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This supplementary appendix provides a number of additional results for “Difference-in-
Differences with a Continuous Treatment”. Appendix SA contains more details about the setting
with multiple time periods and variation in treatment timing and dose intensity, and it expands
upon the results provided in Appendix C in the main text. This section also presents several results
on interpreting TWFE regressions in the multiple-period setting. Appendix SB provides proofs for
all the results in the main text and in the supplementary appendix concerning multiple periods and
variation in treatment timing and dose intensity. Appendix SC provides results and proofs for a
number of additional results that were discussed in the main text: results for settings with no un-
treated units; additional results for TWFE decompositions with a continuous treatment; and TWFE
decompositions with a multi-valued discrete treatment. Finally, Appendix SD provides results on
relaxing the strong parallel trends assumption, which was briefly discussed in Section 5.1 in the main
text.

SA Additional Details for Multiple Periods and Variation in Treat-
ment Timing and Dose

The first part of this section provides some additional identification results for settings with multiple
periods. The second part contains some additional discussion for applications with a continuous
treatment and more than two time periods. The third part reverse engineers a linear TWFE regression
in the case with multiple periods and variation in treatment timing.

SA.1 Additional Identification Results with Multiple Periods

This section contains two identification results for settings with multiple time periods that supplement
the results in Appendix C in the main text and are useful for some later parts of the Supplementary
Appendix.
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Theorem S1. Under Assumptions 1-MP, 2-MP(a), 3-MP, and SPT-MP, and for all g ∈ Ḡ, t =

2, . . . , T such that t ≥ g, and for all d ∈ D+,

ATT (g, t, d) = E[Yt − Yg−1|G = g,D = d]− E[Yt − Yg−1|Wt = 0]

Theorem S1 complements Theorem C.1 from the main text and shows that, if one invokes strong
parallel trends, then the same estimand that identifies ATT (g, t, d|g, d) under parallel trends, identifies
ATT (g, t, d).

Finally, for this section, we show that the same sort of selection bias terms as we emphasized in
the main text can show up when making comparisons across doses (and, hence, show up in causal
response parameters) in a setting with multiple periods and variation in treatment timing and dose
under parallel trends assumptions. And, also like in the main text, strong parallel trends can be used
to eliminate these selection bias terms.

Theorem S2. Under Assumptions 1-MP, 2-MP, and 3-MP, and for all g ∈ Ḡ, t = 2, . . . , T such
that t ≥ g, and for all d ∈ Dc

+,

(1) If, in addition, Assumption PT-MP holds, then
∂

∂d
E[Yt − Yg−1|G = g,D = d] =

∂

∂d
ATT (g, t, d|g, d)

= ACRT (g, t, d|g, d) + ∂ATT (g, t, d|g, l)
∂l

∣∣∣∣∣
l=d︸ ︷︷ ︸

selection bias

.

(2) If, in addition, Assumption SPT-MP holds, then
∂

∂d
E[Yt − Yg−1|G = g,D = d] =

∂

∂d
ATT (g, t, d) = ACRT (g, t, d).

The proof of Theorem S2 is provided in Appendix SB. Theorem S2 provides an analogous result
for the case with multiple periods and variation in treatment timing and dose to Theorems 3.2 and 3.3
in the main text. It also complements the second part of Theorem C.1 from the main text, which
showed that the same estimand was equal to ACRT (g, t, d|g, d) under Assumption SPT-MP.

SA.2 Additional Discussions for Settings with Multiple Time Periods

Alternative Parallel Trends Assumptions

In the main text, both Assumption PT-MP and SPT-MP made parallel trends assumptions across
all groups and time periods, including pre-treatment time periods. It is possible to relax these
assumptions so that parallel trends holds across fewer periods. We discuss this case at length in
Callaway, Goodman-Bacon, and Sant’Anna (2025). These discussions are closely related to ones that
arise in the setting with a binary treatment, which are considered in Marcus and Sant’Anna (2021).

Interestingly, with a continuous treatment, there are some possible (and reasonable) comparison
groups that are not available with a binary treatment. For example, one could assume that
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For all g ∈ Ḡ, t = g, . . . , T , d ∈ D+, E[∆Yt(0)|G = g,D = d] = E[∆Yt(0)|G = k,D = d] for all
groups k ∈ Ḡ such that t < k (i.e., pre-treatment periods for group k).

This sort of assumption amounts to using as a comparison group the set of units that are not
yet treated but will eventually experience the same dose. It is straightforward to adapt the approach
described in Theorem C.1 to this sort of case and propose related estimators that can deliver consistent
estimates of ATT (g, t, d|g, d) under this assumption.

Weaker Assumptions Depending on Target Parameter

If a researcher is interested in targeting a particular ATT (g, t, d|g, d) or ATT (g, t, d), it is generally
possible to weaken Assumption PT-MP and/or SPT-MP. For example, one could make parallel trends
directly about long differences, (Yt − Yg−1), rather than all short differences (this sort of assumption
is generally weaker), or use more aggregated comparison groups instead of imposing parallel trends
for all possible comparison groups (which is also weaker), or alternatively only make parallel trends
assumptions for the particular dose being considered.

SA.3 TWFE estimators with multiple time periods and variation in treatment
timing

In applications with multiple periods and variation in treatment timing and dose, empirical researchers
typically estimate the TWFE regression

Yi,t = θt + ηi + βtwfeWi,t + vi,t. (S1)

where Wi,t = Di1{t ≥ Gi}. Equation (S1) is exactly the same as the TWFE regression in the baseline
case with two periods in Equation (1.1) in the main text, only with the notation slightly adjusted
to match this section. In the main text, we related βtwfe to several different types of causal effect
parameters (see Theorem 3.4 in the main text). In this section, we provide related results for the
setting with multiple time periods and variation in treatment timing with a particular emphasis on
the comparisons underlying βtwfe and in causal interpretations (especially causal response interpreta-
tions) of βtwfe in the presence of treatment effect heterogeneity. The results in this section generalize
the results in several recent papers on TWFE estimates, including Goodman-Bacon (2021) and de
Chaisemartin and D’Haultfoeuille (2020), to our DiD setup with variation in treatment intensity. In
this section, we modify our previous notation slightly by setting Gi = T + 1 for units that do not
participate in the treatment in any period (rather than Gi = ∞), which simplifies the exposition in
several places in this section.

To start with, write population versions of TWFE adjusted variables as

Ẅi,t = (Wi,t − W̄i)−

(
E[Wt]−

1

T

T∑
t=1

E[Wt]

)
, where W̄i =

1

T

T∑
t=1

Wi,t.

3



The estimand for βtwfe in Equation (S1) is given by

βtwfe =

1

T

T∑
t=1

E[Ẅi,tYi,t]

1

T

T∑
t=1

E[Ẅ 2
i,t]

. (S2)

As in the main text, we present both a “mechanical” decomposition of the TWFE estimator and a
“causal” decomposition of the estimand that relates assumptions to interpretation. In order to define
these decompositions, we introduce a bit of new notation. First, define the fraction of periods that
units in group g spend treated as

Ḡg =
T − (g − 1)

T
.

For the untreated group g = T + 1 so that ḠT+1 = 0.
Next, we define time periods over which averages are taken. For averaging variables across time

periods, we use the following notation, for t1 ≤ t2,

Ȳ
(t1,t2)
i =

1

t2 − t1 + 1

t2∑
t=t1

Yi,t.

It is also convenient to define some particular averages across time periods. For two time periods g

and k, with k > g, (below, g and k will often index groups defined by treatment timing), we define

Ȳ
PRE(g)
i = Ȳ

(1,g−1)
i , Ȳ

MID(g,k)
i = Ȳ

(g,k−1)
i , Ȳ

POST (k)
i = Ȳ

(k,T )
i .

Ȳ
PRE(g)
i is the average outcome for unit i in periods 1 to g − 1, Ȳ MID(g,k)

i is the average outcome
for unit i in periods g to k − 1, and Ȳ

POST (k)
i is the average outcome for unit i in periods k to T .

Below, when g and k index groups, Ȳ PRE(g)
i is the average outcome for unit i in periods before units

in either group are treated, Ȳ MID(g,k)
i is the average outcome for unit i in periods after group g has

become treated but before group k has been treated, and Ȳ
POST (k)
i is the average outcome for unit

i after both groups have become treated.
To fix ideas about how the staggered-timing/continuous treatment case works, consider a setup

with two timing groups, g and k, with k > g. Some units in the “early-treated” group have d = 2,
and others have d = 4. Some units in the late-treated group have d = 5, and others have d = 6. Thus,
the four groups are early-treated/high-dose, early-treated/low-dose, late-treated/high-dose, and late-
treated/low-dose. Figure S1 plots constructed outcomes for these groups with a treatment effect that
is a one-time shift equal to d1.5.

Following Goodman-Bacon (2021), we motivate the decomposition of the TWFE estimand by
considering the four types of simple DiD estimands that can be formed using only one source of
variation. The first comparison is a within timing-group comparison of paths of outcomes among
units that experienced different amounts of the treatment.

δWITHIN (g) =
Cov(Ȳ POST (g) − Ȳ PRE(g), D|G = g)

Var(D|G = g)
. (S3)
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Figure S1: A Simple Set-Up with Staggered Timing and Variation in the Dose

Notes: The figure plots simulated data for four groups: early-treated/high-dose, early-treated/low-dose,
late-treated/high-dose, and late-treated/low-dose.

This term is essentially the same as the expression for the TWFE estimand in the baseline two-period
case. It equals the OLS (population) coefficient from regressing the change in average outcomes before
and after g for units treated at time g on their dose, d. Figure S2 uses the four-group example to show

Figure S2: Within-Timing-Group Comparisons Across Doses

Notes: The figure shows the within-timing group comparison between higher- and lower-dose units defined by
δWITHIN (g) and δWITHIN (k).

how δWITHIN (g) and δWITHIN (k) use higher-dose units as the “treatment group” and lower-dose
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units as the “comparison group”.
The second comparison is based on treatment timing. It compares paths of outcomes between a

particular timing group g and a “later-treated” group k (i.e., k > g) in the periods after group g is
treated but before group k becomes treated relative to their common pre-treatment periods.1

δMID,PRE(g, k) =
E
[(
Ȳ MID(g,k) − Ȳ PRE(g)

)
|G = g

]
− E

[(
Ȳ MID(g,k) − Ȳ PRE(g)

)
|G = k

]
E[D|G = g]

. (S4)

Panel A of Figure S3 plots the outcomes used in this comparison with timing-group averages in black
and the specific dose groups from Figure S1 in light gray. Under a parallel trends assumption, we
show below that this term corresponds to a reasonable treatment effect parameter because the path
of outcomes for group k (which is still in its pre-treatment period here) is what the path of outcomes
would have been for group g if it had not been treated. Also note that this term encompasses
comparisons of group g to the “never-treated” group.

Figure S3: Between-Timing-Group Comparisons

Notes: The figure shows the between-timing-group comparisons that average the outcomes in groups g and k across
dose levels and compare the early group to the later group (panel C) or the later group to the early group (panel D).

The third comparison is between paths of outcomes for the “later-treated” group k in its post-
treatment period relative to a pre-treatment period adjusted by the same path of outcomes for the
“early-treated” group g.

δPOST,MID(g, k) =
E
[(
Ȳ POST (k) − Ȳ MID(g,k)

)
|G = k

]
− E

[(
Ȳ POST (k) − Ȳ MID(g,k)

)
|G = g

]
E[D|G = k]

. (S5)

These terms use the already-treated group g as the comparison group for group k. Panel B of Figure S3
plots the outcomes used in this term. Mechanically, the TWFE regression exploits this comparison
because group g’s treatment status/amount is not changing over these time periods. However, these
are post-treatment periods for group g, and parallel trends assumptions do not place restrictions on
paths of post-treatment outcomes, which are subtracted in Equation (S5). Therefore, it is undesirable

1Each of the following expressions also includes a term in the denominator. Below, this term is useful for interpreting
differences across groups as partial effects of more treatment, but, for now, we largely ignore the expressions in the
denominator.
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that this term shows up in the expression for βtwfe.2

The final comparison that shows up in the TWFE estimator is between paths of outcomes between
“early” and “late” treated groups in their common post-treatment periods relative to their common
pre-treatment periods. In other words, this comparison comes from the “endpoints” where the two
timing groups are either both untreated or both treated with possibly different average doses.

