farrell, “nprobust: Nonparametric
Kernel-Based Estimationand Robust Bias-Corrected Inference,” Journal of Statistical Software, 2019,
91 (8), 1–33.

Carneiro, Pedro and Sokbae Lee, “Estimating distributions of potential outcomes using local
instrumental variables with an application to changes in college enrollment and wage inequality,”
Journal of Econometrics, 2009, 149 (2), 191–208.

, James J. Heckman, and Edward Vytlacil, “Estimating Marginal Returns to Education,” The
American Economic Review, 2011, 101 (6), 2754–2781.

37

https://doi.org/10.1016/j.jeconom.2021.11.011
https://doi.org/10.1016/j.jeconom.2021.11.011
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4000424
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4000424


Chen, Pei-Yun and Anastasios A. Tsiatis, “Causal Inference on the Difference of the Restricted
Mean Lifetime Between Two Groups,” Biometrics, 2001, 57 (4), 1030–1038.

Chen, Songnian and Qian Wang, “Quantile regression with censoring and sample selection,” Jour-
nal of Econometrics, 2023, 234 (1), 205–226.

Chen, Xiaohong, “Large Sample Sieve Estimation of Semi-Nonparametric Models,” in James J.
Heckman and Edward E. Leamer, eds., Handbook of Econometrics, Vol. 6B, Amsterdam: Elsevier,
2007, chapter 76, pp. 5549–5632.

and Demian Pouzo, “Efficient estimation of semiparametric conditional moment models with
possibly nonsmooth residuals,” Journal of Econometrics, 2009, 152 (1), 46–60.

Chernozhukov, Victor and Han Hong, “Three-Step Censored Quantile Regression and Extramar-
ital Affairs,” Journal of the American Statistical Association, sep 2002, 97 (459), 872–882.

, Ivan Fernandez-Val, and Alfred Galichon, “Improving point and interval estimators of mono-
tone functions by rearrangement,” Biometrika, jun 2009, 96 (3), 559–575.

, Iván Fernández-Val, and Amanda Kowalski, “Quantile Regression with Censoring and En-
dogeneity,” Journal of Econometrics, 2015, 186 (1), 201–221.

, , and Blaise Melly, “Inference on counterfactual distributions,” Econometrica, 2013, 81, 2205–
2268.

Chesher, Andrew, “Nonparametric identification under discrete variation,” Econometrica, 2005, 73
(5), 1525–1550.

Chetty, Raj, “Moral Hazard versus Liquidity and Optimal Unemployment Insurance,” Journal of
Political Economy, 2008, 116 (2), 173–234.

Cornelissen, Thomas, Christian Dustmann, Anna Raute, and Uta Schonberg, “From LATE
to MTE: Alternative Methods for the Evaluation of Policy Interventions,” Labour Economics, 2016,
41, 47–60.

Cox, D. R., “Regression models and life-tables (with discussion),” Journal of the Royal Statistical
Society: Series B (Statistical Methodology), 1972, 34, 187–220.

Delgado, Miguel, Andres Garcia-Suaza, and Pedro Sant’Anna, “Distribution Regression in
Duration Analysis:an Application to Unemployment Spells,” The Econometrics Journal, 2022, 25
(3), 675–698.

Fernández-Val, Iván, Aico van Vuuren, Francis Vella, and Franco Peracchi, “Selection and
the Distribution of Female Real Hourly Wages in the U.S.,” Quantitative Economics, 2023, Forth-
coming.

Foresi, Silverio and Franco Peracchi, “The conditional Distribution of Excess Returns : The
Conditional Distribution An Empirical Analysis,” Journal of the American Statistical Association,
1995, 90, 451–466.

Frandsen, Brigham R., “Treatment Effects with Censoring and Endogeneity,” Journal of the Amer-
ican Statistical Association, 2015, 110 (512), 1745–1752.

38



Giles, Tyler, “The (Non)Economics of Criminal Fines and Fees,” October 2021. Available at https:
//drive.google.com/file/d/1jyXjQBKX3A9bs9RfOyTF13U6Li_M8sxb/view.

Hahn, Jinyong, Zhipeng Liao, Geert Ridder, and Ruoyao Shi, “The Influence Function of
Semiparametric Two-step Estimators with Estimated Control Variables,” Working Papers 202202,
University of California at Riverside, Department of Economics November 2021.

Heckman, James and Edward Vytlacil, “Local Instrumental Variables and Latent Variable Models
for Identifying and Bounding Treatment Effects,” Proceedings of the National Academy of Sciences
of the United States of America, 1999, 96, 4730–4734.

Heckman, James J. and Edward Vytlacil, “Structural Equations, Treatment Effects and Econo-
metric Policy Evaluation,” Econometrica, 2005, 73 (3), 669–738.

, Sergio Urzua, and Edward Vytlacil, “Understanding Instrumental Variables in Models with
Essential Heterogeneity,” The Review of Economics and Statistics, 2006, 88 (3), 389–432.

Huttunen, Kristiina, Martti Kaila, and Emily Nix, “The Punishment Ladder: Estimating
the Impact of Different Punishments on Defendant Outcomes,” June 2020. Available at https:

//drive.google.com/file/d/1DhEoGSDLG8FsOMmdkfBq1yU5NjHx8rwh/view?usp=sharing.

Ichimura, Hidehiko and Whitney K. Newey, “The influence function of semiparametric estima-
tors,” Quantitative Economics, 2022, 13 (1), 29–61.

Imbens, Guido W. and Joushua D. Angrist, “Identification and Estimation of Local Average
Treatment Effects,” Econometrica, 1994, 62 (2), 467–475.

Jun, Sung Jae, Joris Pinkse, and Haiqing Xu, “Tighter bounds in triangular systems,” Journal
of Econometrics, 2011, 161 (2), 122–128.

Kalbfleisch, John D. and Ross L. Prentice, The statistical analysis of failure time data, 2nd ed.,
Hoboken, NJ: Wiley, 1980.

Kaplan, David M. and Yixiao Sun, “SMOOTHED ESTIMATING EQUATIONS FOR INSTRU-
MENTAL VARIABLES QUANTILE REGRESSION,” Econometric Theory, 2017, 33 (1), 105–157.

Karrison, Theodore, “Restricted Mean Life with Adjustment for Covariates,” Journal of the Amer-
ican Statistical Association, 1987, 82 (400), 1169–1176.

Kedagni, Desire and Ismael Mourifie, “Tightening bounds in triangular systems,” Economics
Letters, 2014, 125 (3), 455–458.

Khan, Shakeeb and Elie Tamer, “Inference on endogenously censored regression models using
conditional moment inequalities,” Journal of Econometrics, 2009, 152 (2), 104–119.

Kitagawa, Toru and Aleksey Tetenov, “Who Should Be Treated? Empirical Welfare Maximization
Methods for Treatment Choice,” Econometrica, 2018, 86 (2), 591–616.

Klaassen, Felipe Diaz, “Crime and (Monetary) Punishment,” November 2021. Available at https:
//diazkla.github.io/felipediaz.com/jmp_monetary_sanctions_felipe_diaz.pdf.

Kline, Patrick and Andres Santos, “Sensitivity to Missing Data Assumptions: Theory and an
Evaluation of the U.S. Wage Structure,” Quantitative Economics, 2013, 4 (2), 231–267.

39

https://drive.google.com/file/d/1jyXjQBKX3A9bs9RfOyTF13U6Li_M8sxb/view
https://drive.google.com/file/d/1jyXjQBKX3A9bs9RfOyTF13U6Li_M8sxb/view
https://drive.google.com/file/d/1DhEoGSDLG8FsOMmdkfBq1yU5NjHx8rwh/view?usp=sharing
https://drive.google.com/file/d/1DhEoGSDLG8FsOMmdkfBq1yU5NjHx8rwh/view?usp=sharing
https://diazkla.github.io/felipediaz.com/jmp_monetary_sanctions_felipe_diaz.pdf
https://diazkla.github.io/felipediaz.com/jmp_monetary_sanctions_felipe_diaz.pdf


Lehmann, E. L., “Some Concepts of Dependence,” The Annals of Mathematical Statistics, 1966, 37
(5), 1137–1153.

Lieberman, Carl, Elizabeth Luh, and Michael Mueller-Smith, “Criminal Court Fees, Earnings
and Expenditures: A Multi-State RD Analysis of Survey and Administrative Data,” February 2023.
Working Paper Number CES-23-06.

Ma, Shuangge and Michael R. Kosorok, “Robust semiparametric M-estimation and the weighted
bootstrap,” Journal of Multivariate Analysis, 2005, 96 (1), 190–217.

and , “Robust semiparametric M-estimation and the weighted bootstrap,” Journal of Multivariate
Analysis, 2005, 96 (1), 190–217.

Manski, Charles and Francesca Molinari, “Estimating the COVID-19 infection rate: Anatomy of
an inference problem,” Journal of Econometrics, 2021, 220 (1), 181–192.

Masten, Matthew A., Alexandre Poirier, and Linqi Zhang, “Assessing Sensitivity to Uncon-
foundedness: Estimation and Inference,” 2020.

and , “Identification of Treatment Effects under Conditional Partial Independence,” Economet-
rica, 2018, 86 (1), 317–351.

Mogstad, Magne, Alexander Torgovitsky, and Christopher R. Walters, “The Causal Inter-
pretation of Two-Stage Least Squares with Multiple Instrumental Variables,” American Economic
Review, November 2021, 111 (11), 3663–98.

, Andres Santos, and Alexander Torgovitsky, “Using Instrumental Variables for Inference
about Policy Relevant Treatment Effects,” Econometrica, 2018, 86 (5), 1589–1619.

Mourifie, Ismael and Yuanyuan Wan, “Layered Policy Analysis in Program Evaluation Using the
Marginal Treatment Effect,” October 2020. Available at https://economics.ucr.edu/wp-content/
uploads/2020/10/12-23-20-Wan.pdf.

Newey, Whitney K., “The Asymptotic Variance of Semiparametric Estimators,” Econometrica, 1994,
62 (6), 1349–1382.

and Daniel McFadden, “Chapter 36 Large sample estimation and hypothesis testing,” in “Hand-
book of Econometrics,” Vol. 4, Elsevier, 1994, pp. 2111–2245.

Possebom, Vitor, “Crime and Mismeasured Punishment: Marginal Treatment Effect with Misclas-
sification,” February 2022. Available at https://arxiv.org/abs/2106.00536.

Powell, James L., “Censored regression quantiles,” Journal of Econometrics, 1986, 32 (1), 143–155.

Rothe, Christoph, “Semiparametric estimation of binary response models with endogenous regres-
sors,” Journal of Econometrics, 2009, 153 (1), 51–64.

Sant’Anna, Pedro H. C., “Program Evaluation with Right-Censored Data,” April 2016. Available
at https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2752760.

, “Nonparametric Tests for Treatment Effect Heterogeneity With Duration Outcomes,” Journal of
Business & Economic Statistics, 2021, 39 (3), 816–832.

Spiegel, David, “Effects of Psychotherapy on Cancer Survival,” Nature Reviews Cancer, 2002, 2,
383–388.