δPOST,PRE(g, k) =
E
[(
Ȳ POST (k) − Ȳ PRE(g)

)
|G = g

]
− E

[(
Ȳ POST (k) − Ȳ PRE(g)

)
|G = k

]
E[D|G = g]− E[D|G = k]

. (S6)

Figure S4 shows the outcomes that determine the comparisons that show up in this term. The reason
that this term shows up in βtwfe is that differences in the paths of outcomes between groups that
have different distributions of the treatment are informative about βtwfe. For example, if more dose
tends to increase outcomes and group g’s dose is higher on average than group k’s, then outcomes
may increase more among group g than group k resulting in δPOST,PRE(g, k) not being equal to 0.3

Figure S4: Long Comparisons Between Timing Groups

Notes: The figure shows the comparisons between timing groups in the POST (k) window when both are treated with
potentially different average doses and the PRE(g) window when neither group is treated.

Next, we show how βtwfe weights these simple DiD terms together and discuss its theoretical
interpretation under parallel trends assumptions. To characterize the weights, first, define pg =

P(G = g) and

pg|{g,k} = P(G = g|G ∈ {g, k}),

which is the probability of being in group g conditional on being in either group g or k. We also

2This sort of comparison also shows up in the case with a binary, staggered treatment. See, e.g., de Chaisemartin
and D’Haultfoeuille (2020), Goodman-Bacon (2021), and Borusyak, Jaravel, and Spiess (2024).

3To be more precise, this term involves comparisons between groups g and k for the group with a higher dose
on average to the group with a smaller dose on average. When E[D|G = g] > E[D|G = k], this corresponds to the
expression in Equation (S6). When E[D|G = g] < E[D|G = k], one can multiply both the numerator and denominator
by −1 so that we effectively make a positive-weight comparison for the group that experienced more dose relative to
the group that experienced less dose.
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define the following weights, which measure the variance of the treatment variable used to estimate
each of the simple DiD terms in equations Equations (S3) to (S6).

wg,within(g) = Var(D|G = g)(1− Ḡg)Ḡgpg

/
1

T

T∑
t=1

E[Ẅ 2
i,t],

wg,post(g, k) = E[D|G = g]2(1− Ḡg)(Ḡg − Ḡk)(pg + pk)
2pg|{g,k}(1− pg|{g,k})

/
1

T

T∑
t=1

E[Ẅ 2
i,t],

wk,post(g, k) = E[D|G = k]2Ḡk(Ḡg − Ḡk)(pg + pk)
2pg|{g,k}(1− pg|{g,k})

/
1

T

T∑
t=1

E[Ẅ 2
i,t],

wlong(g, k) = (E[D|G = g]− E[D|G = k])2Ḡk(1− Ḡg)(pg + pk)
2pg|{g,k}(1− pg|{g,k})

/
1

T

T∑
t=1

E[Ẅ 2
i,t].

These weights are similar to the ones in Goodman-Bacon (2021) in the sense that they combine
the size of the sample and the variance of treatment used to calculate each simple DiD term. In
wg,within(g), for example, Var(D|G = g) measures how much the dose varies across units with G = g,
(1− Ḡg)Ḡg measures the variance that comes from timing which falls when g is closer to 1 or T , and
pg measures the share of units with G = g (i.e., subsample size). Since they only compare outcomes
between timing-groups, wg,post(g, k) and wk,post(g, k) do not contain a within-timing-group variance
of D, but they do include E[D|G = k]2 which reflects the fact that timing groups with higher average
doses get more weight. The rest of the timing weights have the same interpretation as in Goodman-
Bacon (2021). Finally, wlong(g, k) includes the square of the difference in mean doses between groups
g and k—(E[D|G = g]−E[D|G = k])2—which shows that the “endpoint” comparisons only influence
βtwfe to the extent that timing groups have different average doses. Two timing groups with the
same average dose do not contribute a δPOST,PRE(g, k) term because there is no differential change
in their doses between the PRE(g) window (when both groups are untreated) and the POST (k)

window (when both groups have E[D|G = g] = E[D|G = k]).
Our next result combines the simple DiD terms and their variance weights to provide a mechanical

decomposition of βtwfe in DiD setups with variation in treatment timing and variation in treatment
intensity.

Proposition S1. Under Assumptions 1-MP, 2-MP(a), and 3-MP, βtwfe in Equation (S1) can be
written as

βtwfe =
∑
g∈G

wg,within(g)δWITHIN (g)

+
∑
g∈G

∑
k∈G,k>g

{
wg,post(g, k)δMID,PRE(g, k) + wk,post(g, k)δPOST,MID(g, k) + wlong(g, k)δPOST,PRE(g, k)

}
.

In addition, (i) wg,within(g) ≥ 0, wg,post(g, k) ≥ 0, wk,post(g, k) ≥ 0, and wlong(g, k) ≥ 0 for all g ∈ G
and k ∈ G with k > g, and (ii)

∑
g∈G w

g,within(g)+
∑

g∈G
∑

k∈G,k>g

{
wg,post(g,k)(g, k)+wk,post(g, k)+

wlong(g, k)
}
= 1.

Proposition S1 generalizes the decomposition theorem for binary staggered timing designs in
Goodman-Bacon (2021) to our setup with variation in treatment intensity.4 Notice that it does not

4In particular, in the special case of a staggered, binary treatment, wg,within(g)δWITHIN (g) = 0 (since there is no
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require Assumption 2-MP(b) and is, therefore, compatible with a binary, multi-valued, continuous,
or mixed treatment. It says that βtwfe can be written as a weighted average of the four comparisons
in Equations (S3) to (S6). These weights are all positive and sum to one.

Proposition S1 provides a new, explicit description of what kinds of comparisons TWFE uses to
compute βtwfe, but it does not on its own provide guidance on how to interpret TWFE estimates.
Our results for the two-period case in the main text, for example, show that simple estimators like
δWITHIN (g) equal averages of ACRT (g, t, d|g, d) parameters plus selection bias. Similarly, the terms
that compare outcomes across timing groups necessarily average over the dose-specific treatment
effects of units within that timing group. We analyze the theoretical interpretation of each of these
simple DiD estimands under different assumptions and then discuss what this implies about the
(arguably implicit) identifying assumptions and estimand for TWFE.

To begin, we define additional weights that apply to the underlying causal parameters in the DiD
terms in Equations (S3) through (S6):

wwithin
1 (g, l) =

(
E[D|G = g,D ≥ l]− E[D|G = g]

)
Var(D|G = g)

P(D ≥ l|G = g),

w1(g, l) =
P(D ≥ l|G = g)

E[D|G = g]
, w0(g) =

dL
E[D|G = g]

,

wacross
1 (g, k, l) =

(P(D ≥ l|G = g)− P(D ≥ l|G = k))

(E[D|G = g]− E[D|G = k])
,

w̃across
1 (g, k, l) =

P(D ≥ l|G = k)

(E[D|G = g]− E[D|G = k])
, w̃across

0 (g, k) =
dL

(E[D|G = g]− E[D|G = k])
.

In addition, define the following differences in paths of outcomes over time

πPOST (k̃),PRE(g̃)(g) = E
[(
Ȳ POST (k̃) − Ȳ PRE(g̃)

) ∣∣∣G = g
]
− E

[(
Ȳ POST (k̃) − Ȳ PRE(g̃)

) ∣∣∣D = 0
]
,

πMID(g̃,k̃),PRE(g̃)(g) = E
[(
Ȳ MID(g̃,k̃) − Ȳ PRE(g̃)

) ∣∣∣G = g
]
− E

[(
Ȳ MID(g̃,k̃) − Ȳ PRE(g̃)

) ∣∣∣D = 0
]
,

πPOST (k̃),MID(g̃,k̃)(g) = E
[(
Ȳ POST (k̃) − Ȳ MID(g̃,k̃)

) ∣∣∣G = g
]
− E

[(
Ȳ POST (k̃) − Ȳ MID(g̃,k̃)

) ∣∣∣D = 0
]
,

and, similarly,

π
POST (k̃),PRE(g̃)
D (g, d) = E

[(
Ȳ POST (k̃) − Ȳ PRE(g̃)

) ∣∣∣G = g,D = d
]
− E

[(
Ȳ POST (k̃) − Ȳ PRE(g̃)

) ∣∣∣D = 0
]
,

π
MID(g̃,k̃),PRE(g̃)
D (g, d) = E

[(
Ȳ MID(g̃,k̃) − Ȳ PRE(g̃)

) ∣∣∣G = g,D = d
]
− E

[(
Ȳ MID(g̃,k̃) − Ȳ PRE(g̃)

) ∣∣∣D = 0
]
,

π
POST (k̃),MID(g̃,k̃)
D (g, d) = E

[(
Ȳ POST (k̃) − Ȳ MID(g̃,k̃)

) ∣∣∣G = g,D = d
]
− E

[(
Ȳ POST (k̃) − Ȳ MID(g̃,k̃)

) ∣∣∣D = 0
]
,

which are the same paths of outcomes but conditional on having dose d.
The following result is our main result on interpreting TWFE estimates with a continuous treat-

ment.

Theorem S3. Under Assumptions 1-MP, 2-MP, and 3-MP,

within-group variation in the dose in this case), and wlong(g, k)δPOST,PRE(g, k) = 0 (because the distribution of the dose
is the same across all groups). Then, Proposition S1 collapses to Theorem 1 in Goodman-Bacon (2021) because the terms
wg,post(g,k)δMID,PRE(g, k) and wk,post(g, k)δPOST,MID(g, k) correspond exactly to between-timing-group comparisons.
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(1) The four comparisons in Equations (S3) to (S6) can be written as

δWITHIN (g) =

∫ dU

dL

wwithin
1 (g, l)

∂π
POST (g),PRE(g)
D (g, l)

∂l
dl,

δMID,PRE(g, k) =

∫ dU

dL

w1(g, l)
∂π

MID(g,k),PRE(g)
D (g, l)

∂l
dl + w0(g)

π
MID(g,k),PRE(g)
D (g, dL)

dL

− w0(g)
πMID(g,k),PRE(g)(k)

dL
,

δPOST,MID(g, k) =

∫ dU

dL

w1(k, l)
∂π

POST (k),MID(g,k)
D (k, l)

∂l
dl + w0(k)

πPOST (k),MID(g,k)(k, dL)

dL

− w0(k)

(
πPOST (k),PRE(g)(g)− πMID(g,k),PRE(g)(g)

dL

)
,

δPOST,PRE(g, k) =

∫ dU

dL

wacross
1 (g, k, l)

∂π
POST (k),PRE(g)
D (g, l)

∂l
dl

−

{∫ dU

dL

w̃across
1 (g, k, l)

(
∂π

POST (k),PRE(g)
D (k, l)

∂l
−

∂π
POST (k),PRE(g)
D (g, l)

∂l

)
dl

+ w̃across
0 (g, k)

(
π
POST (k),PRE(g)
D (k, dL)− π

POST (k),PRE(g)
D (g, dL)

dL

)}
.

(2) If, in addition, Assumption SPT-MP holds, then

δWITHIN (g) =

∫ dU

dL

wwithin
1 (g, l)ACRT

POST (g)
(g, l)dl,

δMID,PRE(g, k) =

∫ dU

dL

w1(g, l)ACRT
MID(g,k)

(g, l) dl + w0(g)
ATT

MID(g,k)
(g, dL)

dL
,

δPOST,MID(g, k) =

∫ dU

dL

w1(k, l)ACRT
POST (k)

(k, l) dl + w0(k)
ATT

POST (k)
(k, dL)

dL

− w0(k)

(
πPOST (k),PRE(g)(g)− πMID(g,k),PRE(g)(g)

dL

)
,

δPOST,PRE(g, k) =

∫ dU

dL

wacross
1 (g, k, l)ACRT

POST (k)
(g, l) dl

−

{∫ dU

dL

w̃across
1 (g, k, l)

(
∂π

POST (k),PRE(g)
D (k, l)

∂l
−

∂π
POST (k),PRE(g)
D (g, l)

∂l

)
dl

+ w̃across
0 (g, k)

(
π
POST (k),PRE(g)
D (k, dL)− π

POST (k),PRE(g)
D (g, dL)

dL

)}
.

In addition, (i) wwithin
1 (g, d) ≥ 0, w1(g, d) ≥ 0, and w0(g) ≥ 0, for all g ∈ G and d ∈ Dc

+ and (ii)∫ dU
dL

wwithin
1 (g, l) dl = 1,

∫ dU
dL

w1(g, l) dl + w0(g) = 1, and
∫ dU
dL

wacross
1 (g, k, l) dl = 1.

Part (1) of Theorem S3 links the four sets of comparisons in the TWFE estimator in Proposition S1
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to derivatives of conditional expectations (this is broadly similar to Equation (A.7) in the proof of
Theorem 3.4 in the main text) along with some additional (nuisance) paths of outcomes.

Part (2) of Theorem S3 imposes the multi-period version of strong parallel trends in Assump-
tion SPT-MP.5 Under Assumption SPT-MP, δWITHIN (g) and δMID,PRE(g, k) both deliver weighted
averages of ACRT -type parameters. However, δPOST,MID(g, k) and δPOST,PRE(g, k) still involve
non-negligible nuisance terms. Under Assumption SPT-MP, the additional term in δPOST,MID(g, k)

involves the difference between treatment effects for group g in group k’s post-treatment periods
relative to treatment effects for group g in the periods after group g is treated but before group k is
treated—that is, treatment effect dynamics. Parallel trends assumptions do not imply that this term
is equal to 0. And, in the special case where the treatment is binary, this term corresponds to the
“problematic” term related to treatment effect dynamics in Goodman-Bacon (2021).

The additional nuisance term in δPOST,PRE(g, k) involves differences in partial effects of more
treatment across groups in their common post-treatment periods. Parallel trends does not restrict
these partial effects to be equal to each other. This term does not show up in the case with a binary
treatment because, by construction, the distribution of the dose is the same across groups. It is
helpful to further consider where this expression comes from. For simplicity, temporarily suppose
that the partial effect of more dose is positive and constant across groups, time, and dose. In this
case, if group g has more dose on average than group k, then its outcomes should increase more from
group g and k’s common pre-treatment period to their common post-treatment period. This is the
comparison that shows up in δPOST,PRE(g, k). However, when partial effects are not the same across
groups and times (which is not implied by any parallel trends assumption), then, for example, it
could be the case that the partial effect of dose is positive for all groups and time periods but greater
for group k relative to group g. If these differences are large enough, it could lead to the cross-group,
long-difference comparisons in δPOST,PRE(g, k) having the opposite sign.

Next, we discuss what sort of extra conditions can (i) guarantee that βtwfe is a (pos-
itively) weighted average of underlying causal responses or (ii) for βtwfe = ACRT glob :=

E
[
ACRT dose(D)

∣∣∣G ≤ T
]
, i.e., the overall average causal response.6 To do so, we introduce re-

strictions on different types of treatment effect heterogeneity.

Assumption S1 (Assumptions Limiting Treatment Effect Heterogeneity).
(a) [No Treatment Effect Dynamics] For all g ∈ Ḡ and t ≥ g (i.e, post-treatment periods for group

g), ACRT (g, t, d) and ATT (g, t, dL) do not vary with t.
(b) [Homogeneous Causal Responses across Groups] For all g ∈ Ḡ with t ≥ g and k ∈ Ḡ with

t ≥ k, ACRT (g, t, d) = ACRT (k, t, d) and ATT (g, t, dL) = ATT (k, t, dL).
5Taken together, Theorems C.1 and S2 imply that, under the version of strong parallel trends in Assumption SPT-

MP, ACRT (g, t, d|g, d) = ACRT (g, t, d), and they are both identified. Unlike the main text, we state the results in
this section in terms of ACRT (g, t, d) rather than ACRT (g, t, d|g, d) mainly to conserve on notation; however, either
building block is valid. The same comment applies to ATT (g, t, d|g, d) and ATT (g, t, d). Part (2) of the proposition
involves averages of ACRT (g, t, d) and ATT (g, t, d) across periods, where the notation is probably immediately clear,
but it is precisely defined in Equations S15-S17 below. In Theorem S3-Extended below, we provide an analogous result
under the parallel trends assumption in Assumption PT-MP.

6ACRT dose(d) is the “global” version of ACRT dose(d|d) from the main text. It is defined as ∂ATTdose(d)
∂d

where
ATT dose(d) := E[TE(d)|G ≤ T ].
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(c) [Homogeneous Causal Responses across Dose] For all g ∈ Ḡ with t ≥ g, ACRT (g, t, d) does
not vary across d, and, in addition, ATT (g, t, dL)/dL = ACRT (g, t, d).

Assumption S1 introduces three additional conditions limiting treatment effect heterogeneity. As-
sumption S1(a) imposes that, within a timing-group, the causal response to the treatment does not
vary across time which rules out treatment effect dynamics. Assumption S1(b) imposes that, for
a fixed time period, causal responses to the treatment are constant across timing-groups. Assump-
tion S1(c) imposes that, within timing-group and time period, the causal response to more dose is
constant across different values of the dose.

Proposition S2. Under Assumptions 1-MP, 2-MP, 3-MP, and SPT-MP,

(a) If, in addition, Assumption S1(a) holds, then

δPOST,MID(g, k) =

∫ dU

dL

w1(k, l)ACRT
POST (k)

(k, l) dl + w0(k)
ATT

POST (k)
(k, dL)

dL
.

(b) If, in addition, Assumption S1(b) holds, then

δPOST,PRE(g, k) =

∫ dU

dL

wacross
1 (g, k, l)ACRT

POST (k)
(g, l) dl.

(c) If, in addition, Assumption S1(a), (b) and (c) hold, then

βtwfe = ACRT glob.

Proposition S2 provides additional conditions under which the nuisance terms in δPOST,MID(g, k)

and δPOST,PRE(g, k) are equal to 0. For δPOST,MID(g, k), these nuisance terms will be equal to 0 if
there are no treatment effect dynamics; that is, the causal response to more dose does not vary across
time. Ruling out these sorts of treatment effect dynamics is analogous to the kinds of conditions
that are required to rule out negative weights in TWFE estimates with a binary treatment. For
δPOST,PRE(g, k), the nuisance terms will be equal to 0 if there are homogeneous causal responses
across groups—that the causal response to more dose is the same across groups conditional on having
the same amount of dose and being in the same time period. Neither of these assumptions is implied
by any of the parallel trends assumptions that we have considered, and they are both potentially very
strong. Therefore, under both Assumption S1(a) and (b), βtwfe is equal to a weighted average of
average causal response parameters, but these weights continue to be driven by the TWFE estimation
strategy and, like in the baseline two-period case, can continue to deliver poor estimates of the overall
average causal response to the treatment. If all of the conditions in Assumption S1(a), (b), and (c)
hold, then it implies that ACRT (g, t, d) does not vary by timing group, time period, or the amount
of dose, and part (c) of Proposition S2 says that βtwfe is equal to the overall average causal response
under these additional, strong conditions.

The results in part (2) of Theorem S3 and in Proposition S2 relied on the multi-period version
of strong parallel trends in Assumption SPT-MP. To conclude this section, we provide a version of
Theorem S3 under the parallel trends assumption in Assumption PT-MP that only involves paths of
untreated potential outcomes rather than strong parallel trends.
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Theorem S3-Extended. Under Assumptions 1-MP, 2-MP, 3-MP, and PT-MP,

δWITHIN (g) =

∫ dU

dL

wwithin
1 (g, l)

(
ACRT

POST (g)
(g, l|g, l) + ∂ATT

POST (g)
(g, l|g, h)

∂h

∣∣∣
h=l

)
dl

δMID,PRE(g, k) =

∫ dU

dL

w1(g, l)

(
ACRT

MID(g,k)
(g, l|g, l) + ∂ATT

MID(g,k)
(g, l|g, h)

∂h

∣∣∣
h=l

)
dl

+ w0(g)
ATT

MID(g,k)
(g, dL|g, dL)

dL

δPOST,MID(g, k) =

∫ dU

dL

w1(k, l)

(
ACRT

POST (k)
(k, l|k, l) + ∂ATT

POST (k)
(k, l|k, h)

∂h

∣∣∣
h=l

)
dl

+ w0(k)
ATT

POST (k)
(k, dL|k, dL)

dL
− w0(k)

(
πPOST (k),PRE(g)(g)− πMID(g,k),PRE(g)(g)

dL

)

δPOST,PRE(g, k) =

∫ dU

dL

wacross
1 (g, k, l)

(
ACRT

POST (k)
(g, l|g, l) + ∂ATT (g, l|g, h)

∂h

∣∣∣
h=l

)
dl

−

{∫ dU

dL

w̃across
1 (g, k, l)

(
∂π

POST (k),PRE(g)
D (k, l)

∂l
−

∂π
POST (k),PRE(g)
D (g, l)

∂l

)
dl

+ w̃across
0 (g, k)

(
π
POST (k),PRE(g)
D (k, dL)− π

POST (k),PRE(g)
D (g, dL)

dL

)}
where the weights are the same as in Theorem S3 and satisfy the same properties.

This result is similar to part (2) of Appendix SA.3 except that ACRT
·
(·, d) should be replaced

by ACRT
·
(·, d|·, d)+ ∂ATT

·
(·,d|·,l)

∂l

∣∣∣
l=d

where the second term is a selection bias term, and ATT
·
(·, dL)

should be replaced by ATT
·
(·, dL|·, dL). The main additional takeaway from Theorem S3-Extended

is that, under a standard version of parallel trends, all four comparisons in Equations (S3) to (S6)
include selection bias terms.

SA.4 Discussion

The results in this section suggest four important weaknesses of TWFE estimands in a difference-in-
differences framework with multiple time periods, and variation in treatment timing and intensity.
First, all of the results in this section have used a version of the parallel trends assumption or strong
parallel trends assumption which holds across all periods (including pre-treatment periods). If there
are violations of parallel trends in pre-treatment periods, these violations will contribute to βtwfe.

Second, like the TWFE estimands considered in the main text in the case with two time periods,
TWFE estimands have weights that are driven by the estimation method. These weights may have
undesirable properties in settings where there is treatment effect heterogeneity.

Third, in addition to reasonable treatment effect parameters, TWFE estimands also include un-
desirable components due to treatment effect dynamics and heterogeneous causal responses across
groups and time periods. That these show up in the TWFE estimand is potentially problematic and
can lead to βtwfe being much different from the overall average causal response to the treatment.
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Ruling out these problems requires substantially stronger conditions in addition to any kind of parallel
trends assumption.

Finally, even when these extra conditions hold (i.e., the best case scenario for TWFE), if a
researcher invokes a standard parallel trends assumption, the TWFE estimand delivers weighted
averages of derivatives of ATT (g, t, d|g, d) parameters which are themselves hard to interpret because,
like in the two-period case, they include both actual causal responses and selection bias terms.