40

https://economics.ucr.edu/wp-content/uploads/2020/10/12-23-20-Wan.pdf
https://economics.ucr.edu/wp-content/uploads/2020/10/12-23-20-Wan.pdf
https://arxiv.org/abs/2106.00536
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2752760


Sullivan, Jay M., Roger Vander Zwaag, Faten El-Zeky, Kodangudi B. Ramanathan, and
David M. Mirvis, “Left ventricular hypertrophy: Effect on survival,” Journal of the American
College of Cardiology, 1993, 22 (2), 508–513.

Tchetgen, Eric J Tchetgen, Stefan Walter, Stijn Vansteelandt, Torben Martinussen, and
Maria Glymour, “Instrumental variable estimation in a survival context,” Epidemiology (Cam-
bridge, Mass.), 2015, 26 (3), 402.

Trinquart, Ludovic, Justine Jacot, Sarah C. Conner, and Raphael Porcher, “Comparison
of Treatment Effects Measured by the Hazard Ratio and by the Ratio of Restricted Mean Survival
Times in Oncology Randomized Controlled Trials,” Journal of Clinical Oncology, 2016, 34 (15),
1813–1819.

van der Vaart, Aad, Asymptotic Statistics Cambridge Series in Statistical and Probabilistic Mathe-
matics, Cambridge University Press, 1998.

and Jon Wellner, Weak Convergence and Empirical Processes: With Applications to Statistics
Springer Series in Statistics, Springer, 1996.

Vytlacil, Edward, “Independence, Monotonicity and Latent Index Models: An Equivalence Result,”
Econometrica, 2002, 70 (1), 331–341.

Wellner, Jon et al., Weak convergence and empirical processes: with applications to statistics,
Springer Science & Business Media, 2013.

Wüthrich, Kaspar, “A closed-form estimator for quantile treatment effects with endogeneity,” Jour-
nal of Econometrics, 2019, 210 (2), 219–235.

Zhang, Min and Douglas E. Schaubel, “Double-Robust Semiparametric Estimator for Differences
in Restricted Mean Lifetimes in Observational Studies,” Biometrics, 2012, 68 (4), 999–1009.

Zucker, David M., “Restricted Mean Life with Covariates: Modification and Extension of a Useful
Survival Analysis Method,” Journal of the American Statistical Association, 1998, 93 (442), 702–709.

41



Supporting Information
(Online Appendix)

A Proofs of the main results

We start by stating an auxiliary lemma that will be used to derive our main identification results.

Lemma A.1. If Assumptions 1-4 hold, then, for any y ă γC , v P P and δ P R`` such that y ` δ P C,

P rY ď y,D “ 1|P pZ,Cq “ v, C “ y ` δs “

ż v

0
P rY ˚p1q ď y|C “ y ` δ, V “ vs dv (A.1)

and

P rY ď y,D “ 0|P pZ,Cq “ v, C “ y ` δs “

ż 1

v
P rY ˚p0q ď y|C “ y ` δ, V “ vs dv, (A.2)

If Assumption 5 holds too, then, for any y ă γC , v P P and δ P R`` such that y ` δ P C,

P rY ď y,D “ 1|P pZ,Cq “ v, C “ y ` δs “

ż v

0
P rY ˚p1q ď y|V “ vs dv (A.3)

and

P rY ď y,D “ 0|P pZ,Cq “ v, C “ y ` δs “

ż 1

v
P rY ˚p0q ď y|V “ vs dv. (A.4)

A.1 Proof of Lemma A.1

Fix y ă γC , v P P and δ P R`` such that y ` δ P C. To prove (A.1), note that

P rY ď y,D “ 1|P pZ,Cq “ v, C “ y ` δs

“ E r1 tY ď yu1 tP pZ,Cq ě V u|P pZ,Cq “ v, C “ y ` δs

by (3.1)

“ E r1 tY ˚p1q ď yu1 tv ě V u|P pZ, y ` δq “ v, C “ y ` δs

because 1 tY p1q ď yu “ 1 tY ˚p1q ď yu when C ą y

“

ż 1

0
E r1 tY ˚p1q ď yu1 tv ě ṽu|P pZ, y ` δq “ ṽ, C “ y ` δ, V “ ṽs dṽ

by the Law of Iterated Expectations and Assumption 3

“

ż 1

0
1 tv ě ṽuE r1 tY ˚p1q ď yu|P pZ, y ` δq “ v, C “ y ` δ, V “ ṽs dṽ

“

ż v

0
E r1 tY ˚p1q ď yu|P pZ, y ` δq “ v, C “ y ` δ, V “ ṽs dṽ

“

ż v

0
P rY ˚p1q ď y|C “ y ` δ, V “ ṽs dṽ
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by Assumption 1.

We can prove (A.2) analogously.
To prove (A.3), observe that

P rY ď y,D “ 1|P pZ,Cq “ v, C “ y ` δs

“

ż v

0
P rY ˚p1q ď y|C “ y ` δ, V “ ṽs dṽ

“

ż v

0
P rY ˚p1q ď y|V “ ṽs dṽ

by Assumption 5.

We can prove (A.4) analogously.

A.2 Proof of Proposition 3.1

Fix y ă γC , v P P and δ P R`` such that y ` δ P C.
First, note that Equations (A.3) and (A.4) imply that

BP rY ď y,D “ 1|P pZ,Cq “ v, C “ y ` δs

Bv
“ P rY ˚p1q ď y|V “ vs (A.5)

and
BP rY ď y,D “ 0|P pZ,Cq “ v, C “ y ` δs

Bz
“ ´P rY ˚p0q ď y|V “ vs (A.6)

according to the Leibniz Integral Rule.
Combining Equations (2.1) and (A.5)-(A.6), we prove that

DMTRd py, vq “ p2d´ 1q ¨
BP rY ď y,D “ d|P pZ,Cq “ v, C “ y ` δs

Bv

for any d P t0, 1u.
Since the last equation holds for any δ P R`` such that y ` δ P C, we have that

DMTRd py, vq “ p2d´ 1q ¨

ż `8

y

BP rY ď y,D “ d|P pZ,Cq “ v, C “ cs

Bv
¨ fC|P pZ,Cq“v,Cěv pcq dc

for any d P t0, 1u.
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B Regularity Conditions and Semiparametric Estimation

In this appendix we elaborate on standard regularity conditions for our proposed identification and
estimation results to work.

B.1 Main Regularity Conditions

Although identification does not rely on any parametric assumption, some of them aid the estima-
tion procedure. Covariates are easily incorporated when semiparametric assumptions are made and
the curse of dimensionality is avoided. Additionally, semiparametric assumptions demand less data. In
this appendix, we follow Rothe (2009) closely, but adapt his setting for the case where the link function
is known instead of unknown. For the rest of the section, we assume an i.i.d sample. In this context,
we introduce the following assumption:

Assumption B.1 (Semiparametric CDF). Let P rY ď y,D “ d|P,C,Xs “ Λpβ0 pd, yq `βC pd, yqC`

βP pd, yqP ` X 1βX pd, yqq, where Λpq is a known link function up to a finite dimensional vector (such
as the logistic link), which is continuously differentiable in the index. Let Λ1p.q be the derivative of Λp.q,
which is continuous.

For the sake of exposition, let Wy,d “ 1tY ď y,D “ du, H “ t1, C, P,Xu, Ĥ “ t1, C, P̂,Xu,
Hv “ t1, C, v,Xu, βd,y :“ pβ0 pd, yq , βC pd, yq , βP pd, yq , βX pd, yqq for any y and d P t0, 1u. Taking the
derivative with respect to P for Λp¨q for both Wy,1 and Wy,0, we get the DMTEpy, vq as

DMTR1py, vq ´DMTR0py, vq “ Λ1pβ1,yHvqβP p1, yq ´ Λ1pβ0,yHvqβP p0, yq

If P was known, it would be easy to estimate the DMTE as in the parametric part.
Since P is not known, we can estimate P in a semiparametric first stage, and obtain estimates for

βd,y from the following maximum-likelihood procedure.23 We focus on d “ 1 for the sake of exposition
and denote the semiparametric first-stage estimates by P̂ . Define

Lnpβ1,y, P̂ q “ max
β1,y

1

N

ÿ

i

Wy,1,ilogrΛpβ1,yĤiqs ` p1 ´Wy,1,iqlogr1 ´ Λpβ1,yĤiqs (B.1)

with solution β̂1,ypP̂ q. If P was known, we could use the following unfeasible standard maximum
likelihood procedure:

Lnpβ1,y, P q “ max
β1,y

1

N

ÿ

i

Wy,1,ilogrΛpβ1,yHiqs ` p1 ´Wy,1,iqlogr1 ´ Λpβ1,yHiqs (B.2)

with solution β̂1,ypP q.
To analyze our semiparametric estimator (B.1), we need to ensure that the unfeasible estimator in

(B.2) is well-behaved. To do so, we impose the following assumption:

23In the semiparametric first stage, we can estimate P using a standard series estimator.
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Assumption B.2 (Unfeasible Likelihood). The maximum likelihood estimator of (B.2), follows stan-
dard regularity conditions from Newey and McFadden (1994) for consistency and asymptotic normality.

Assumption B.2 ensures that standard parametric inference could be performed if P was observed,
implying that β̂1,ypP q

p
ÝÑ β1,y. Since Λ is the logistic link, the result is standard.

To ensure that our semiparametric estimator is consistent and derive its asymptotic distribution,
we need to impose that our propensity score estimator converges sufficiently fast and satisfy some
regularity conditions. To do so, we follow Rothe (2009) and impose the following assumption.

Assumption B.3 (First stage assumptions). Let P̂ satisfy:

1. P̂i´Pi “ 1
N

ř

j wnpZi, Ci, Xi, Zj , Cj , Xjqϕj`rin with maxi ||rin|| “ oppN
´ 1

2 q and maxi |P̂i´Pi| “

oppN
´ 1

4 q where ϕj “ ϕpDj , Zj , Cj , Xjq is an influence function with E rϕj |Zj , Cj , Xjs “ 0 and
E
”

ϕ2j |Zj , Cj , Xj

ı

ď 8 and weights wnpZi, Ci, Xi, Zj , Cj , Xjq “ opNq.

2. There exists a space P such that PpP̂ P Pq Ñ 1 and the integral between 0 and infinity with
respect to the radius of the log of the covering number with respect to the l8 norm of the class of
functions P is finite.

Assumption B.3 is a high-level condition on the estimator. The first part states that the estimator
admits a certain asymptotic expansion, whereas the second part requires the estimator to take values
in some well-behaved function space with probability approaching 1.24

B.2 Additional Regularity Conditions

Besides the previously mentioned conditions, which are the key components of the semi-parametric
procedure, we do need to add additional regularity conditions that ensure that our procedures work.

Assumption B.4. Assume that P rY ď y,D “ d|P,C,Xs ,P rD “ d|P,C,Xs are twice continuously
differentiable in P .

Assumption B.5. Assume that the support of Z is known and is a Cartesian product of compact
connected intervals on which Z has a probability density function that is bounded away from zero.

Assumption B.6. Assume that ψlpzq, for l P L are rψ-times continuously differentiable on the support
of Z for rψ ě 2, where ψlpzq is used to approximate φpzq, an unknown function.

Assumption B.7. Assume that Y ˚pdq is continuous with respect to the Lebesgue measure.