Of these four weaknesses, the first three can be completely avoided by using the estimands pre-
sented in Theorem C.1. These estimands rely only on parallel trends assumptions; in particular, they
are available without imposing any conditions on treatment effect dynamics or how causal responses
vary across groups. The fourth weakness, though, is a more fundamental challenge of difference-in-
differences approaches with variation in treatment intensity as comparing treatment effect parameters
across different values of the dose appears to fundamentally require imposing stronger assumptions
that rule out some forms of selection into different amounts of the treatment. Although undesirable,
we are not aware of any other practical solution to this empirically relevant DiD problem. Thus,
we urge practitioners to (i) transparently discuss their assumptions, potentially exploiting context-
specific knowledge to justify the plausibility of a stronger parallel trends assumption in the given
application, or (ii) to focus on other parameters that do not involve comparisons across doses.

SB Proofs of Results from Appendix C and Appendix SA

This section contains the proofs of results from Appendix C in the main text and Appendix SA,
which encompasses our results on DiD with a continuous treatment and with multiple periods and
variation in treatment timing and dose intensity.

SB.1 Proof of Results from Appendix C

This section proves Theorem C.1, Theorem S1, and Theorem S2.

Proof of Theorem C.1

Proof. For the first part, notice that

ATT (g, t, d|g, d) = E[Yt(g, d)− Yt(0)|G = g,D = d]

= E[Yt(g, d)− Yg−1(0)|G = g,D = d]− E[Yt(0)− Yg−1(0)|G = g,D = d]

= E[Yt(g, d)− Yg−1(0)|G = g,D = d]−
t∑

s=g

E[Ys(0)− Ys−1(0)|G = g,D = d]

= E[Yt(g, d)− Yg−1(0)|G = g,D = d]−
t∑

s=g

E[Ys(0)− Ys−1(0)|Wt = 0]

= E[Yt(g, d)− Yg−1(0)|G = g,D = d]− E[Yt(0)− Yg−1(0)|Wt = 0]

= E[Yt − Yg−1|G = g,D = d]− E[Yt − Yg−1|Wt = 0]

14



where the first equality is the definition of ATT (g, t, d|g, d), the second equality holds by adding and
subtracting E[Yg−1(0)|G = g,D = d], the third equality holds by adding and subtracting E[Ys(0)|G =

g,D = d] for s = g, . . . , (t−1), the fourth equality holds under Assumption PT-MP, the fifth equality
holds by canceling all the terms involving E[Ys(0)|Wt = 0] for s = g, . . . , (t − 1) (i.e., from the
reverse of the argument for the third equality), and the last equality holds from writing the potential
outcomes in terms of their observed counterparts.

For the second part, notice that

ACRT (g, t, d|g, d) = ∂

∂l

{
E [Yt(g, l)|G = g,D = d]

}∣∣∣∣∣
l=d

=
∂

∂l

{
E [Yt(g, l)− Yg−1(0)|G = g,D = d]

}∣∣∣∣∣
l=d

=
∂

∂l

{
E [Yt(g, l)− Yg−1(0)|G = g,D = l]

}∣∣∣∣∣
l=d

=
∂E[Yt − Yg−1|G = g,D = d]

∂d

where the first equality holds by the definition of ACRT (g, t, d|g, d), the second equality holds by
subtracting E[Yg−1(0)|G = g,D = d] (which does not depend on l and, hence, has zero derivative),
the third equality holds by Assumption SPT-MP, and the last equality holds by replacing potential
outcomes with their observed counterpart and evaluating the partial derivative at l = d.

Proof of Theorem S1

Proof. Notice that,

ATT (g, t, d) = E[Yt(g, d)− Yt(0)|G = g]

= E[Yt(g, d)− Yg−1(g, d)|G = g]− E[Yt(0)− Yg−1(0)|G = g]

=
t∑

s=g

E[Ys(g, d)− Ys−1(g, d)|G = g]−
t∑

s=g

E[Ys(0)− Ys−1(0)|G = g]

=
t∑

s=g

E[Ys(g, d)− Ys−1(g, d)|G = g,D = d]−
t∑

s=g

E[Ys(0)− Ys−1(0)|Wt = 0]

= E[Yt(g, d)− Yg−1(g, d)|G = g,D = d]− E[Yt(0)− Yg−1(0)|Wt = 0]

= E[Yt − Yg−1|G = g,D = d]− E[Yt − Yg−1|Wt = 0]

where the first equality holds by the definition of ATT (g, t, d), the second equality adds and subtracts
E[Yg−1(g, d)|G = g] (this equation also uses the no anticipation condition in Assumption 3-MP which
implies that E[Yg−1(g, d)|G = g] = E[Yg−1(0)|G = g]), the third equality holds by writing both “long
differences” as summations over “short differences”, the fourth equality holds by Assumption SPT-
MP, the fifth equality holds by canceling all of the intermediate terms in the summations over short
differences, and the last equality holds by writing potential outcomes in terms of their corresponding
observed outcomes and is the result.
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Proof of Theorem S2

Proof. To start with, notice that
∂

∂d
E[Yt − Yg−1|G = g,D = d] =

∂

∂d

{
E[Yt − Yg−1|G = g,D = d]− E[Yt − Yg−1|Wt = 0]

}
(S7)

which holds because the second term does not depend on d. Thus, under Assumption PT-MP, we
have that

∂

∂d
E[Yt − Yg−1|G = g,D = d] =

∂

∂d
ATT (g, t, d|g, d)

= ACRT (g, t, d|g, d) + ∂ATT (g, t, d|g, l)
∂l

∣∣∣∣∣
l=d

where the first equality holds by Equation (S7) and Theorem C.1, and the second equality holds by
the linearity of differentiation and the definition of ACRT (g, t, d|g, d).

Under Assumption SPT-MP, we have that
∂

∂d
E[Yt − Yg−1|G = g,D = d] =

∂

∂d
ATT (g, t, d)

= ACRT (g, t, d)

where the first equality holds by Equation (S7) and Theorem S1, and the second equality holds by
the definition of ACRT (g, t, d). This completes the proof.

SB.2 Proofs of Results from Appendix SA.3

This section contains the proofs for interpreting TWFE regressions in the case with a continuous
treatment, multiple periods, and variation in treatment timing as in Appendix SA.3.

Before proving the main results in this section, we introduce some additional notation. Let

v(g, t) = 1{t ≥ g} − Ḡg (S8)

where the term 1{t ≥ g} is equal to one in post-treatment time periods for units in group g and
recalling that we defined Ḡg = T−g+1

T which is the fraction of periods that units in group g are
exposed to the treatment (and notice that this latter term does not depend on the particular time
period t). Further, notice that v(g, t) is positive in post-treatment time periods and negative in pre-
treatment time periods for units in a particular group. Finally, also note that, for the “never-treated”
group, g = T + 1, so that both terms in the expression for v are equal to 0.

Furthermore, recall that, for 1 ≤ t1 ≤ t2 ≤ T , we defined

Ȳ
(t1,t2)
i =

1

t2 − t1 + 1

t2∑
t=t1

Yi,t

where below (and following the notation used throughout the paper), we sometimes leave the subscript
i implicit.

We next state and prove some additional results that are helpful for proving the main results. The
first lemma rewrites (overall) expected dose experienced in period t adjusted by the overall expected
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dose (across periods and units) in a form that is useful in proving later results.

Lemma S1. Under Assumptions 1-MP, 2-MP(a), and 3-MP,

E[Wt]−
1

T

T∑
s=1

E[Ws] =
∑
g∈G

∫
D
dv(g, t) dFD|G(d|g)pg

Proof. First, notice that

E[Wt] =
∑
g∈G

∫
D
E[Wt|G = g,D = d] dFD|G(d|g)pg

=
∑
g∈G

∫
D
d1{t ≥ g} dFD|G(d|g)pg (S9)

where the first equality holds by the law of iterated expectations and the second equality holds
because, after conditioning on group and dose, Wt is fully determined. Thus,

E[Wt]−
1

T

T∑
s=1

E[Ws] =
∑
g∈G

∫
D
d1{t ≥ g} dFD|G(d|g)pg −

1

T

T∑
s=1

∑
g∈G

∫
D
d1{s ≥ g} dFD|G(d|g)pg

=
1

T

T∑
s=1

∑
g∈G

∫
D
d (1{t ≥ g} − 1{s ≥ g}) dFD|G(d|g)pg

=
∑
g∈G

∫
D
d

{
1

T

T∑
s=1

1{t ≥ g} − 1{s ≥ g}

}
dFD|G(d|g)pg

=
∑
g∈G

∫
D
d

{
1{t ≥ g} − T − g + 1

T

}
dFD|G(d|g)pg

=
∑
g∈G

∫
D
dv(g, t) dFD|G(d|g)pg

where the first equality applies Equation (S9) to both terms, the second equality combines terms by
averaging the first term across time periods, the third equality re-orders the summations/integrals,
the fourth equality holds because 1{t ≥ g} does not depend on s and by counting the fraction of
periods where s ≥ g, and the last equality holds by the definition of v(g, t).

The next lemma provides an intermediate result for the expression for the numerator of βtwfe in
Equation (S2).

Lemma S2. Under Assumptions 1-MP, 2-MP(a), and 3-MP,

1

T

T∑
t=1

E[Ẅi,tYi,t] =
1

T

T∑
t=1

{∑
g∈G

∫
D
d (E[Yt|G = g,D = d]− E[Yt]) v(g, t) dFD|G(d|g)pg

}
Proof. Starting with the term on the left-hand side, we have that

1

T

T∑
t=1

E[Ẅi,tYi,t]

=
1

T

T∑
t=1

{
E[Wi,tYi,t]− E[W̄iYi,t]−

(
E[Wt]−

1

T

T∑
s=1

E[Ws]

)
E[Yt]

}
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=
1

T

T∑
t=1

{
E[D1{t ≥ G}Yt]− E

[
D
T −G+ 1

T
Yt

]
−

(
E[Wt]−

1

T

T∑
s=1

E[Ws]

)
E[Yt]

}

=
1

T

T∑
t=1

{∑
g∈G

∫
D

(
E[d1{t ≥ g}Yt|G = g,D = d]− E

[
d
T − g + 1

T
Yt

∣∣∣G = g,D = d

])
dFD|G(d|g)pg

−

(
E[Wt]−

1

T

T∑
s=1

E[Ws]

)
E[Yt]

}

=
1

T

T∑
t=1

{∑
g∈G

∫
D
d
(
E[Yt|G = g,D = d]v(g, t)

)
dFD|G(d|g)pg −

(
E[Wt]−

1

T

T∑
s=1

E[Ws]

)
E[Yt]

}

=
1

T

T∑
t=1

{∑
g∈G

∫
D
d
(
E[Yt|G = g,D = d]v(g, t)

)
dFD|G(d|g)pg −

∑
g∈G

∫
D
dv(g, t) dFD|G(d|g)pg

E[Yt]

}

=
1

T

T∑
t=1

{∑
g∈G

∫
D
d (E[Yt|G = g,D = d]− E[Yt]) v(g, t) dFD|G(d|g)pg

}

where the first equality holds by the definition of Ẅi,t, the second equality holds by plugging in for
Wi,t and W̄i, the third equality holds by the law of iterated expectations, the fourth equality holds
by the definition of v(g, t), the fifth equality holds by Lemma S1, and the sixth equality combines
terms.

Next, based on the result in Lemma S2, we can write the numerator of βtwfe as

1

T

T∑
t=1

E[Ẅi,tYi,t]

=
1

T

T∑
t=1

{∑
g∈G

∫
D
d (E[Yt|G = g,D = d]− E[Yt]) v(g, t) dFD|G(d|g)pg

}

=
1

T

T∑
t=1

∑
g∈G

∫
D
d
(
E[Yt|G = g,D = d]− E[Yt|G = g]

)
v(g, t) dFD|G(d|g)pg (S10)

+
1

T

T∑
t=1

∑
g∈G

∫
D
d
(
E[Yt|G = g]− E[Yt]

)
v(g, t) dFD|G(d|g)pg (S11)

where the first equality holds from Lemma S2 and the second equality holds by adding and subtracting
E[Yt|G = g].