Assumption B.4 assures that we can apply the Leibniz Integral Rule to identify the DMTR func-
tions. Assumptions B.5 and B.6 are standard in the series estimation literature. In particular, As-
sumption B.6 implies that the asymptotic bias (due to the series approximation by regression splines)
converges to zero at a rate of L´rψ as the number of approximation functions, L, diverges to infinity.
Assumption B.7 is a regularity condition that ensures point identification for our quantile results.

24A standard series estimator satisfies Assumption B.3.
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B.3 Proof of Theorem 4.1: Consistency and Asymptotic Normality

To ensure our estimators of the DMTE,QMTE,MTE are consistent and asymptotically normal,
we first need to ensure consistency of the feasible estimator of all the components of the DMTE. Then,
we use functional approximation results to show asymptotic results for DMTE,QMTE,MTE.

B.3.1 Consistency of the βd,y estimators

We need to prove asymptotic equivalence between the solution of Equations (B.1) and (B.2). Then,
by Assumption B.2, we get the consistency of the feasible semiparametric estimator. Note that

sup
β1,y

|Lnpβ1,y, P̂ q ´ Lnpβ1,y, P q|

ď

”

inf
β1,y

min
i

tΛpβ1,yĤiq,Λpβ1,yHiq, 1 ´ Λpβ1,yĤiq, 1 ´ Λpβ1,yHiqu
`

sup
β1,y

max
i

|Λpβ1,yĤiq ´ Λpβ1,yHiq|
˘

ı

ď

”

Op1q
`

sup
β1,y

max
i

|Λpβ1,yĤiq ´ Λpβ1,yHiq|
˘

ı

“ opp1q,

where the first inequality can be derived using standard algebraic manipulations. Moreover,
the second inequality holds because Λp¨q P p0, 1q. Furthermore, note that Λp¨q is continuous and
maxi |Ĥi ´ Hi| converges due to Assumption B.3, implying that maxi |Λpβ1,yĤiq ´ Λpβ1,yHiq|

converges due to the continuous mapping theorem. Finally, since the supremum over β1,y in
the third line is also continuous, we can apply the continuous mapping theorem again to prove
the last equality.

Furthermore, Lnpβ1,y, P q is a standard parametric likelihood, implying that it converges
uniformly in β1,y to its expectation (Newey and McFadden, 1994, Lemma 2.4). Formally, we
have that

sup
β1,y

|Lnpβ1,y, P q ´ Lpβ1,yq| “ opp1q

where Lpβ1,yq “ E rLnpβ1,ys “ E rWy,1,ilogpΛpβ1,yHqq ` p1 ´ Wy,1,iqlogp1 ´ Λpβ1,yHqqs is a non-
random function that is continuous in β1,y. Taken together, it follows from the triangle inequal-
ity that

sup
β1,y

|Lnpβ1,y, P̂ q ´ Lpβ1,yq| “ opp1q

implying that β̂1,ypP q is consistent whenever Lpβ1,yq attains a unique maximum at the true
value of the parameter, which is the case by our identification results and Assumption B.1.

As a consequence, the consistency of our feasible semiparametric estimator follows from
Theorem 2.1 by Newey and McFadden (1994) via Assumption B.2.
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B.3.2 Asymptotic Distribution of the βd,y estimators

Now, we derive the asymptotic distribution of our semiparametric estimator in (B.1). Let
Lnpβ1,y, P̂iqβ, Lnpβ1,y, Piqβ, Lpβ1,y, Piqβ be the derivative with respect to β of the individual’s
feasible log-likelihood, unfeasible log-likelihood and true log-likelihood respectively (the score).
Define similarly the second-order derivative.

From a standard second-order Taylor expansion of the semiparametric log-likelihood around
β1,y, we have that

?
Npβ̂1,ypP̂ q ´ β1,yq “

«

1

N

ÿ

i

Lnpβ̄1,y, P̂iqβ,β

ff´1
?
N

1

N

ÿ

i

Lnpβ1,y, P̂iqβ, (B.3)

where β̄1,y is between the estimated and true values. By the first part of Assumption B.3 and
the consistency of β̂1,ypP̂ q, we know that,

«

1

N

ÿ

i

Lnpβ̄1,y, P̂iqβ,β

ff´1

p
ÝÑ E rLpβ1,y, Piqβ,βs

´1
“: Σ.

Now, we focus on the last term in (B.3):
ÿ

i

Lnpβ1,y, P̂iqβ “
ÿ

i

Wy,1,i
BlogrΛpβ1,yĤiqs

Bβ
` p1 ´ Wy,1,iq

Blogr1 ´ Λpβ1,yĤiqs

Bβ

“
ÿ

i

Wy,1,i

»

—

—

—

—

—

–

Λ1pβ0p1,yq`βCp1,yqCi`βP p1,yqP̂i`βXp1,yqXiq

Λpβ0p1,yq`βCp1,yqCi`βP p1,yqP̂i`βXp1,yqXiq
Λ1pβ0p1,yq`βCp1,yqCi`βP p1,yqP̂i`βXp1,yqXi
Λpβ0p1,yq`βCp1,yqCi`βP p1,yqP̂i`βXp1,yqXiq

Ci
Λ1pβ0p1,yq`βCp1,yqCi`βP p1,yqP̂i`βXp1,yqXiq

Λpβ0p1,yq`βCp1,yqCi`βP p1,yqP̂i`βXp1,yqXiq
P̂i

Λ1pβ0p1,yq`βCp1,yqCi`βP p1,yqP̂i`βXp1,yqXiq

Λpβ0p1,yq`βCp1,yqCi`βP p1,yqP̂i`βXp1,yqXiq
Xi

fi

ffi

ffi

ffi

ffi

ffi

fl

` p1 ´ Wy,1,iq

»

—

—

—

—

—

–

´Λ1pβ0p1,yq`βCp1,yqCi`βP p1,yqP̂i`βXp1,yqXiq

1´Λpβ0p1,yq`βCp1,yqCi`βP p1,yqP̂i`βXp1,yqXiq
´Λ1pβ0p1,yq`βCp1,yqCi`βP p1,yqP̂i`βXp1,yqXiq

1´Λpβ0p1,yq`βCp1,yqCi`βP p1,yqP̂i`βXp1,yqXiq
Ci

´Λ1pβ0p1,yq`βCp1,yqCi`βP p1,yqP̂i`βXp1,yqXiq

1´Λpβ0p1,yq`βCp1,yqCi`βP p1,yqP̂i`βXp1,yqXiq
P̂i

´Λ1pβ0p1,yq`βCp1,yqCi`βP p1,yqP̂i`βXp1,yqXiq

1´Λpβ0p1,yq`βCp1,yqCi`βP p1,yqP̂i`βXp1,yqXiq
Xi

fi

ffi

ffi

ffi

ffi

ffi

fl

Considering the path Pe “ p1 ´ eqP ` erP̂ ´ P s, we take the path-wise derivative of
ř

i Lnpβ1,y, Piqβ at direction P̂ ´ P (the derivative of the submodel Pe evaluated at e “ 0).
This object is denoted by

ř

i Lnpβ1,y, Piqβ,Pi and is equal to

ÿ

i

Lnpβ1,y, Piqβ,Pi “
ÿ

i

Wy,1,i

»

—

—

—

—

—

–

Λ2
pβ1,yHiqΛpβ1,yHiq´Λ1

pβ1,yHiq
2

Λpβ1,yHiq2
βP p1, yq rP̂i ´ Pis

Λ2
pβ1,yHiqΛpβ1,yHiq´Λ1

pβ1,yHiq
2

Λpβ1,yHiq2
CiβP p1, yq rP̂i ´ Pis

”

Λ2
pβ1,yHiqΛpβ1,yHiq´Λ1

pβ1,yHiq
2

Λpβ1,yHiq2
PiβP p1, yq `

Λ1
pβ1,yHiq

Λpβ1,yHiq

ı

rP̂i ´ Pis

Λ2
pβ1,yHiqΛpβ1,yHiq´Λ1

pβ1,yHiq
2

Λpβ1,yHiq2
XiβP p1, yq rP̂i ´ Pis

fi

ffi

ffi

ffi

ffi

ffi

fl

(B.4)
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`
ÿ

i

p1 ´Wy,1,iq

»

—

—

—

—

—

–

´Λ2
pβ1,yHiqr1´Λpβ1,yHiqs´Λ1

pβ1,yHiq
2

r1´Λpβ1,yHiqs2
βP p1, yq rP̂i ´ Pis

´Λ2
pβ1,yHiqr1´Λpβ1,yHiqs´Λ1

pβ1,yHiq
2

r1´Λpβ1,yHiqs2
CiβP p1, yq rP̂i ´ Pis

”

´Λ2
pβ1,yHiqr1´Λpβ1,yHiqs´Λ1

pβ1,yHiq
2

r1´Λpβ1,yHiqs2
PiβP p1, yq `

´Λ1
pβ1,yHiq

1´Λpβ1,yHiq

ı

rP̂i ´ Pis

´Λ2
pβ1,yHiqr1´Λpβ1,yHiqs´Λ1

pβ1,yHiq
2

r1´Λpβ1,yHiqs2
XiβP p1, yq rP̂i ´ Pis

fi

ffi

ffi

ffi

ffi

ffi

fl

We also define E rLnpβ1,y, Piqβ,Pis analogously.
With these results in hand, we go back to (B.3) and expand around the deviations of the

true first stage:
?
Npβ̂1,ypP̂ q ´ β1,yq “ Σ ¨

?
N

˜

1

N

ÿ

i

Lnpβ1,y, Piqβ `
1

N

ÿ

i

Lnpβ1,y, Piqβ,Pi

¸

` opp1q (B.5)

where
ř

i
1
N
Lnpβ1,y, Piqβ is the usual estimate of the score, which has mean 0. Thus,

if we can show that the second term also has mean 0, the asymptotic normality of
our semiparametric estimator follows by a standard multivariate CLT for the vector
“

1
N

ř

i Lnpβ1,y, Piqβ,
1
N

ř

i Lnpβ1,y, Piqβ,Pi
‰

.
Since all the components of (B.4) have a similar structure, we can focus on one of them and

the results are symmetric for the rest.
Consider 1

N

ř

iWy,1,i
Λ2pβ1,yHiqΛpβ1,yHiq´Λ1pβ1,yHiq

2

Λpβ1,yHiq2
βP p1, yq rP̂i ´ Pis.

For notation simplicity, let Λ2pβ1,yHiqΛpβ1,yHiq´Λ1pβ1,yHiq
2

Λpβ1,yHiq2
βP p1, yq “: Apβ1,yHiq.

Note that
1

N

ÿ

i

Wy,1,iApβ1,yHiqrP̂i ´ Pis

“
1

N2

ÿ

i

ÿ

j

wnpZi, Ci, Zj, CjqWy,1,iApβ1,yHiqϕj ` oppN
´ 1

2 q

“
1

N

ÿ

i

E rwnpZi, Ci, Z, CqE rWy,1,iApβ1,yHiq|H,Z,Cs |Zi, Cisϕi ` oppN
´ 1

2 q

where the first equality is due to Assumption B.3 and the second equality is due to the U -
statistics Hajek projection.