The expression in Equation (S10) involves comparisons between units in the same timing group
but that have different doses. The expression in Equation (S11) involves comparisons across different
timing groups. We consider each of these terms in more detail below.

Lemma S3. Under Assumptions 1-MP, 2-MP(a), and 3-MP,

1

T

T∑
t=1

∑
g∈G

∫
D
d
(
E[Yt|G = g,D = d]− E[Yt|G = g]

)
v(g, t) dFD|G(d|g)pg

=
∑
g∈G

{
(1− Ḡg)ḠgCov

(
Ȳ POST (g) − Ȳ PRE(g), D

∣∣∣G = g
)}

pg
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Proof. Notice that

1

T

T∑
t=1

∑
g∈G

∫
D
d
(
E[Yt|G = g,D = d]− E[Yt|G = g]

)
v(g, t) dFD|G(d|g)pg

=
1

T

T∑
t=1

{∑
g∈G

E[Yt(D − E[D|G = g])|G = g]v(g, t)pg

}

=
∑
g∈G

{
1

T

T∑
t=1

E[Yt(D − E[D|G = g])|G = g]v(g, t)

}
pg

=
∑
g∈G

{
− 1

T

(T − g + 1)

T

g−1∑
t=1

E[Yt(D − E[D|G = g])|G = g]

+
1

T

(g − 1)

T

T∑
t=g

E[Yt(D − E[D|G = g])|G = g]

}
pg

=
∑
g∈G

{
g − 1

T

(T − g + 1)

T

(
1

T − g + 1

T∑
t=g

E[Yt(D − E[D|G = g])|G = g]

− 1

g − 1

g−1∑
t=1

E[Yt(D − E[D|G = g])|G = g]

)}
pg

=
∑
g∈G

{
g − 1

T

(T − g + 1)

T

(
E
[(
Ȳ POST (g) − Ȳ PRE(g)

)
(D − E[D|G = g])

∣∣G = g
])}

pg

=
∑
g∈G

{
(1− Ḡg)Ḡg

(
E
[(
Ȳ POST (g) − Ȳ PRE(g)

)
(D − E[D|G = g])

∣∣G = g
])}

pg

=
∑
g∈G

{
(1− Ḡg)ḠgCov

(
Ȳ POST (g) − Ȳ PRE(g), D

∣∣∣G = g
)}

pg

where the first equality holds by the law of iterated expectations (and combining terms involving d

and Yt), the second equality changes the order of the summations, the third equality holds by splitting
the summation involving t in time period g and plugs in for v(g, t) (which is constant within group
g and across time periods from 1, . . . , g − 1 and from g, . . . , T ), the fourth equality multiplies and
divides by terms so that the inside expressions can be written as averages, the fifth equality holds by
changing the order of the expectation and averaging over time periods, the sixth equality holds by
the definition of Ḡg, and the last equality holds by the definition of covariance.

Lemma S3 shows that part of the TWFE estimator comes from a weighted average of post- vs.
pre-treatment outcomes within group but who experienced different doses. In particular, notice that
for units in group g, Ȳ POST (g)

i is their average post-treatment outcome while Ȳ
PRE(g)
i is their average

pre-treatment outcome.
Next, we consider the expression from Equation (S11) above which arises from differences in

outcomes across groups. We handle this term over several following results.
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Lemma S4. Under Assumptions 1-MP, 2-MP(a), and 3-MP,

1

T

T∑
t=1

{∑
g∈G

∫
D
d
(
E[Yt|G = g]− E[Yt]

)
v(g, t) dFD|G(d|g)pg

}

=
1

T

T∑
t=1

{∑
g∈G

∑
k∈G,k>g

(
E[D|G = g]v(g, t)− E[D|G = k]v(k, t)

)(
E[Yt|G = g]− E[Yt|G = k]

)
pkpg

}

Proof. Notice that

1

T

T∑
t=1

{∑
g∈G

∫
D
d
(
E[Yt|G = g]− E[Yt]

)
v(g, t) dFD|G(d|g)pg

}

=
1

T

T∑
t=1

{∑
g∈G

E[D|G = g]
(
E[Yt|G = g]− E[Yt]

)
v(g, t)pg

}

=
1

T

T∑
t=1

{∑
g∈G

E[D|G = g]
(
E[Yt|G = g]−

∑
k∈G

E[Yt|G = k]pk

)
v(g, t)pg

}

=
1

T

T∑
t=1

{∑
g∈G

∑
k∈G

E[D|G = g]v(g, t)
(
E[Yt|G = g]− E[Yt|G = k]

)
pkpg

}

=
1

T

T∑
t=1

{∑
g∈G

∑
k∈G,k>g

(
E[D|G = g]v(g, t)− E[D|G = k]v(k, t)

)(
E[Yt|G = g]− E[Yt|G = k]

)
pkpg

}
where the first equality holds by integrating over D, the second equality holds by the law of iterated
expectations, the third equality holds by combining terms, and the last equality holds because all
combinations of g and k occur twice.

Lemma S4 is helpful because it shows that the cross-group part of the TWFE estimator can be
written as comparisons for each group relative to later-treated groups.

Next, we provide an important intermediate result. Before stating this result, we define the
following weights

w̃g,within(g) = Var(D|G = g)(1− Ḡg)Ḡgpg

w̃g,post(g, k) = E[D|G = g]2(1− Ḡg)(Ḡg − Ḡk)pkpg

w̃k,post(g, k) = E[D|G = k]2Ḡk(Ḡg − Ḡk)pkpg

w̃long(g, k) = (E[D|G = g]− E[D|G = k])2Ḡk(1− Ḡg)pkpg

which correspond to wg,post, wk,post, and wlong(g, k) above except they do not divide by
T−1

∑T
t=1 E[Ẅ 2

i,t]. In addition, notice that

E[D|G = g]v(g, t)− E[D|G = k]v(k, t)

=


−E[D|G = g]Ḡg + E[D|G = k]Ḡk for t < g < k

E[D|G = g](1− Ḡg) + E[D|G = k]Ḡk for g ≤ t < k

E[D|G = g](1− Ḡg)− E[D|G = k](1− Ḡk) for g < k ≤ t

(S12)

which holds by the definition of v and is useful for the proof of the following lemma.
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Lemma S5. Under Assumptions 1-MP, 2-MP(a), and 3-MP,

1

T

T∑
t=1

{∑
g∈G

∫
D
d
(
E[Yt|G = g]− E[Yt]

)
v(g, t) dFD|G(d|g)pg

}

=
∑
g∈G

∑
k∈G,k>g

{
w̃g,post(g, k)

(
E
[(
Ȳ MID(g,k) − Ȳ PRE(g)

)
|G = g

]
− E

[(
Ȳ MID(g,k) − Ȳ PRE(g)

)
|G = k

])

+ w̃k,post(g, k)

(
E
[(
Ȳ POST (k) − Ȳ MID(g,k)

)
|G = k

]
− E

[(
Ȳ POST (k) − Ȳ MID(g,k)

)
|G = g

])
+ w̃long(g, k)

(
E
[(
Ȳ POST (k) − Ȳ PRE(g)

)
|G = g

]
− E

[(
Ȳ POST (k) − Ȳ PRE(g)

)
|G = k

]}

Proof. The result holds as follows

1

T

T∑
t=1

{ ∑
g∈G

∫
D
d
(
E[Yt|G = g]− E[Yt]

)
v(g, t) dFD|G(d|g)pg

}

=
∑
g∈G

∑
k∈G,k>g

{
1

T

T∑
t=1

(
E[D|G = g]v(g, t)− E[D|G = k]v(k, t)

)(
E[Yt|G = g]− E[Yt|G = k]

)}
pkpg

=
∑
g∈G

∑
k∈G,k>g

{
1

T

(
−E[D|G = g]Ḡg + E[D|G = k]Ḡk

) g−1∑
t=1

(
E[Yt|G = g]− E[Yt|G = k]

)

+
1

T

(
E[D|G = g](1− Ḡg) + E[D|G = k]Ḡk

) k−1∑
t=g

(
E[Yt|G = g]− E[Yt|G = k]

)

+
1

T

(
E[D|G = g](1− Ḡg)− E[D|G = k](1− Ḡk)

) T∑
t=k

(
E[Yt|G = g]− E[Yt|G = k]

)}
pkpg

=
∑
g∈G

∑
k∈G,k>g

{
(1− Ḡg)

(
−E[D|G = g]Ḡg + E[D|G = k]Ḡk

) (
E[Ȳ PRE(g)|G = g]− E[Ȳ PRE(g)|G = k]

)
+ (Ḡg − Ḡk)

(
E[D|G = g](1− Ḡg) + E[D|G = k]Ḡk

) (
E[Ȳ MID(g,k)|G = g]− E[Ȳ MID(g,k)|G = k]

)
+ Ḡk

(
E[D|G = g](1− Ḡg)− E[D|G = k](1− Ḡk)

) (
E[Ȳ POST (k)|G = g]− E[Ȳ POST (k)|G = k]

)}
pkpg

=
∑
g∈G

∑
k∈G,k>g

{
(1− Ḡg)

(
−E[D|G = g](Ḡg − Ḡk) + (E[D|G = k]− E[D|G = g])Ḡk

) (
E[Ȳ PRE(g)|G = g]− E[Ȳ PRE(g)|G = k]

)
+ (Ḡg − Ḡk)

(
E[D|G = g](1− Ḡg) + E[D|G = k]Ḡk

) (
E[Ȳ MID(g,k)|G = g]− E[Ȳ MID(g,k)|G = k]

)
+ Ḡk

(
(E[D|G = g]− E[D|G = k])(1− Ḡg)− E[D|G = k](Ḡg − Ḡk)

) (
E[Ȳ POST (k)|G = g]− E[Ȳ POST (k)|G = k]

)}
pkpg

=
∑
g∈G

∑
k∈G,k>g

{
E[D|G = g](1− Ḡg)(Ḡg − Ḡk)

(
E
[(
Ȳ MID(g,k) − Ȳ PRE(g)

)
|G = g

]
− E

[(
Ȳ MID(g,k) − Ȳ PRE(g)

)
|G = k

])

+ E[D|G = k]Ḡk(Ḡg − Ḡk)

(
E
[(
Ȳ POST (k) − Ȳ MID(g,k)

)
|G = k

]
− E

[(
Ȳ POST (k) − Ȳ MID(g,k)

)
|G = g

])
+ (E[D|G = g]− E[D|G = k])Ḡk(1− Ḡg)

(
E
[(
Ȳ POST (k) − Ȳ PRE(g)

)
|G = g

]
− E

[(
Ȳ POST (k) − Ȳ PRE(g)

)
|G = k

])}
pkpg

=
∑
g∈G

∑
k∈G,k>g

{
w̃g,post(g, k)

(
E
[(
Ȳ MID(g,k) − Ȳ PRE(g)

)
|G = g

]
− E

[(
Ȳ MID(g,k) − Ȳ PRE(g)

)
|G = k

])

+ w̃k,post(g, k)

(
E
[(
Ȳ POST (k) − Ȳ MID(g,k)

)
|G = k

]
− E

[(
Ȳ POST (k) − Ȳ MID(g,k)

)
|G = g

])
+ w̃long(g, k)

(
E
[(
Ȳ POST (k) − Ȳ PRE(g)

)
|G = g

]
− E

[(
Ȳ POST (k) − Ȳ PRE(g)

)
|G = k

])}

where the first equality uses the result in Lemma S4, the second equality changes the order of the
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summations (splitting them at g and k where the values of v(g, t) and v(k, t) change) and uses
Equation (S12), the third equality holds by averaging over time periods (which involves multiplying
and dividing by g − 1 in the first line, multiplying and dividing by k − g in the second line, and
multiplying and dividing by T − k+1 in the last line), the fourth equality rearranges the expressions
for the weights, the fifth equality holds by rearranging terms with common weights, and the last
equality holds by the definitions of w̃g,post, w̃k,post, and w̃long and by noticing that

pkpg = (pg + pk)
2pg|{g,k}(1− pg|{g,k})

which holds by multiplying and dividing both pk and pg by (pg + pk) and by the definition of pg|{g,k}.