Now, by a standard law of large numbers, we have that
1

N

ÿ

i

E rwnpZi, Ci, Z, CqE rWy,1,iApβ1,yHiq|H,Z,Cs |Zi, Cisϕi ` oppN
´ 1

2 q

p
ÝÑ ErE rwnpZi, Ci, Z, CqE rWy,1,iApβ1,yHiq|H,Z,Cs |Zi, Cisϕis

“ ErErE rwnpZi, Ci, Z, CqE rWy,1,iApβ1,yHiq|H,Z,Cs |Zi, Cisϕi|Zi, Ciss

“ ErE rwnpZi, Ci, Z, CqE rWy,1,iApβ1,yHiq|H,Z,Cs |Zi, CisErϕi|Zi, Ciss

“ 0

where the last equality is due to Assumption B.3. Thus, a standard CLT assures the asymptotic
normality of the estimator for the parametric part.
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B.3.3 Asymptotic behaviour of the DMTE estimator

We derive the influence function of our estimator to be able to express the variance and to
apply functional limit theory results. Since DMTE is the difference of two DMTR functions,
we can focus on the influence function of one of the DMTR and then apply linearity to get
the influence function of the estimator for the DMTE. We will express the DMTR as an
unconditional moment that depends on two parameters (βd,y, P ) that are themselves expressed
as unconditional moments.

In particular, P is such that EpD|Z,C,Xq “ P . Omitting X for simplicity, we can express
the moment that determines P with some loss of efficiency as:

ErCZpD ´ P qs “ 0 (B.6)

Similarly, recall that Lpβ1,yq “ E rLnpβ1,yqs “ E rWy,1,ilogpΛpβ1,yHqq ` p1 ´ Wy,1,iqlogp1 ´ Λpβ1,yHqqs

is a non-random function that is continuous and differentiable in β1,y. Note Lpβ1,yq is itself a
function of P since P is inside H. We can rewrite this as a moment equality using the score as:

ErSpβ1,yrP sqs “ E
„

Wy,1,i
BlogpΛpβ1,yHqq

Bβ1,y
` p1 ´ Wy,1,iq

Blogp1 ´ Λpβ1,yHqq

Bβ1,y

ȷ

“ 0 (B.7)

Let N “ pP,1 tC ą yuq. Then, the moment that identifies the DMTR1 is: DMTR1 “

ErΛ1pβ0 p1, yq ` βC p1, yqC ` βP p1, yq P̂ qβP p1, yq |N s, or, using an unconditional representation
with some efficiency loss,

ErpΛ1
pβ0 p1, yq ` βC p1, yqC ` βP p1, yqP qβP p1, yq ´ DMTR1q ¨ P ¨ 1 tC ą yus “ 0 (B.8)

To be more specific, the relevant moments that define the parameters of interest are

0 “ ErCZpD ´ P qs (B.9)

0 “ E
„

Wy,1
Λ1ppβ0 p1, yq ` βC p1, yqC ` βP p1, yqP q

Λppβ0 p1, yq ` βC p1, yqC ` βP p1, yqP q

´p1 ´ Wy,1q
Λ1ppβ0 p1, yq ` βC p1, yqC ` βP p1, yqP q

1 ´ Λppβ0 p1, yq ` βC p1, yqC ` βP p1, yqP q

ȷ

(B.10)

0 “ E
„

Wy,1
Λ1ppβ0 p1, yq ` βC p1, yqC ` βP p1, yqP q

Λppβ0 p1, yq ` βC p1, yqC ` βP p1, yqP q
C

´p1 ´ Wy,1q
Λ1ppβ0 p1, yq ` βC p1, yqC ` βP p1, yqP q

1 ´ Λppβ0 p1, yq ` βC p1, yqC ` βP p1, yqP q
C

ȷ

(B.11)

0 “ E
„

Wy,1
Λ1ppβ0 p1, yq ` βC p1, yqC ` βP p1, yqP q

Λppβ0 p1, yq ` βC p1, yqC ` βP p1, yqP q
P

´p1 ´ Wy,1q
Λ1ppβ0 p1, yq ` βC p1, yqC ` βP p1, yqP q

1 ´ Λppβ0 p1, yq ` βC p1, yqC ` βP p1, yqP q
P

ȷ

(B.12)
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0 “ E rpΛ1
pβ0 p1, yq ` βC p1, yqC ` βP p1, yqP qβP p1, yq ´ DMTR1q ¨ P ¨ 1 tC ą yus (B.13)

We follow Newey (1994), Ichimura and Newey (2022), Ackerberg, Chen, Hahn and Liao (2014)
and Hahn, Liao, Ridder and Shi (2021). We will assume that standard conditions for the
interchange of integration and differentiation hold (such as dominated convergence theorem
conditions).

Before proceeding, note that:

ErCZpD ´ P qs “

ż

CˆZˆD

czpd ´ P qfpc, z, dqdµpc, z, dq “

ż

D
czpd ´ P qfpδqdµpδq (B.14)

This also holds for the rest of the moments, where δ is the full data vector. This is useful to be
able to replicate the form of Equation (3.10) in Newey (1994), which is instrumental in deriving
the influence functions.

We want to derive the influence function of DMTR1. Thus, we can start with (B.13) and
consider a parametric submodel t for the nuisance parameters and differentiate. Let spδq be
the score of the data.
BEtrpΛ1pβ0 p1, yq ptq ` βC p1, yq ptqC ` βP p1, yqP ptqqβP p1, yq ptq ´ DMTR1qP ptq1 tC ą yus

Bt

ˇ

ˇ

ˇ

ˇ

t“0

“ ErpΛ1
pβ0 p1, yq ` βC p1, yqC ` βP p1, yqP qβP p1, yq ´ DMTR1qP1 tC ą yu spδqs

`
BErpΛ1pβ0 p1, yq ptq ` βC p1, yq ptqC ` βP p1, yq ptqP qβP p1, yq ptq ´ DMTR1qP1 tC ą yus

Bt

ˇ

ˇ

ˇ

ˇ

t“0

`
BErpΛ1pβ0 p1, yq ` βC p1, yqC ` βP p1, yqP ptqqβP p1, yq ´ DMTR1qP ptq1 tC ą yus

Bt

ˇ

ˇ

ˇ

ˇ

t“0

By the implicit function theorem, we have that
BDMTR1

Bt

ˇ

ˇ

ˇ

ˇ

t“0

“ r´ErP1 tC ą yuss
´1
”

ErpΛ1
pβ0 p1, yq ` βC p1, yqC ` βP p1, yqP qβP p1, yq ´ DMTR1qP1 tC ą yu spδqs

`
BErpΛ1pβ0 p1, yq ptq ` βC p1, yq ptqC ` βP p1, yq ptqP qβP p1, yq ptq ´ DMTR1qP1 tC ą yus

Bt

ˇ

ˇ

ˇ

ˇ

t“0

`
BErpΛ1pβ0 p1, yq ` βC p1, yqC ` βP p1, yqP ptqqβP p1, yq ´ DMTR1qP ptq1 tC ą yus

Bt

ˇ

ˇ

ˇ

ˇ

t“0

ȷ

.

Now, we need to express the second two components as products with the score of the data to
apply Equation (3.10) of Newey (1994). We start with

BErpΛ1pβ0 p1, yq ptq ` βC p1, yq ptqC ` βP p1, yq ptqP qβP p1, yq ptq ´ DMTR1qP1 tC ą yus

Bt
,

which is the parametric part of the model. We have that
BErpΛ1pβ0 p1, yq ptq ` βC p1, yq ptqC ` βP p1, yq ptqP qβP p1, yq ptq ´ DMTR1qP1 tC ą yus

Bt

ˇ

ˇ

ˇ

ˇ

t“0

“ E rΛ2
pβ0 p1, yq ` βC p1, yqC ` βP p1, yqP q ¨ βP p1, yq ¨ P ¨ 1 tC ą yu
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¨

ˆ

Bβ0 p1, yq ptq

Bt

ˇ

ˇ

ˇ

ˇ

t“0

`
BβC p1, yq ptq

Bt

ˇ

ˇ

ˇ

ˇ

t“0

¨ C `
BβP p1, yq ptq

Bt

ˇ

ˇ

ˇ

ˇ

t“0

¨ P

˙ȷ

We claim, and will become evident further on that is indeed true, that, using Equations
(B.9)-(B.12), we can express BβAp1,yqptq

Bt
“ ErIFβAp1,yqspδqs, where IFβAp1,yq is the influence func-

tion of βA p1, yq and A is a random variable.
Then, we have that

BDMTR1

Bt

ˇ

ˇ

ˇ

ˇ

t“0

“ r´ErP1 tC ą yuss
´1

¨

”

E
“

pΛ1
pβ0 p1, yq ` βC p1, yqC ` βP p1, yqP qβP p1, yq ´ DMTR1qP1 tC ą yu spδqs

` E
“

Λ2
pβ0 p1, yq ` βC p1, yqC ` βP p1, yqP qβP p1, yqP1 tC ą yu

¨ pErIFβ0p1,yqspδqs ` ErIFβCp1,yqspδqsC ` ErIFβP p1,yqspδqsP q
‰

`
BErpΛ1pβ0 p1, yq ` βC p1, yqC ` βP p1, yqP ptqqβP p1, yq ´ DMTR1qP ptq1 tC ą yus

Bt

ˇ

ˇ

ˇ

ˇ

t“0

ȷ

,

or, equivalently,

BDMTR1

Bt

ˇ

ˇ

ˇ

ˇ

t“0

“ r´ErP1 tC ą yuss
´1
”

E
“

tpΛ1
pβ0 p1, yq ` βC p1, yqC ` βP p1, yqP qβP p1, yq ´ DMTR1qP1 tC ą yu

` ErΛ2
pβ0 p1, yq ` βC p1, yqC ` βP p1, yqP qβP p1, yqqP1 tC ą yuqsIFβ0p1,yq

` ErΛ2
pβ0 p1, yq ` βC p1, yqC ` βP p1, yqP qβP p1, yqqP1 tC ą yuqCsIFβCp1,yq

` ErΛ2
pβ0 p1, yq ` βC p1, yqC ` βP p1, yqP qβP p1, yqqP1 tC ą yuqP sIFβP p1,yquspδq

‰

`
BErpΛ1pβ0 p1, yq ` βC p1, yqC ` βP p1, yqP ptqqβP p1, yq ´ DMTR1qP ptq1 tC ą yus

Bt

ˇ

ˇ

ˇ

ˇ

t“0

ȷ

.

Now, we need to derive the non-parametric component
BErpΛ1pβ0 p1, yq ` βC p1, yqC ` βP p1, yqP ptqqβP p1, yq ´ DMTR1qP ptq1 tC ą yus

Bt

ˇ

ˇ

ˇ

ˇ

t“0

.

We assume that the conditions for the Riesz Representation Theorem hold for
BErpΛ1pβ0 p1, yq ` βC p1, yqC ` βP p1, yqP ptqqβP p1, yq ´ DMTR1qP ptq1 tC ą yus

Bt
.

See, for example, Ackerberg et al. (2014) for such conditions as being a linear bounded func-
tional. Then, there is a unique b in a properly defined space with the inner product ă b1, b2 ą“

Erb1b2s such that:
BErpΛ1pβ0 p1, yq ` βC p1, yqC ` βP p1, yqP ptqqβP p1, yq ´ DMTR1qP ptq1 tC ą yus

Bt

“ E
„

b
B tCZpD ´ P ptqqu

Bt

ȷ
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“
BErbCZpD ´ P ptqqs

Bt

“ E
„

b̃pδq
BP ptq

Bt

ȷ

“
BErb̃pδqP ptqs

Bt
(B.15)

where b̃pδq “ ´bCZ.
To find the IF following Ichimura and Newey (2022), we need to find a ϕpδ, P, αq such that:

BErpΛ1pβ0 p1, yq ` βC p1, yqC ` βP p1, yqP ptqqβP p1, yq ´ DMTR1qP ptq1 tC ą yus

Bt

“

ż

ϕpδ, P, αqGpdδq (B.16)

where G is a perturbation from the true CDF .
Furthermore, from (B.9), we can see that

0 “
BEtrCZpD ´ P ptqqs

Bt
“

ż

CZpD ´ P qGpdδq `
BErCZpD ´ P ptqqs

Bt

or, equivalently,
ż

CZpD ´ P qGpdδq “ ´
BErCZpD ´ P ptqqs

Bt
.

Thus, following Ichimura and Newey (2022), if we find an αpδq such that:
BErpΛ1pβ0 p1, yq ` βC p1, yqC ` βP p1, yqP ptqqβP p1, yq ´ DMTR1qP ptq1 tC ą yus

Bt

“ ´
BErαpδqCZpD ´ P ptqqs

,
Bt (B.17)

then we will get (B.16).
Furthermore, from (B.9), we can see that

BErCZpD ´ P ptqqs

Bt
“ E

„

BCZpD ´ P ptqq

Bt

ȷ

“ E
„

apδq
BP ptqq

Bt

ȷ

“
BErapδqP ptqs

Bt
(B.18)

where apδq “ CZ.
From (B.15) and (B.18) combined with (B.17):

BErb̃pδqP ptqs

Bt
“ ´

BErαpδqapδqP ptqs

Bt
(B.19)

The equality in Equation (B.19) will be satisfied if it holds for every t. Since P ptq is in the
space of possible propensity scores, the condition will be satisfied if it holds for any P in the
space of possible propensity scores. Thus:

Erb̃pδqP s “ ´ErαpδqapδqP s (B.20)

or, equivalently,

0 “ Ertb̃pδq ` αpδqapδquP s “ E

«

p´apδqq

#

´b̃pδq

apδq
´ αpδq

+

P

ff

(B.21)

52



Thus, as in Ichimura and Newey (2022), the αpδq that minimizes E
„

p´apδqq

!

´b̃pδq

apδq
´ αpδq

)2
ȷ

satisfies

ϕpδ, P, αq “ αpδqCZpD ´ P q.

Combining this result with the previous display, the Influence Function of DMTR1 is given
by

IFDMTR1

“ r´ErP1 tC ą yuss
´1
”

pΛ1
pβ0 p1, yq ` βC p1, yqC ` βP p1, yqP qβP p1, yq ´ DMTR1qP1 tC ą yu

` ErΛ2
pβ0 p1, yq ` βC p1, yqC ` βP p1, yqP qβP p1, yqqP1 tC ą yuqsIFβ0p1,yq

` ErΛ2
pβ0 p1, yq ` βC p1, yqC ` βP p1, yqP qβP p1, yqqP1 tC ą yuqCsIFβCp1,yq

` ErΛ2
pβ0 p1, yq ` βC p1, yqC ` βP p1, yqP qβP p1, yqqP1 tC ą yuqP sIFβP p1,yq

` ϕpδ, P, αq

ı

(B.22)

The influence function will depend on the influence functions of the estimated coefficients.
Their influence function could be derived similarly to the nonparametric effect of P on DMTR1,
but using Equations (B.9)-(B.12). We could then use a similar logic as we did following Ichimura
and Newey (2022) and a form of Riezs representation. That would fully complete the represen-
tation, implying that our previous claim holds.

Since DMTE “ DMTR1 ´ DMTR0, we can then say that:

IFDMTE “ IFDMTR1 ´ IFDMTR0 (B.23)

where IFDMTR0 can be derived analogously to IFDMTR1 .
Then, we know that

?
Np {DMTE ´ DMTEq “

1
?
n

n
ÿ

i

IFDMTEpδiq ` opp1q
d
ÝÑ Np0, V arpDMTEqq

and

V arpDMTEq “ ErIF 2
DMTEs,

where convergence is due to standard results on influence functions (van der Vaart and Wellner,
1996; van der Vaart, 1998).

Following Frandsen (2015) and our influence function calculations, we can recover the asymp-
totic distribution of the QMTE rτ, ps. The QMTRd as quantiles have the following standard
and known influence functions:

IFQMTRdpτ,pq “ ´
1tDMTR´1

d pτ, pq ą yu ´ τ
BDMTRdpDMTR´1

d pτ,pq,pq

By

,
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implying that IFQMTEpτ,pq “ IFQMTR1pτ,pq ´ IFQMTR0pτ,pq,
?
Np {QMTE ´ QMTEq “

1
?
n

n
ÿ

i

IFQMTEpδiq ` opp1q
d
ÝÑ Np0, V arpQMTEqq

and

V arpQMTEq “ ErIF 2
QMTEs,

where convergence is due to standard results on influence functions (van der Vaart and Wellner,
1996; van der Vaart, 1998).

By recalling that MTEppq “
ş1

0
QMTEpτ, pqdτ and the fact that we just provided asymp-

totic normality for QMTEpτ, pq we can recover the distribution of the MTEppq following
Masten, Poirier and Zhang (2020).

At this point, it is worth being specific about the definition of Hadamard differentiability
and how it connects to the QTE and the MTE.

Definition 1. Let ϕ : D Ñ E where D, E are Banach spaces. Say ϕ is Hadamard differentiable
at θ P D if Dϕ1

θ : D Ñ E, @h P D, if t Ñ 0, ||ht ´ h|| Ñ 0, then:
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ϕpθ ` thtq ´ ϕpθq

t
´ ϕ1

θphq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

E

Ñ 0

In our context, we set D “ Cpr0, 1s, r0, 1sq and E “ R, i.e., D is the space of continu-
ous functions where the first component refers to τ and the second one to v. Then, we know that
QMTEpθ1`th1t,θ2`th2tq´QMTEpθ1,θ2q

t
ÝÑ||||R QMTE 1

θ1,θ2
ph1, h2q and QMTEpτ,θ2`th2tq´QMTEpτ,θ2q

t
ÝÑ||||R

QMTE 1
θ2

ph2q, where ||||R denotes the norm of convergence. Furthermore, we have that

MTEpθ2 ` th2tq ´ MTEpθ2q

t
“

ż

1

0

QMTEpτ, θ2 ` th2tq ´ QMTEpτ, θ2q

t
dτ,

which, under the conditions for the dominated convergence theorem, implies that

MTEpθ2 ` th2tq ´ MTEpθ2q

t
“

ż

1

0

QMTEpτ, θ2 ` th2tq ´ QMTEpτ, θ2q

t
dτ

Ñ

ż

1

0

QMTE 1
θ2

ph2qdτ :“ MTE 1
θ2

ph2q.

Consequently, the MTE is Hadamard differentiable, and we can apply the functional delta
method again to get the asymptotic Gaussian distribution of the MTE.

Furthermore, by the chain rule of influence functions,

IFMTEppq “

ż 1

0

IFQMTEpτ,pqdτ

Although relevant to show the results for the MTE, in our text, we also focus on the
RMTEpvq to avoid additional support assumptions. Thus, we can similarly derive the
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asymptotic results for the RMTE, since RMTEpvq “ ´
şγC
0
DMTE py, vq dy. In the context

of the RMTE, we set D “ Cpr0, γs, r0, 1sq and E “ R, i.e., D is the space of continu-
ous functions where the first component refers to y, γ “ mintγ1, γ0u and the second one
to v. Then, we know that DMTEpθ1`th1t,θ2`th2tq´DMTEpθ1,θ2q

t
ÝÑ||||R DMTE 1

θ1,θ2
ph1, h2q and

DMTEpτ,θ2`th2tq´DMTEpy,θ2q

t
ÝÑ||||R DMTE 1

θ2
ph2q, where ||||R denotes the norm of convergence.

Furthermore, we have that

RMTEpθ2 ` th2tq ´ RMTEpθ2q

t
“ ´

ż

γC

0

DMTEpy, θ2 ` th2tq ´ DMTEpy, θ2q

t
dy,

which, under the conditions for the dominated convergence theorem, implies that

RMTEpθ2 ` th2tq ´ RMTEpθ2q

t
“ ´

ż

γC

0

DMTEpy, θ2 ` th2tq ´ DMTEpy, θ2q

t
dy

Ñ ´

ż

γC

0

DMTE 1
θ2

ph2qdy :“ RMTE 1
θ2

ph2q.

Consequently, the RMTE is Hadamard differentiable, and we can apply the functional delta
method to get the asymptotic Gaussian distribution.

Furthermore, by the chain rule of influence functions,

IFRMTEppq “ ´

ż γC

0

IFDMTEpy,pqdy.

B.4 Proof of Theorem 4.2: Validity of the Weighted Bootstrap

We generate tVi, i “ 1, . . . , nu as a sequence of independent and identically distributed
non-negative random variables with mean one, variance one, and finite third moment (e.g.,
Vi „ Exp p1q).

Based on this we estimate the propensity score by minimizing the weighted version of the
standard series minimization criteria,

θ̂fs,˚ “ argmin
θfsPΘfs

n´1
n
ÿ

i“1

Vi
`

Di ´ α0 ´ X 1
iαX ´ CiαC ´ ψLpZiq

1αZ ,
˘2 (B.24)

where θ̂fs,˚ “ ppα˚
0 , pα

˚,1
X , pα

˚
C , pα

˚
Zqq1 and thus P̂ ˚

i is a function of θ̂fs,˚. Note then that by Corollary
3 in Ma and Kosorok (2005b) or Corollary 3.2.3 and Theorem 3.2.5 of Wellner et al. (2013), P̂ ˚

i

converges to Pi.
For the estimation of the βs, let:

Ln˚
pβ1,y, P̂ q “ max

β1,y

1

N

ÿ

i

ViWy,1,ilogrΛpβ1,yĤiqs ` Vip1 ´ Wy,1,iqlogr1 ´ Λpβ1,yĤiqs (B.25)

55



And,

Ln˚
pβ1,y, P q “ max

β1,y

1

N

ÿ

i

ViWy,1,ilogrΛpβ1,yHiqs ` Vip1 ´ Wy,1,iqlogr1 ´ Λpβ1,yHiqs (B.26)

By a similar display as in the unweighted case, we know that:

sup
β1,y

|Ln˚
pβ1,y, P̂ q ´ Ln˚

pβ1,y, P q| “ opp1q

Where Ln˚pβ1,y, P q is a standard, but weighted parametric likelihood and thus by a second
application of Corollary 3 in Ma and Kosorok (2005b) or Corollary 3.2.3 and Theorem 3.2.5 of
Wellner et al. (2013), β̂˚

1,y converges to β1,y.
It then remains to show asymptotic normality of β̂˚

1,y and then of DMTR˚. Since the Vi are
independent of everything and V ar pViq “ 1, we have

?
Npβ̂˚

1,y ´ β1,yq is asymptotically normal
as long as a version of Assumption B.3 holds with P̂ ˚

i .
Furthermore, since Vi is independent of everything, similar calculations of the influence func-

tions for DMTE,QMTE, and RMTE can be provided to obtain asymptotic normality of the
bootstrapped versions of these. Alternatively, one can note that DMTE,QMTE, and RMTE

are all continuous and Hadamard differentiable functions of β1,y, Pi, with P̂ ˚ slower than root-N
via a bootstrap version of Assumption B.3 and thus functional delta methods and continuous
mapping theorems hold.