The result in Lemma S5 is very closely related to the result on interpreting TWFE regressions
with a binary treatment and multiple time periods and variation in treatment timing in Goodman-
Bacon (2021).7 In particular, it says that, even with a continuous or multi-valued discrete treatment,
the TWFE regression estimator involves comparisons between (i) the path of outcomes for units that
become treated relative to the path of outcomes for units that are not treated yet, (ii) the path of
outcomes for units that become treated relative to the path of outcomes for units that have already
been treated, and (iii) comparisons of the paths of outcomes across groups from their common pre-
treatment periods to their common post-treatment periods. Intuitively, the first set of comparisons
is very much in the spirit of DiD, but, as we show below, the second and third sets of comparisons
are not (except under additional specialized conditions).

Lemma S6. Under Assumptions 1-MP, 2-MP(a), and 3-MP,

1

T

T∑
t=1

E[Ẅ 2
i,t] =

∑
g∈G

w̃g,within(g) +
∑
g∈G

∑
k∈G,k>g

{
w̃g,post(g, k) + w̃k,post(g, k) + w̃long(g, k)

}
Proof. To start with, notice that E[Ẅ 2

i,t] = E[Ẅi,tWi,t]. Then, we can apply the arguments of Lem-
mas S2 to S5 but with Wi,t replacing Yi,t. This implies that

1

T

T∑
t=1

E[Ẅ 2
i,t]

=
∑
g∈G

w̃g,within(g)
Cov(W̄POST (g) − W̄PRE(g), D|G = g)

Var(D|G = g)

+
∑
g∈G

∑
k∈G,k>g

{
w̃g,post(g, k)

E
[
(W̄MID(g,k) − W̄PRE(g))|G = g

]
− E

[
(W̄MID(g,k) − W̄PRE(g))|G = k

]
E[D|G = g]

+ w̃k,post(g, k)
E
[
(W̄POST (k) − W̄MID(g,k))|G = k

]
− E

[
(W̄POST (k) − W̄MID(g,k))|G = g

]
E[D|G = k]

+ w̃long(g, k)
E
[
(W̄POST (k) − W̄PRE(g))|G = g

]
− E

[
(W̄POST (k) − W̄PRE(g))|G = k

]
E[D|G = g]− E[D|G = k]

}
7One difference worth noting is that the weights are slightly different due to the terms involving E[D|G = g] and

E[D|G = k]. With a binary treatment, these expectations are equal to each other by construction, but with a continuous
treatment these terms are no longer generally equal to each other. This also implies that the third term does not show
up in the case with a binary treatment.
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=
∑
g∈G

w̃g,within(g) +
∑
g∈G

∑
k∈G,k>g

{
w̃g,post(g, k) + w̃k,post(g, k) + w̃long(g, k)

}
where the last equality holds by noting that W̄ = D in post-treatment periods and W̄ = 0 in
pre-treatment periods, and then by canceling terms.

Proof of Proposition S1

Proof. Proposition S1 immediately holds by combining the results in Lemma S2, from Equations (S10)
and (S11), and by Lemmas S3 to S5 (which all concern the numerator in the expression for βtwfe in
Equation (S2)), and then dividing by (1/T )

∑T
t=1 E[Ẅ 2

i,t] (which corresponds to the denominator in
the expression for βtwfe in Equation (S2)) using the result in Lemma S6. That the weights are all
positive holds immediately by their definitions. That they sum to one holds by the definitions of the
weights and is an immediate implication of Lemma S6.

Next, we move to proving Theorem S3. To do this, we provide expressions for each of the
comparisons that show up in Proposition S1 in terms of derivatives of paths of outcomes. These
results invoke Assumption 2-MP(b) and, therefore, use that the treatment is actually continuous,
but they do not invoke any parallel trends assumptions. That said, it would be straightforward to
adapt these results to the case with a discrete multi-valued treatment along the lines of the baseline
two-period case considered in the main text.

It is also useful to note that

∂π
POST (k̃),PRE(g̃)
D (g, d)

∂d
=

∂E
[(
Ȳ POST (k̃) − Ȳ PRE(g̃)

) ∣∣∣G = g,D = d
]

∂d
,

∂π
MID(g̃,k̃),PRE(g̃)
D (g, d)

∂d
=

E
[(
Ȳ MID(g̃,k̃) − Ȳ PRE(g̃)

) ∣∣∣G = g,D = d
]

∂d
,

∂π
POST (k̃),MID(g̃,k̃)
D (g, d)

∂d
=

∂E
[(
Ȳ POST (k̃) − Ȳ MID(g̃,k̃)

) ∣∣∣G = g,D = d
]

∂d
,

which holds because the second parts of each πD term do not vary with the dose.
Next, we consider a result for the numerator (which is the main term) of δWITHIN (g) in Equa-

tion (S3).

Lemma S7. Under Assumptions 1-MP, 2-MP, and 3-MP,

Cov
(
Ȳ POST (g) − Ȳ PRE(g), D

∣∣∣G = g
)

=

∫ dU

dL

(
E[D|G = g,D ≥ l]− E[D|G = g]

)
P(D ≥ l|G = g)

∂E[Ȳ POST (g) − Ȳ PRE(g)|G = g,D = l]

∂l
dl

Proof. First, notice that

Cov
(
Ȳ POST (g) − Ȳ PRE(g), D

∣∣∣G = g
)
= E

[(
Ȳ POST (g) − Ȳ PRE(g)

)
(D − E[D|G = g])|G = g

]
Then, the proof follows essentially the same arguments as in Theorem 3.4(a) in the main text with
Ȳ POST (g) − Ȳ PRE(g) replacing ∆Y and the other arguments relating to the distribution of the dose

23



holding conditional on being in group g. The second term, involving dL, in Theorem 3.4(a) does not
show up here as, by construction, there are no untreated units in group g.

Lemma S7 says that part of δWITHIN (g) in the TWFE regression estimator comes from a weighted
average of ∂E[Ȳ POST (g)−Ȳ PRE(g)|G=g,D=d]

∂d .
Next, we consider the numerator (which is the main term) in the expression for δMID,PRE(g, k) in

Equation (S4). This term is quite similar to the baseline two-period case considered in Theorem 3.4(a)
because units in group k have not been treated yet.

Lemma S8. Under Assumptions 1-MP, 2-MP, and 3-MP, and for k > g,

E
[(
Ȳ MID(g,k) − Ȳ PRE(g)

) ∣∣∣G = g
]
− E

[(
Ȳ MID(g,k) − Ȳ PRE(g)

) ∣∣∣G = k
]

=

∫ dU

dL

P(D ≥ l|G = g)
∂E[Ȳ MID(g,k) − Ȳ PRE(g)|G = g,D = l]

∂l
dl

+ dL
E[Ȳ MID(g,k) − Ȳ PRE(g)|G = g,D = dL]− E[Ȳ MID(g,k) − Ȳ PRE(g)|D = 0]

dL

− dL
E[Ȳ MID(g,k) − Ȳ PRE(g)|G = k]− E[Ȳ MID(g,k) − Ȳ PRE(g)|D = 0]

dL

Proof. To start with, notice that

E
[(
Ȳ MID(g,k) − Ȳ PRE(g)

) ∣∣∣G = g
]
− E

[(
Ȳ MID(g,k) − Ȳ PRE(g)

) ∣∣∣G = k
]

= E
[(
Ȳ MID(g,k) − Ȳ PRE(g)

) ∣∣∣G = g
]
− E

[(
Ȳ MID(g,k) − Ȳ PRE(g)

) ∣∣∣D = 0
]

−
(
E
[(
Ȳ MID(g,k) − Ȳ PRE(g)

) ∣∣∣G = k
]
− E

[(
Ȳ MID(g,k) − Ȳ PRE(g)

) ∣∣∣D = 0
])

=

∫ dU

dL

P(D ≥ l|G = g)
∂E[Ȳ MID(g,k) − Ȳ PRE(g)|G = g,D = l]

∂l
dl

+ dL
E[Ȳ MID(g,k) − Ȳ PRE(g)|G = g,D = dL]− E[Ȳ MID(g,k) − Ȳ PRE(g)|D = 0]

dL

− dL
E[Ȳ MID(g,k) − Ȳ PRE(g)|G = k]− E[Ȳ MID(g,k) − Ȳ PRE(g)|D = 0]

dL

where the first equality holds by adding and subtracting E
[(
Ȳ MID(g,k) − Ȳ PRE(g)

) ∣∣D = 0
]
. For the

second equality, notice that

E
[(
Ȳ MID(g,k) − Ȳ PRE(g)

) ∣∣∣G = g
]
− E

[(
Ȳ MID(g,k) − Ȳ PRE(g)

) ∣∣∣D = 0
]

= E
[(
Ȳ MID(g,k) − Ȳ PRE(g)

) ∣∣∣G = g
]
− E

[(
Ȳ MID(g,k) − Ȳ PRE(g)

) ∣∣∣G = g,D = dL

]
+ E

[(
Ȳ MID(g,k) − Ȳ PRE(g)

) ∣∣∣G = g,D = dL

]
− E

[(
Ȳ MID(g,k) − Ȳ PRE(g)

) ∣∣∣D = 0
]

Moreover,

E
[(
Ȳ MID(g,k) − Ȳ PRE(g)

) ∣∣∣G = g
]
− E

[(
Ȳ MID(g,k) − Ȳ PRE(g)

) ∣∣∣G = g,D = dL

]
=

∫ dU

dL

E
[(
Ȳ MID(g,k) − Ȳ PRE(g)

) ∣∣∣G = g,D = d
]
− E

[(
Ȳ MID(g,k) − Ȳ PRE(g)

) ∣∣∣G = g,D = dL

]
dFD|G(d|g)

=

∫ dU

dL

∫ dU

dL

1{l ≤ d}
∂E
[(
Ȳ MID(g,k) − Ȳ PRE(g)

)
|G = g,D = l

]
∂l

dl dFD|G(d|g)
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=

∫ dU

dL

P(D ≥ l|G = g)
∂E[Ȳ MID(g,k) − Ȳ PRE(g)|G = g,D = l]

∂l
dl

where the first equality holds by the law of iterated expectations, the second equality holds by the
fundamental theorem of calculus, and the last equality holds by changing the order of integration and
simplifying.

Combining the above expressions implies the result.

Next, we consider the numerator (which is the main term) of δPOST,MID(g, k) in Equation (S5)
which comes from comparing paths of outcomes for newly treated groups relative to already-treated
groups.

Lemma S9. Under Assumptions 1-MP, 2-MP, and 3-MP, and for k > g,

E
[(
Ȳ POST (k) − Ȳ MID(g,k)

) ∣∣∣G = k
]
− E

[(
Ȳ POST (k) − Ȳ MID(g,k)

) ∣∣∣G = g
]

=

∫ dU

dL

P(D ≥ l|G = k)
∂E[Ȳ POST (k) − Ȳ MID(g,k)|G = k,D = l]

∂l
dl

+ dL
E[Ȳ POST (k) − Ȳ MID(g,k)|G = k,D = dL]− E[Ȳ POST (k) − Ȳ MID(g,k)|D = 0]

dL

−
{
E[Ȳ POST (k) − Ȳ PRE(g)|G = g]− E[Ȳ POST (k) − Ȳ PRE(g)|D = 0]

−
(
E[Ȳ MID(g,k) − Ȳ PRE(g)|G = g]− E[Ȳ MID(g,k) − Ȳ PRE(g)|D = 0]

)}
Proof. Notice that

E
[(
Ȳ POST (k) − Ȳ MID(g,k)

) ∣∣∣G = k
]
− E

[(
Ȳ POST (k) − Ȳ MID(g,k)

) ∣∣∣G = g
]

=

(
E
[(
Ȳ POST (k) − Ȳ MID(g,k)

) ∣∣∣G = k
]
− E

[(
Ȳ POST (k) − Ȳ MID(g,k)

) ∣∣∣D = 0
])

−

(
E
[(
Ȳ POST (k) − Ȳ MID(g,k)

) ∣∣∣G = g
]
− E

[(
Ȳ POST (k) − Ȳ MID(g,k)

)
|D = 0

])

=

(
E
[(
Ȳ POST (k) − Ȳ MID(g,k)

) ∣∣∣G = k
]
− E

[(
Ȳ POST (k) − Ȳ MID(g,k)

) ∣∣∣D = 0
])

(S13)

−

{(
E
[(
Ȳ POST (k) − Ȳ PRE(g)

) ∣∣∣G = g
]
− E

[(
Ȳ POST (k) − Ȳ PRE(g)

) ∣∣∣D = 0
])

−
(
E
[(
Ȳ MID(g,k) − Ȳ PRE(g)

) ∣∣∣G = g
]
− E

[(
Ȳ MID(g,k) − Ȳ PRE(g)

) ∣∣∣D = 0
])}

=

∫ dU

dL

P(D ≥ l|G = k)
∂E[Ȳ POST (k) − Ȳ MID(g,k)|G = k,D = l]

∂l
dl (S14)

+ dL
E[Ȳ POST (k) − Ȳ MID(g, k)|G = g,D = dL]− E

[(
Ȳ POST (k) − Ȳ MID(g,k)

)
|D = 0

]
dL

−

{(
E
[(
Ȳ POST (k) − Ȳ PRE(g)

) ∣∣∣G = g
]
− E

[(
Ȳ POST (k) − Ȳ PRE(g)

) ∣∣∣D = 0
])
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−
(
E
[(
Ȳ MID(g,k) − Ȳ PRE(g)

) ∣∣∣G = g
]
− E

[(
Ȳ MID(g,k) − Ȳ PRE(g)

) ∣∣∣D = 0
])}

where the first equality holds by adding and subtracting E
[(
Ȳ POST (k) − Ȳ MID(g,k)

)
|D = 0

]
, the

second equality holds by adding and subtracting both E
[
Ȳ PRE(g)|G = g

]
and E

[
Ȳ PRE(g)|D = 0

]
,

and the last equality holds by applying the same sort of arguments as in the proof of Lemma S8.

The expression in Lemma S9 appears complicated and is worth explaining in some more detail.
Consider Equation (S13) in the proof of Lemma S9. There are three parts to this expression. The first
part compares the path of outcomes in post-treatment periods relative to some pre-treatment periods
for units in group k to the path of outcomes for units that never participate in the treatment. This
sort of comparison is very much in the spirit of DiD and will correspond to a reasonable treatment
effect parameter under appropriate parallel trends assumptions. Similarly, under suitable parallel
trends assumptions, the terms in the second and third lines will correspond to treatment effects for
group g between periods k and T (the second line) and treatment effects for group g between periods
g and k − 1 (the third line). Therefore, the difference between these terms can be thought of as
some form of treatment effect dynamics. That means, in general, for this overall term to correspond
to a treatment effect parameter for group k, there needs to be no treatment effect dynamics for
group g—and, to be clear, treatment effect dynamics are not ruled out by any of the parallel trends
assumptions that we have considered above.

Finally, we consider the numerator (which is the main term) of δPOST,PRE(g, k) in Equation (S6).

Lemma S10. Under Assumptions 1-MP, 2-MP, and 3-MP, and for k > g,

E
[(
Ȳ POST (k) − Ȳ PRE(g))|G = g

]
− E

[(
Ȳ POST (k) − Ȳ PRE(g))|G = k

]
=

∫ dU

dL

(P(D ≥ l|G = g)− P(D ≥ l|G = k))
∂E[Ȳ POST (k) − Ȳ PRE(g)|G = g,D = l]

∂l
dl

−

{∫ dU

dL

P(D ≥ l|G = k)

(
∂E[Ȳ POST (k) − Ȳ PRE(g)|G = k,D = l]

∂l
− ∂E[Ȳ POST (k) − Ȳ PRE(g)|G = g,D = l]

∂l

)
dl

+ dL
E[Ȳ POST (k) − Ȳ PRE(g)|G = k,D = dL]− E[Ȳ POST (k) − Ȳ PRE(g)|D = 0]

dL

− dL
E[Ȳ POST (k) − Ȳ PRE(g)|G = g,D = dL]− E[Ȳ POST (k) − Ȳ PRE(g)|D = 0]

dL

}
.

Proof. First, by adding and subtracting terms

E
[(
Ȳ POST (k) − Ȳ PRE(g)

) ∣∣∣G = g
]
− E

[(
Ȳ POST (k) − Ȳ PRE(g)

) ∣∣∣G = k
]

= E
[(
Ȳ POST (k) − Ȳ PRE(g)

) ∣∣∣G = g
]
− E

[(
Ȳ POST (k) − Ȳ PRE(g)

) ∣∣∣D = 0
]

−
(
E
[(
Ȳ POST (k) − Ȳ PRE(g)

) ∣∣∣G = k
]
− E

[(
Ȳ POST (k) − Ȳ PRE(g)

) ∣∣∣D = 0
])

.

Then, using similar arguments as in Lemma S8 above, one can show that

E
[(
Ȳ POST (k) − Ȳ PRE(g)

) ∣∣∣G = g
]
− E

[(
Ȳ POST (k) − Ȳ PRE(g)

) ∣∣∣D = 0
]

=

∫ dU

dL

P(D ≥ l|G = g)
∂E[Ȳ POST (k) − Ȳ PRE(g)|G = g,D = l]

∂l
dl
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+ dL
E[Ȳ POST (k) − Ȳ PRE(g)|G = g,D = dL]− E[Ȳ POST (k) − Ȳ PRE(g)|D = 0]

dL

and that

E
[(
Ȳ POST (k) − Ȳ PRE(g)

) ∣∣∣G = k
]
− E

[(
Ȳ POST (k) − Ȳ PRE(g)

) ∣∣∣D = 0
]

=

∫ dU

dL

P(D ≥ l|G = k)
∂E[Ȳ POST (k) − Ȳ PRE(g)|G = k,D = l]

∂l
dl

+ dL
E[Ȳ POST (k) − Ȳ PRE(g)|G = k,D = dL]− E[Ȳ POST (k) − Ȳ PRE(g)|D = 0]

dL

Then, the result holds by adding and subtracting
∫ dU
dL

P(D ≥ l|G = k)∂E[Ȳ
POST (k)−Ȳ PRE(g)|G=g,D=l]

∂l dl

and combining terms.

Proof of Part (1) of Theorem S3

Proof. Starting from the result in Proposition S1, the expression for δWITHIN (g) comes from its
definition, the result in Lemma S7, and the definition of the weights wwithin

1 (g, l). The expres-
sion for δMID,PRE(g, k) comes from its definition, the result in Lemma S8, and the definitions
of w1(g, l) and w0(g). The expression for δPOST,MID(g, k) comes from combining its definition
with the result in Lemma S9, and the definitions of w1(k, l) and w0(k). Finally, the expression
for δPOST,PRE(g, k) comes from its definition, the result in Lemma S10, and the definitions of
wacross
1 (g, k, l), w̃across

1 (g, k, l), and w̃across
0 (g, k).

That wwithin
1 (g, d) ≥ 0, w1(g, d) ≥ 0, w0(g) ≥ 0 for all g ∈ G and d ∈ Dc

+ all hold immediately
from the definitions of the weights. That

∫ dU
dL

wwithin
1 (g, l) dl = 1,

∫ dU
dL

w1(g, l) dl + w0(g) = 1, and∫ dU
dL

wacross
1 (g, k, l) dl = 1 hold from the same sorts of arguments used to show that the weights

integrate to 1 in the proof of Theorem 3.4(a).

Notice that none of the previous results have invoked any sort of parallel trends assumption.
Next, we push forward the previous results once a researcher invokes parallel trends assumptions;
in Theorem S3, we consider the case where the researcher invoked Assumption SPT-MP, but here
we handle both that assumption and Assumption PT-MP (as in Theorem S3-Extended). To further
understand this, for 1 ≤ t1 < t2 ≤ T define

Ȳ
(t1,t2)
i (g, d) =

1

t2 − t1 + 1

t2∑
t=t1

Yi,t(g, t, d)

which averages potential outcomes from time periods t1 to t2 for unit i if they were in group g and
experienced dose d. Note that Ȳ

(t1,t2)
i = Ȳ

(t1,t2)
i (Gi, Di). Next, for t1 ≤ t2, define

ATT
(t1,t2)(g, d|g, d) = 1

t2 − t1 + 1

t2∑
t=t1

ATT (g, t, d|g, d) (S15)

which is the average treatment effect experienced by units in group g who experienced dose d averaged
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across periods from t1 to t2. Likewise, define

ATT
(t1,t2)(g, d) =

1

t2 − t1 + 1

t2∑
t=t1

ATT (g, t, d) (S16)

which is the average treatment effect of dose d among all units in group g averaged across periods
from t1 to t2. An alternative expression for ATT

(t1,t2)(g, d|g, d) is given by

ATT
(t1,t2)(g, d|g, d) = E

[
Ȳ (t1,t2)(g, d)− Ȳ (t1,t2)(0)|G = g,D = d

]
which holds by the definition of ATT (g, t, d|g, d) and changing the order of the expectation and
the average over time periods; here, E[Ȳ (t1,t2)(0)|G = g,D = d] is the average outcome that units in
group g that experienced dose d would have experienced if they had not participated in the treatment
between time periods t1 and t2. Similarly, for ATT

(t1,t2)(g, d),

ATT
(t1,t2)(g, d) = E

[
Ȳ (t1,t2)(g, d)− Ȳ (t1,t2)(0)|G = g

]
In addition, define

ACRT
(t1,t2)(g, d|g, d) = ∂ATT (g, l|g, d)

∂l

∣∣∣
l=d

and ACRT
(t1,t2)(g, d) =

∂ATT (g, d)

∂d
(S17)

which are the average causal response to a marginal increase in the dose among units in group g

conditional on having dose experienced dose d (for ACRT (g, d|g, d)) and the average causal response
to a marginal increase in the dose among all units in group g.

The next result connects derivatives of conditional expectations to ACRT (g, t, d|g, d) and
ACRT (g, t, d) parameters under parallel trends assumptions. This is similar to Theorems 3.2, 3.3,
and C.1 in the main text and to Theorem S2 above.

Lemma S11. Under Assumptions 1-MP, 2-MP, and 3-MP, and for 1 ≤ t1 ≤ t2 < g ≤ t3 ≤ t4 ≤ T

(i.e., t1 and t2 are pre-treatment periods for group g, and t3 and t4 are post-treatment periods for
group g), and for d ∈ Dc

+,

(1) If, in addition, Assumption PT-MP holds, then

∂E
[
Ȳ (t3,t4) − Ȳ (t1,t2)|G = g,D = d

]
∂d

= ACRT
(t3,t4)(g, d|g, d) + ∂ATT

(t3,t4)(g, d|g, l)
∂l

∣∣∣
l=d︸ ︷︷ ︸

selection bias

(2) If, in addition, Assumption SPT-MP holds, then

∂E
[
Ȳ (t3,t4) − Ȳ (t1,t2)|G = g,D = d

]
∂d

= ACRT
(t3,t4)(g, d)

Proof. For part (1), notice that, for 1 ≤ t1 ≤ t2 < g ≤ t3 ≤ t4 ≤ T (i.e., for group g, t1 and t2 are
pre-treatment time periods while t3 and t4 are post-treatment time periods), we can write

E
[
Ȳ (t3,t4) − Ȳ (t1,t2)

∣∣∣G = g,D = d
]
= E

[
Ȳ (t3,t4)(g, d)− Ȳ (t1,t2)(0)

∣∣∣G = g,D = d
]

= E
[
Ȳ (t3,t4)(g, d)− Ȳ (t3,t4)(0)

∣∣∣G = g,D = d
]

− E
[
Ȳ (t3,t4)(0)− Ȳ (t1,t2)(0)

∣∣∣G = g,D = d
]
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= ATT
(t3,t4)(g, d|g, d)

− E
[
Ȳ (t3,t4)(0)− Ȳ (t1,t2)(0)

∣∣∣G = g,D = d
]

where the first equality holds by writing observed outcomes in terms of their corresponding potential
outcomes, the second equality holds by adding and subtracting E

[
Ȳ (t3,t4)(0)

∣∣G = g,D = d
]
, and the

last equality holds by the definition of ATT (t3,t4)(g, d|g, d).
This equation looks very similar to DiD-type equations in simpler cases, such as when there are

two periods and two groups. The left-hand side is immediately identified. The right-hand side involves
a causal effect parameter of interest and an unobserved path of untreated potential outcomes that
would typically be handled using a parallel trends assumption.