56



C Constructing the Dataset

In this appendix, we summarize Appendix I.2 of Possebom (2022), which provides a detailed
explanation of how the dataset used in our empirical application was constructed. We explain
the specific crime types included in our sample, the classification algorithms used to define which
defendants were punished, and the fuzzy matching algorithm used to define which defendants
recidivate.

The final dataset was created from four initial datasets.

1. CPOPG (“Consulta de Processos de Primeiro Grau”): It contains information about all
criminal cases in the Justice Court System in the State of São Paulo (TJ-SP) between
2010 and 2019.

2. CJPG (“Consulta de Julgados de Primeiro Grau”): It contains information about the last
decision made by a trial judge in all criminal cases in TJ-SP between 2010 and 2019.

3. CPOSG (“Consulta de Processos de Segundo Grau”): It contains information about all
appealing criminal cases in TJ-SP between 2010 and 2019.

Starting from the CPOPG dataset, we implement the following steps.

1. We only keep cases that are currently in the Appeals Court, closed, or whose status is
empty. Those cases are already associated with a trial judge’s sentence.

2. We only keep cases whose crime types are associated with sentences that must be less
than four years of incarceration.

3. We only keep cases that aim to analyze whether a defendant is guilty or not.

4. We only keep cases that were randomly assigned to trial judges.

5. We only keep cases whose starting date is after January 1st, 2010.

After these steps, our dataset contains 98,552 cases. We then merged it with the CJPG
dataset using cases’ id codes. Since some cases do not have id codes, our dataset now contains
98,422 cases.

After this step, we randomly select 35 cases per year (2010-2019) for manual classification.
We manually classify them into five categories: “defendant died during the trial”, “defendant is
guilty”, “defendant accepted a non-prosecution agreement” (“transação penal” in Portuguese),
“case was dismissed” (“processo suspenso” in Portuguese) and “defendant was acquitted”. Since
some sentences are missing or incomplete, we are able to manually classify only 325 sentences.
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Now, we use those 325 manually classified cases to train a classification algorithm. To do
so, we divide them into a training sample (216 cases) and a validation sample (109 sentences).

First, we design an algorithm to identify which defendants died during the trial. To do so,
we check whether the sentence contains any reference to the first paragraph of Article 107 from
the Brazilian Criminal Code. This deterministic algorithm perfectly classifies cases into the
category “defendant died during the trial”.

Second, we design an algorithm to identify which cases were dismissed. To do so, we check
whether the sentence contains any reference to Article 89 in Law n. 9099/95. This deterministic
algorithm correctly classifies 98% of the cases into the category “case was dismissed”.

Third, we design an algorithm to identify which defendants accepted a non-prosecution
agreement. To do so, we check whether the sentence contains any expression connected to
a non-prosecution agreement. This deterministic algorithm correctly classified almost all the
cases into the category “defendant accepted a non-prosecution agreement”, making only three
mistakes.

Finally, we design an algorithm to classify the remaining cases into two categories: “de-
fendant is guilty” and “defendant was acquitted”. To do so, we define a bag of words that
were found to be strong signals of acquittal and guilt when manually classifying the cases in
our samples. we then count how many times each one of those expressions appears in each
sentence, and we normalize those counts to be between 0 and 1.

Using the normalized counts, we train an L1-Regularized Logistic Regression using our
training sample. We then validate this algorithm using our validation sample and find that it
correctly classifies 98.8% of the cases. Given this high success rate, we use the L1-Regularized
Logistic Regression algorithm to define the treatment variable in our full sample.

Having designed the above algorithm, we use it to define the trial judge’s treatment variable
T in the full sample. First, we find which defendants died during their trials and drop them
from my sample. We then use the second and third algorithms to define which cases were
dismissed and which cases are associated with a non-prosecution agreement. Moreover, we use
the trained L1-regularized Logistic Regression algorithm to classify the remaining cases into
the categories “defendant is guilty” and “defendant was acquitted”. Finally, we combine the
categories “defendant was acquitted” and “case was dismissed” into the untreated group (“not
punished”, T “ 0) and the categories “defendant accepted a non-prosecution agreement” and
“defendant is guilty” into the treated group (“punished”, T “ 1). At the end, our dataset
contains 96,225 cases.

Now, we merge our current dataset with the CPOSG dataset using each case’s id code.
When merging these datasets, we create an indicator variable that denotes which cases went to
the Appeals Court, i.e., which cases were matched. We then randomly select 50 cases per year
for manual classification (2010-2019) and divide them into three categories: “cases that went

58



to the Appeals Court, but were immediately returned due to bureaucratic errors”, “cases whose
trial judge’s sentences were affirmed” and “cases whose trial judge’s sentences were reversed”.

Now, we use those 500 manually classified cases to train a classification algorithm. To do
so, we divide them into a training sample (300 cases) and a validation sample (200 sentences).

First, we design an algorithm to identify which cases went to the Appeals Court but were
immediately returned. To do so, we simply check whether the Appeals Court’s decision is
empty.

Finally, we design an algorithm to classify the non-empty cases into two categories: “cases
whose trial judge’s sentences were affirmed” and “cases whose trial judge’s sentences were re-
versed”. To do so, we define a bag of words that were found to be strong signals of sentence
reversal when manually classifying the cases in our sample. We then count how many times
each one of those expressions appears in each sentence, and we normalize those counts to be
between 0 and 1.

Using the normalized counts, we train an L1-Regularized Logistic Regression using our
training dataset. We then validate this algorithm using our validation sample and find that it
correctly classifies 96.2% of the cases. Given this high success rate, we use the L1-Regularized
Logistic Regression to define the treatment variable in our full sample.

Having designed the above algorithms, we use them to define the final treatment variable
D in the full sample. First, we set D “ T if a case did not go to the Appeals Court or if a
case went to the Appeals Court, but was immediately returned. Second, we use the trained
L1-Regularized Logistic Regression algorithm to classify the remaining cases into the categories
“reversed trial judge’s sentence” and “affirmed trial judge’s sentence”. We, then, set D “ T if
the trial judge’s sentence was affirmed and D “ 1´T if the trial judge’s sentence was reversed.
Moreover, we also drop the cases whose dates (starting date, trial judge’s sentence date and
Appeal Court’s decision date) are not appropriately ordered. At the end, our dataset contains
95,119 cases.

Now, our goal is to find the defendants’ names in each case. To do so, we use the variable
parties from the CPOPG dataset and search for names listed as defendants. Finally, we delete
names that are not a person’s name — such as district attorney offices, public defender offices
and “unknown author”. Our sample now contains 103,423 case-defendant pairs.

Furthermore, we repeat the steps in the last paragraph to find defendants’ names in a dataset
that contains all cases from the CPOPG dataset, including cases that are still open and cases
with severe crimes. This dataset contains 1,027,120 case-defendants pairs.

Now, we use these two datasets to define our outcome variable (Y ““time to recidivism”).
A defendant i in a case j in the smaller dataset recidivates if and only if defendant i’s full name
appears in a case j̄ in the larger dataset. To match defendants’ names across cases, we use the
Jaro–Winkler similarity metric and we define a match if the similarity between full names in
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two different cases is greater than or equal to 0.95. If we find a match, we define the outcome
variable as the time difference between the second case’s start date and the first case’s final
date.

Finally, we delete the case-defendant pairs whose cases started in 2018 and 2019. Conse-
quently, our dataset contains 51,731 case-defendants pairs.
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D Additional Empirical Results

Figure D.1: QMTE p¨, vq for v P t.3, .4, . . . , .7u
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Notes: Solid lines are the point estimates for the average QMTE p¨, vq functions indicated in the legend. These
results are based on Corollary 4.1.
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D.1 Confidence Intervals for DMTE, QMTE and RMTE functions

Figure D.2: 90%-Confidence Intervals for DMTE py, ¨q for y P t1, 2, 3, 4u
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(b) DMTE p2, ¨q
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(c) DMTE p3, ¨q
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Notes: Solid lines are the point estimates for the average DMTE py, ¨q functions indicated in the caption of each
subfigure. These results are based on Corollary 4.1. Moreover, point-wise 90%-confidence intervals are reported
using dashed lines. These confidence intervals were computed using the weighted bootstrap clusterized at the
court district level (Subsection 4.2).
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Figure D.3: 90%-Confidence Intervals for DMTE py, ¨q for y P t5, 6, 7, 8u
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(b) DMTE p6, ¨q
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(c) DMTE p7, ¨q
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Notes: Solid lines are the point estimates for the average DMTE py, ¨q functions indicated in the caption of each
subfigure. These results are based on Corollary 4.1. Moreover, point-wise 90%-confidence intervals are reported
using dashed lines. These confidence intervals were computed using the weighted bootstrap clusterized at the
court district level (Subsection 4.2).
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Figure D.4: 90%-Confidence Intervals for QMTE pτ, ¨q for τ P t.10, .15, .25, .30u
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(a) QMTE p.10, ¨q
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(b) QMTE p.15, ¨q
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(c) QMTE p.25, ¨q
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(d) QMTE p.30, ¨q

Notes: Solid lines are the point estimates for the average QMTE pτ, ¨q functions indicated in the caption of each
subfigure. These results are based on Corollary 4.1. Moreover, point-wise 90%-confidence intervals are reported
using dashed lines. These confidence intervals were computed using the weighted bootstrap clusterized at the
court district level (Subsection 4.2).
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Figure D.5: 90%-Confidence Intervals for QMTE pτ, ¨q for τ P t.40, .50, .75u and RMTE p¨q
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(a) QMTE p.40, ¨q
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(b) QMTE p50, ¨q
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(c) QMTE p.75, ¨q
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(d) RMTE p¨q

Notes: Solid lines are the point estimates for the average QMTE pτ, ¨q and RMTE p¨q functions indicated in
the caption of each subfigure. These results are based on Corollary 4.1. Moreover, point-wise 90%-confidence
intervals are reported using dashed lines. These confidence intervals were computed using the weighted bootstrap
clusterized at the court district level (Subsection 4.2).
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E Relevance of MTE for Duration Outcomes

In this appendix, we justify focusing on the marginal treatment effect (MTE) for duration
outcomes using two arguments.

In Appendix E.1, we develop a theoretical model with a policymaker who selects a treatment
assignment rule that minimizes the cost of recidivism for the target population of defendants.

In Appendix E.2, we provide a simple example where the treatment benefits most agents in
our population. In this example, our proposed focus on quantile treatment effects for duration
outcomes correctly highlights that this treatment benefits society. However, focusing on short-
time horizons as usually done in the crime economics literature leads to the opposite conclusion.

E.1 Theoretical Justification of Relevance of MTE for Duration Out-

comes

Following Kitagawa and Tetenov (2018), the policymaker has to choose a treatment rule
that determines whether individuals with variables W “ tZ, V, Cu in our target population
will be assigned to the treatment group or the control group. The policymaker chooses non-
randomized treatment rules that are described by decision sets G Ă W , where W is the support
of W . These decision sets determine the group of individuals tW P Gu to whom treatment is
assigned. We denote the collection of candidate treatment rules by G “ tG Ă Wu.

The goal of the policymaker in our context is to select a treatment assignment rule that
minimizes the cost of recidivism for the target population of defendants. Assuming that the
policymaker discounts cost inter-temporally, she chooses the treatment rule that maximizes Y ˚

for each individual in the target population.
Specifically, we impose that the policymaker chooses the decision set G P G that minimizes

K pGq :“ E
”

ln
!

brY ˚p1q¨1tWPGu`Y ˚p0q¨1tWRGus
¨ k
)ı

where k P R` is the fixed cost of recidivism and b P p0, 1q is the policymaker’s discount rate.
Rearranging the last equation, we find that

K pGq “ ln tbu ¨ E rY ˚
p1q ¨ 1 tW P Gu ` Y ˚

p0q ¨ 1 tW R Gus ` ln tku

“ ln tbu ¨ E rpY ˚
p1q ´ Y ˚

p0qq ¨ 1 tW P Gus ` ln tbu ¨ E rY ˚
p0qs ` ln tku

Consequently, the policymaker’s problem is equivalent to

max
GPG

E rpY ˚
p1q ´ Y ˚

p0qq ¨ 1 tW P Gus .

Moreover, note that

E rpY ˚
p1q ´ Y ˚

p0qq ¨ 1 tW P Gus

“ E rE rpY ˚
p1q ´ Y ˚

p0qq ¨ 1 tW P Gu|V, Z, Css
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by the Law of Iterated Expectations

“ E rE rpY ˚
p1q ´ Y ˚

p0qq|V, Z, Cs ¨ 1 tW P Gus

“ E rE rpY ˚
p1q ´ Y ˚

p0qq|V,Cs ¨ 1 tW P Gus

by Assumption 1

“ E rE rpY ˚
p1q ´ Y ˚

p0qq|V s ¨ 1 tW P Gus

by Assumption 5

“ E rMTE pV q ¨ 1 tW P Gus .

Therefore, the policymaker’s problem is equivalent to

max
GPG

E rMTE pV q ¨ 1 tW P Gus ,

implying that focusing on the MTE of duration outcomes is relevant when the policymaker
wishes to minimize the cost of recidivism over time.

E.2 Illustrating the Relevance of Duration Outcomes

When analyzing the impact of judicial decisions on recidivism, many authors (Agan et al.,
2023; Bhuller et al., 2019; Giles, 2021; Huttunen et al., 2020; Klaassen, 2021; Possebom, 2022)
focus on a short time horizon, using a small set of outcome variables that indicate whether the
defendant recidivated within a pre-specified number of years. In this paper, we advocate for
moving beyond this short time horizon and focusing on quantile or average treatment effects of
duration outcomes.

In this appendix, we illustrate why focusing on duration outcomes may provide more infor-
mation than the standard approach in the empirical literature in crime economics. To do so, we
abstract from the MTE heterogeneity (variable V ) and focus exclusively on the heterogeneity
arising from the distribution of the potential outcomes pY ˚ p0q , Y ˚ p1qq.

We illustrate the relevance of quantile and average treatment effects of duration outcomes
by analyzing a simple example with discrete random variables. In this example, focusing on
short-term outcomes or long-term quantile treatment effects lead to different conclusions about
our policy of interest.

We denote potential time-to-recidivism by Y ˚ p0q and Y ˚ p1q and measure it in years. Table
E.1 shows the joint probability mass function of pY ˚ p0q , Y ˚ p1qq and their marginal distribu-
tions.

Note that, in this example, our judicial decision benefits most defendants. For instance,
this treatment strictly increases time-to-recidivism for 50% of the defendants pY ˚ p0q ă Y ˚ p1qq.
Moreover, only 20% of the defendants are harmed by this treatment pY ˚ p0q ą Y ˚ p1qq.

However, a short-time horizon analysis would conclude that this treatment is harmful. For
example, this treatment increases the probability of recidivism within one year by 5 p.p. and the
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Table E.1: Joint Probability of pY ˚ p0q , Y ˚ p1qq and their Marginal Distributions

Y ˚ p0q “

P rY ˚ p0q “ ¨, Y ˚ p1q “ ¨s 1 2 3 10 20 P rY ˚ p1q “ ¨s

Y ˚ p1q “

1 .10 0 .10 0 0 .20
2 0 .10 .10 0 0 .20
3 0 0 0 0 0 0
10 0 0 0 .10 0 .10
20 .05 .05 0 .40 0 .50

P rY ˚ p0q “ ¨s .15 .15 .20 .50 0 1
Note: The last column reports the marginal distribution of Y ˚ p1q. The last row reports
the marginal distribution of Y ˚ p0q. The cells in the center of the table report the joint
distribution of pY ˚ p0q , Y ˚ p1qq.

probability of recidivism within two years by 10 p.p, i.e., P rY ˚ p1q ď 1s ´P rY ˚ p0q ď 1s “ 0.05

and P rY ˚ p1q ď 2s ´ P rY ˚ p0q ď 2s “ 0.1.
Differently from the standard empirical analysis, we advocate for focusing on quantile and

average treatment effects of duration outcomes. For example, the Quantile Treatment Effect
on the Median is equal to seven years because the median of Y ˚ p1q equal ten years and the
median of Y ˚ p0q equals three years. Moreover, the average treatment effect equals 5.55 years
in this example.

Therefore, our proposed analysis would correctly highlight that this treatment benefits at
least some agents in our society.
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F Identification without Restrictions on Censoring

In this appendix, we focus on which parameters can be point-identified when we do not
impose any restriction on the relationship between the censoring variable and the potential
outcomes. To compensate for not imposing Assumption 5 nor Assumption G.1, we need to
allow the DMTR function to depend on the censoring variable.

Specifically, our target parameter is given by:

DMTRd py, v, cq :“ P rY ˚
pdq ď y|V “ v, C “ cs

for any d P t0, 1u, y ă γC , v P r0, 1s and c P C. Note that our target parameter is interpretable as
a conditional distributional marginal treatment response. In particular, the censoring variable
C acts similarly to a covariate in the standard MTE analysis (Carneiro et al., 2011).

In our empirical application, conditioning on the censoring variable is equivalent to con-
ditioning on the defendant cohort or time fixed effects. Considering that most studies about
judicial decisions (Agan et al., 2023; Bhuller et al., 2019; Huttunen et al., 2020; Klaassen, 2021)
condition on district-by-time fixed effects, they identify the conditional DMTR function for a
pre-specified value of y. In this appendix, we discuss how to extend their analysis to consider
conditional quantile marginal treatment effects and marginal treatment effects (Remark 4).

To point-identify the conditional DMTR function, we eliminate Assumptions 5 and G.1
and impose Assumptions 1-4 only.

Proposition F.1. If Assumptions 1-4 hold, then

DMTRd py, p, y ` δq “ p2d ´ 1q ¨
BP rY ď y,D “ d|P pZ,Cq “ p, C “ y ` δs

Bv
for any d P t0, 1u, y ă γC, v P P and δ P R`` such that y ` δ P C.

Remark 4. A direct consequence of Proposition F.1 is the identification of the quantile
marginal treatment response function QMTRd pτ, p, y ` δq conditional on the censoring variable
for any τ P p0, τ d pp, y ` δqq, where τ d pp, y ` δq :“ DMTRd pγC , p, y ` δq. Additionally, if we
impose Assumptions 6 and 7, then we straight-forwardly identify the MTE function conditional
on the censoring variable.

Remark 5. The comparison between Propositions 3.1 and F.1 illustrate the identify-
ing power of Assumption 5. It allows us to combine multiple values of the censor-
ing variable to identify a single point of the DMTR function through the integral of
BP rY ď y,D “ d|P pZ,Cq “ p, C “ y ` δs

Bv
over different values of δ. In our empirical applica-

tion, it means that we can combine multiple defendant cohorts to identify a single evaluation
point in the DMTR function.

Proof. For brevity, we show the proof of Proposition F.1 when d “ 1.
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Fix y ă γC , v P P and δ P R`` such that y ` δ P C. Note that

P rY ď y,D “ 1|P pZ,Cq “ v, C “ y ` δs

“ E r1 tY ď yu1 tP pZ,Cq ě V u|P pZ,Cq “ v, C “ y ` δs

by (3.1)

“ E r1 tY ˚
p1q ď yu1 tp ě V u|P pZ, y ` δq “ p, C “ y ` δs

because Y ˚
1 is not censored when C ą y

“

ż 1

0

E r1 tY ˚
p1q ď yu1 tp ě vu|P pZ, y ` δq “ p, C “ y ` δ, V “ vs dv

by the Law of Iterated Expectations and Assumption 3

“

ż 1

0

1 tp ě vuE r1 tY ˚
p1q ď yu|P pZ, y ` δq “ p, C “ y ` δ, V “ vs dv

“

ż p

0

E r1 tY ˚
p1q ď yu|P pZ, y ` δq “ p, C “ y ` δ, V “ vs dv

“

ż p

0

P rY ˚
p1q ď y|C “ y ` δ, V “ vs dv

by Assumption 1.

Consequently, the Leibniz Integral Rule implies that
BP rY ď y,D “ 1|P pZ,Cq “ p, C “ y ` δs

Bv
“ P rY ˚

p1q ď y|C “ y ` δ, V “ ps

“ DMTR1 py, p, y ` δq .

We can prove the same result for d “ 0 analogously.
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G Partial Identification Strategies

In some empirical applications, Assumption 5 may be too strong, while in others, it may be
plausible. Since this is very context-specific, it is worth coming up with alternative identification
strategies that accommodate dependent censoring mechanisms. In this appendix, we discuss
two alternative assumptions that restrict the dependence between the censoring variable and
the latent heterogeneity, but not to the point of imposing censoring independence. Section G.1
imposes that potential outcomes are negatively regression-dependent on the censoring variable,
while Section G.2 intuitively imposes that the censoring problem is not severe.

G.1 Partial Identification under Regression Dependence

In this subsection, we impose that potential outcomes are negatively regression-dependent
on the censoring variable. This alternative assumption restricts the relationship between the
latent heterogeneity, the censoring variable, and the potential outcomes.25

Assumption G.1 (Regression Dependence). Conditional on V , the potential outcomes are
negatively regression dependent on the censoring variable, i.e., P rY ˚pdq ď y|C “ c̃, V “ vs ě

P rY ˚pdq ď y|C “ c, V “ vs for any d P t0, 1u, any v P p0, 1q and any pc, c̃q P C2 such that
c ď c̃.

In our empirical application, Assumption G.1 imposes that the potential outcomes of more
recent cases first-order stochastically dominate the potential outcomes of older cases. Intuitively,
this restriction imposes that defendants are committing fewer crimes over time and is plausible
given that the state of São Paulo became safer during our sampling period.26

To derive bounds around the DMTR functions, define the following auxiliary quantities:

LBdpy, v, δq :“ Ppy ` δ ď Cq ¨ p2d ´ 1q ¨ γdpy, v, y ` δq

UBdpy, v, δq :“ PpC ď yq ` Ppy ` δ ď Cq

`Ppy ď C ď y ` δq ¨ p2d ´ 1q ¨ γdpy, v, y ` δq,

where δ P R``. The next proposition describes the bounds around the DMTR functions when
potential outcomes are negatively regression-dependent on the censoring variable.

Proposition G.1. Suppose that Assumptions 1-4 and G.1 hold. Then,

DMTRd py, vq P

”

max
δPD

LBdpy, v, δq,min
δPD

UBdpy, v, δq
ı

25Related assumptions have been used by Chesher (2005), Jun, Pinkse and Xu (2011), and Kedagni and
Mourifie (2014) in different contexts. For more information on the definition of regression dependence and other
concepts of statistical dependence, see Lehmann (1966).

26In a different empirical context, positive regression dependence may be more plausible than negative re-
gression dependence. Similar bounds can be derived based on this alternative assumption.
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for any d P t0, 1u, y ă γC and v P P, where D :“ tδ P R`` : y ` δ P Cu.

Proof. See Appendix G.1.1.
First, one can see that the bounds in Proposition G.1 do not “collapse” to point identifi-

cation when Assumption 5 holds. That is because the regression-dependence in Assumption
G.1 is compatible with dependent censoring but does not directly restrict the amount of depen-
dence between the potential outcomes and the censoring random variable. In order words, the
nature of Assumption G.1 is different from Assumption 5 and does not constitute “continuous
relaxations” of the independence assumption. On the other hand, Assumption G.1 allows us
to exploit the information in γdpy, v, y ` δq even under dependent censoring because of the
(stochastic) monotonicity in C. Since this monotonicity property holds for different values of
C less than the c̃, we take the supremum and infimum over δ, so the bounds are tighter. The
identification region will functionally depend on the propensity score (and thus the instrument),
as reflected in the presence of γdpy, v, y` δq in the bounds. This will determine the shape of it.
Furthermore, the bounds’ length depends on the proportion of censored observations close to
the value of the particular y, reflecting that regions with heavier censoring data tend to have
wider bounds.

From the partial identification of the DMTRd py, vq functions, it also follows the partial
identification of a range of QMTE pτ, vq across τ and the RMTEpvq, just like before. If one
further imposes Assumptions 6 and 7, partial identification results for the MTE function will
also follow. For these functions, though, it is important to ensure that the lower and upper
bounds in Proposition G.1 are monotone in y, which can be enforced using a similar approach
as in Manski and Molinari (2021). More specifically, for a grid of weakly increasing y’s, if
maxδPD LBdpyk`1, c, δq ă maxδPD LBdpyk, c, δq, we can simply redefine maxδPD LBdpyk`1, c, δq “

maxδPD LBdpyk, c, δq; the analogous is true for the upper bound. Alternatively, one can use the
rearrangement procedure as in Chernozhukov et al. (2009). We state these results as corollaries
for convenience.

Corollary G.1. Suppose that Assumptions 1-4 and G.1 hold. Then,

(a) QMTE pτ, vq is partially identified for any v P P and τ P p0, τ pvqq.

(b) the RMTEpvq function is partially-identified for any v P P.

Corollary G.2. If Assumptions Assumptions 1-4, G.1, 6 and 7 hold, then MTE pvq is partially
identified for any v P P.

Finally, the bounds in Proposition G.1 can be estimated using methods similar to the meth-
ods described in Subsection 4.2. The main difference between the estimators of the bounds and
the point-estimators (Subsection 4.2) is that, when estimating the bounds, we take either the
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maximum or the minimum over values of c in Step 5 instead of taking the mean. Consequently,
these estimators will converge in probability to the bounds in Proposition G.1.

G.1.1 Proof of Proposition G.1

Fix d P t0, 1u, y ă γC , v P P and δ P R`` such that y ` δ P C.
Note that Equations (A.1) and (A.2) imply that

BP rY ď y,D “ 1|P pZ,Cq “ v, C “ y ` δs

Bv
“ P rY ˚

p1q ď y|C “ y ` δ, V “ vs (G.1)

and
BP rY ď y,D “ 0|P pZ,Cq “ v, C “ y ` δs

Bv
“ ´P rY ˚

p0q ď y|C “ y ` δ, V “ vs (G.2)

according to the Leibniz Integral Rule.
Combining the last two equations, we have that

P rY ˚
pdq ď y|C “ y ` δ, V “ vs “ p2d ´ 1q ¨

BP rY ď y,D “ d|P pZ,Cq “ v, C “ y ` δs

Bv
.

(G.3)
Moreover, observe that:

P rY ˚
pdq ď y|V “ vs

“

ż

P rY ˚
pdq ď y|C “ c̃, V “ vs fC|V pc̃|vq dc̃

by the Law of Iterated Expectations

“

ż

P rY ˚
pdq ď y|C “ c̃, V “ ps fC pc̃q dc̃

because V KK C by Assumption 3

“

ż y

0

P rY ˚
pdq ď y|C “ c̃, V “ ps fC pc̃q dc̃

`

ż y`δ

y

P rY ˚
pdq ď y|C “ c̃, V “ ps fC pc̃q dc̃

`

ż `8

y`δ

P rY ˚
pdq ď y|C “ c̃, V “ ps fC pc̃q dc̃,

implying, by Assumption G.1, that

P rY ˚
pdq ď y|V “ ps ď PpC ď yq ` Ppy ` δ ď Cq

` Ppy ď C ď y ` δqP rY ˚
pdq ď y|C “ y ` δ, V “ ps (G.4)

and

P rY ˚
pdq ď y|V “ ps ě Ppy ` δ ď CqP rY ˚

pdq ď y|C “ y ` δ, V “ ps (G.5)

Thus, combining Equations (G.4) and (G.5) with (G.3), we have that

DMTRd py, vq
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P

„

Ppy ` δ ď Cq ¨ p2d ´ 1q ¨
BP rY ď y,D “ d|P pZ,Cq “ v, C “ y ` δs

Bv
,

PpC ď yq ` Ppy ` δ ď Cq

`Ppy ď C ď y ` δq ¨ p2d ´ 1q ¨
BP rY ď y,D “ d|P pZ,Cq “ v, C “ y ` δs

Bv

fi

fl .

Since the bounds above hold for any δ P R`` such that y ` δ P C, we have that

DMTRd py, vq

P

„

max
δPD

"

Ppy ` δ ď Cq ¨ p2d ´ 1q ¨
BP rY ď y,D “ d|P pZ,Cq “ v, C “ y ` δs

Bv

*

,

min
δPD

$

&

%

PpC ď yq ` Ppy ` δ ď Cq ` Ppy ď C ď y ` δq

¨ p2d ´ 1q ¨
BP rY ď y,D “ d|P pZ,Cq “ v, C “ y ` δs

Bv

,

.

-

fi

fl ,

where D :“ tδ P R`` : y ` δ P Cu.

G.2 Partial Identification under a Continuous Violation of Random

Censoring

In this subsection, we impose that the conditional distribution of the potential outcomes
given the censoring variable and the latent heterogeneity variable is close to the conditional
distribution of the potential outcomes given only the latent heterogeneity variable.27 Differ-
ently from Assumption G.1, the following assumption constitutes a “continuous relaxation” of
censoring independence (Assumption 5).

Assumption G.2 (“Continuous Relaxation”). The conditional distribution of the potential
outcomes given the censoring variable and the latent heterogeneity variable is similar to the
conditional distribution of the potential outcomes given only the latent heterogeneity variable
i.e., there exists B P R`` such that

|P rY ˚
pdq ď y|C “ y ` δ, V “ vs ´ P rY ˚

pdq ď y|V “ vs| ď B

for any y P Y, v P r0, 1s, δ P D :“ tδ P R`` : y ` δ P Cu and d P t0, 1u.

Using this assumption, we can derive bounds around the DMTR functions.

Proposition G.2. Suppose that Assumptions 1-4 and G.2 hold. Then,

DMTRd py, vq P

”

´B `

´

2 9d ´ 1
¯

¨ max
δPD

γdpy, v, y ` δq, B `

´

2 9d ´ 1
¯

¨ min
δPD

γdpy, v, y ` δq
ı

for any d P t0, 1u, y ă γC and v P P.

Proof. See Appendix G.2.1.

27A similar assumption is used by Kline and Santos (2013) in a sample selection context.
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First, differently from Proposition G.1, the bounds in Proposition G.2 “collapse” to point
identification when Assumption 5 holds. Since our continuous relaxtion of censoring indepen-
dence holds for every value of C greater than y, we take the supremum and infimum over δ to
tighten the bounds. The identification region will functionally depend on the propensity score
(and thus the instrument), as reflected in the presence of γdpy, v, y ` δq in the bounds. This
will determine the shape of it.

Furthermore, the bounds’ length depends on the choice of B. We recommend choosing B
according to a breakdown analysis (Kline and Santos, 2013; Masten and Poirier, 2018). For
example, the researcher may be particularly interested in DMTE py, ¨q for some value of y P Y .
If, based on Proposition 3.1, DMTE py, vq ‰ 0 for some v P P , then the researcher can choose
the smallest value of B such that the bounds in Proposition G.2 contain the zero function. This
value of B is known as the breakdown point.28

From the partial identification of the DMTRd py, vq functions, it also follows the partial
identification of a range of QMTE pτ, vq across τ and the RMTEpvq, just like before. If one
further imposes Assumptions 6 and 7, partial identification results for the MTE function will
also follow. For these functions, though, it is important to ensure that the lower and upper
bounds in Proposition G.2 are monotone in y, which can be enforced using a similar approach
as in Manski and Molinari (2021). Alternatively, one can use the rearrangement procedure as
in Chernozhukov et al. (2009). We state these results as corollaries for convenience.

Corollary G.3. Suppose that Assumptions 1-4 and G.2 hold. Then,

(a) QMTE pτ, vq is partially identified for any v P P and τ P p0, τ pvqq.

(b) the RMTEpvq function is partially-identified for any v P P.

Corollary G.4. If Assumptions Assumptions 1-4, G.2, 6 and 7 hold, then MTE pvq is partially
identified for any v P P.

Finally, the bounds in Proposition G.2 can be estimated using methods similar to the meth-
ods described in Subsection 4.2. The main difference between the estimators of the bounds and
the point-estimators (Subsection 4.2) is that, when estimating the bounds, we take either the
maximum or the minimum over values of c in Step 5 instead of taking the mean. Consequently,
these estimators will converge in probability to the bounds in Proposition G.2.

G.2.1 Proof of Proposition G.2

Fix d P t0, 1u, y ă γC , v P P and δ P R`` such that y ` δ P C.

28Conducting inference about the breakdown point is beyond the scope of this paper.
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To derive the upper bound, observe that

DMTRd py, vq “ P rY ˚
pdq ď y|V “ vs

by definition

ď B ` P rY ˚
pdq ď y|C “ y ` δ, V “ vs

according to Assumption G.2

“ B ` p2d ´ 1q ¨
BP rY ď y,D “ d|P pZ,Cq “ v, C “ y ` δs

Bv

according to (G.3)

“ B ` p2d ´ 1q ¨ γdpy, v, y ` δq

by definition.

Since the bounds above hold for any δ P R`` such that y ` δ P C, we have that

DMTRd py, vq ď B `

´

2 9d ´ 1
¯

¨ min
δPD

γdpy, v, y ` δq.

We can derive the lower bound analogously.
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