In particular, under Assumption PT-MP,

E
[
Ȳ (t3,t4)(0)− Ȳ (t1,t2)(0)

∣∣∣G = g,D = d
]
= E

[
Ȳ (t3,t4)(0)− Ȳ (t1,t2)(0)

∣∣∣D = 0
]

which, importantly, does not vary across d or g. This suggests that, under Assumption PT-MP,

E
[
Ȳ (t3,t4) − Ȳ (t1,t2)

∣∣∣G = g,D = d
]
= ATT

(t3,t4)(g, d|g, d)− E
[
Ȳ (t3,t4)(0)− Ȳ (t1,t2)(0)

∣∣∣D = 0
]

Taking derivatives of both sides of the previous equation with respect to d implies the result.
For part (2), notice that,

E
[
Ȳ (t3,t4) − Ȳ (t1,t2)

∣∣∣G = g,D = d
]
= E

[
Ȳ (t3,t4)(g, d)− Ȳ (t1,t2)(0)

∣∣∣G = g,D = d
]

= E
[
Ȳ (t3,t4)(g, d)− Ȳ (t1,t2)(0)

∣∣∣G = g
]

= E
[
Ȳ (t3,t4)(g, d)− Ȳ (t3,t4)(0)

∣∣∣G = g
]

+ E
[
Ȳ (t3,t4)(0)− Ȳ (t1,t2)(0)

∣∣∣G = g
]

= ATT
(t3,t4)(g, d) + E

[
Ȳ (t3,t4)(0)− Ȳ (t1,t2)(0)

∣∣∣D = 0
]

where the first equality holds by writing observed outcomes in terms of their corresponding potential
outcomes, the second equality holds by Assumption SPT-MP, the third equality holds by adding and
subtracting E[Ȳ (t3,t4)(0)|G = g], and the last equality holds by the definition of ATT (t3,t4)(g, d) and
by Assumption SPT-MP. Taking derivatives of both sides implies the result for part (2).

The result in Lemma S11 says that, under Assumption PT-MP, the derivative of the path of
outcomes (averaged over some post-treatment periods) relative to some pre-treatment periods cor-
responds to averaging ACRT (g, t, d|g, d) across post-treatment time periods plus the derivative of
an averaged selection bias-type across some post-treatment time periods for group g. Similarly, un-
der Assumption SPT-MP, the derivative of the path of average outcomes in some post-treatment
periods relative to average outcomes in some pre-treatment periods corresponds to an average of
ACRT (g, t, d) across the same post-treatment time periods.

Lemma S12. Under Assumptions 1-MP, 2-MP, and 3-MP, and for 1 ≤ t1 ≤ t2 < g ≤ t3 ≤ t4 < k

(i.e., t1 and t2 are pre-treatment periods for both groups g and k, group g is treated before group k,
and t3 and t4 are post-treatment periods for group g but pre-treatment periods for group k),
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(1) If, in addition, Assumption PT-MP holds, then

dL
E
[
Ȳ (t3,t4) − Ȳ (t1,t2)|G = g,D = dL

]
− E

[
Ȳ (t3,t4) − Ȳ (t1,t2)|G = k

]
dL

= dL
ATT

(t3,t4)(g, dL|g, dL)
dL

(2) If, in addition, Assumption SPT-MP holds, then

dL
E
[
Ȳ (t3,t4) − Ȳ (t1,t2)|G = g,D = dL

]
− E

[
Ȳ (t3,t4) − Ȳ (t1,t2)|G = k

]
dL

= dL
ATT

(t3,t4)(g, dL)

dL

Proof. For part (1), notice that

E
[
Ȳ (t3,t4) − Ȳ (t1,t2)

∣∣∣G = g,D = dL

]
− E

[
Ȳ (t3,t4) − Ȳ (t1,t2)

∣∣∣G = k
]

= E
[
Ȳ (t3,t4)(g, dL)− Ȳ (t1,t2)(0)

∣∣∣G = g,D = dL

]
− E

[
Ȳ (t3,t4)(0)− Ȳ (t1,t2)(0)

∣∣∣G = k
]

= E
[
Ȳ (t3,t4)(g, dL)− Ȳ (t3,t4)(0)

∣∣∣G = g,D = dL

]
+
{
E
[
Ȳ (t3,t4)(0)− Ȳ (t1,t2)(0)

∣∣∣G = g,D = dL

]
− E

[
Ȳ (t3,t4)(0)− Ȳ (t1,t2)(0)

∣∣∣G = k
]}

= ATT
(t3,t4)(g, dL|g, dL)

where the first equality holds by writing observed outcomes in terms of their corresponding potential
outcomes, the second equality holds by adding and subtracting E

[
Ȳ (t3,t4)(0)|G = g,D = dL

]
, and the

last equality holds by the definition of ATT
(t3,t4)(g, dL|g, dL) and because the difference between the

two terms involving paths of untreated potential outcomes on the second line of the previous equality
is equal to 0 under Assumption PT-MP. Then, the result holds by multiplying and dividing by dL.

For part (2),

E
[
Ȳ (t3,t4) − Ȳ (t1,t2)

∣∣∣G = g,D = dL

]
− E

[
Ȳ (t3,t4) − Ȳ (t1,t2)

∣∣∣G = k
]

= E
[
Ȳ (t3,t4)(g, dL)− Ȳ (t1,t2)(0)

∣∣∣G = g,D = dL

]
− E

[
Ȳ (t3,t4)(0)− Ȳ (t1,t2)(0)

∣∣∣G = k
]

= E
[
Ȳ (t3,t4)(g, dL)− Ȳ (t1,t2)(0)

∣∣∣G = g
]
− E

[
Ȳ (t3,t4)(0)− Ȳ (t1,t2)(0)

∣∣∣G = k
]

= E
[
Ȳ (t3,t4)(g, dL)− Ȳ (t3,t4)(0)

∣∣∣G = g
]

+
{
E
[
Ȳ (t3,t4)(0)− Ȳ (t1,t2)(0)

∣∣∣G = g
]
− E

[
Ȳ (t3,t4)(0)− Ȳ (t1,t2)(0)

∣∣∣G = k
]}

= ATT
(t3,t4)(g, dL)

where the first equality holds by writing observed outcomes in terms of their corresponding potential
outcomes, the second equality holds by Assumption SPT-MP, the third equality holds by adding
and subtracting E[Ȳ (t3,t4)(0)|G = g], and the last equality holds by Assumption SPT-MP. The result
holds by multiplying and dividing by dL.

Proof of Part (2) of Theorem S3

Proof. The result holds immediately by using the results of Lemmas S11 and S12 in each of the
expressions for δWITHIN (g), δMID,PRE(g, k), δPOST,MID(g, k), and δPOST,PRE(g, k) in part (1) of
Theorem S3.
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Proof of Proposition S2

Proof. For part (a), we consider the nuisance term involving πPOST (k),PRE(g)(g)−πMID(g,k),PRE(g)(g)

in the expression for δPOST,MID(g, k) in part (2) of Theorem S3. Then, using similar arguments as
in Lemma S8 and then under Assumption SPT-MP, it follows that

πPOST (k),PRE(g)(g) = E
[
Ȳ POST (k) − Ȳ PRE(g)

∣∣∣G = g
]
− E

[
Ȳ POST (k) − Ȳ PRE(g)

∣∣∣D = 0
]

=

∫ dU

dL

P(D ≥ l|G = g)ACRT
POST (k)

(g, l) dl + dL
ATT

POST (k)
(g, dL)

dL

and that

πMID(g,k),PRE(g)(g) = E
[
Ȳ MID(g,k) − Ȳ PRE(g)

∣∣∣G = g
]
− E

[
Ȳ MID(g,k) − Ȳ PRE(g)

∣∣∣D = 0
]

=

∫ dU

dL

P(D ≥ l|G = g)ACRT
MID(g,k)

(g, l) dl + dL
ATT

MID(g,k)
(g, dL)

dL

Under Assumption S1(a), ACRT (g, t, d) and ATT (g, t, dL) do not vary over time which implies
that, for all g ∈ G and k ∈ G with k > g, ACRT

POST (k)
(g, l) = ACRT

MID(g,k)
(g, l) for all

l ∈ Dc
+ and ATT

POST (k)
(g, dL) = ATT

MID(g,k)
(g, dL). This implies that πPOST (k),PRE(g)(g) =

πMID(g,k),PRE(g)(g) which implies the result for part (a).

For part (b), we consider the two nuisance terms in the expression for δPOST,PRE(g, k) in part
(2) of Theorem S3. For the first one, notice that, under Assumption SPT-MP,

∂π
POST (k),PRE(g)
D (k, l)

∂l
−

∂π
POST (k),PRE(g)
D (g, l)

∂l
= ACRT

POST (k)
(k, l)−ACRT

POST (k)
(g, l)

= 0

for l ∈ Dc
+ and where the second equality holds by Assumption S1(b) (which implies that, for a

particular time period, ACRT (g, t, d) does not vary across groups).
For the second nuisance term, the same sort of arguments imply that

π
POST (k),PRE(g)
D (k, dL)− π

POST (k),PRE(g)
D (g, dL)

dL
=

ATT
POST (k)

(k, dL)−ATT
POST (k)

(g, dL)

dL

= 0

under Assumption S1(b).

Finally, for part (c), under Assumption S1(a), (b), and (c), ACRT (g, t, d) does not vary across
groups, time periods, or dose; since this does not vary, we denote it by ACRT for the remainder of the
proof. Moreover, from Theorem S3, we have that

∫ dU
dL

wwithin
1 (g, l) dl = 1,

∫ dU
dL

w1(g, l) dl+w0(g) = 1,
and that

∫ dU
dL

wacross
1 (g, k, l) = 1. From the first two parts of the current result, we also have that

the nuisance paths of outcomes in δPOST,MID(g, k) and δPOST,PRE(g, k) are both equal to 0 under
Assumption S1(a) and (b). This implies that, under the conditions for part (c), δWITHIN (g) =

δMID,PRE(g, k) = δPOST,MID(g, k) = δPOST,PRE(g, k) = ACRT . Finally, from Proposition S1,
we have that βtwfe is a weighted average of δMID,PRE(g, k), δPOST,MID(g, k), δPOST,MID(g, k), and
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δPOST,PRE(g, k). That these are all equal to each other implies that βtwfe = ACRT = ACRT glob.

Proof of Theorem S3-Extended

Proof. The result holds immediately by plugging in the results of part (1) of Lemmas S11 and S12 for
δWITHIN (g), δMID,PRE(g, k), δPOST,MID(g, k), and δPOST,PRE(g, k) in part (1) of Theorem S3.

SC Additional Theoretical Results

This appendix provides (and proves) a number of additional results that were referred to in the main
text.

SC.1 No Untreated Units

This section considers the causal interpretation of comparisons of paths of outcomes across dose
groups in settings with no untreated units under different versions of the parallel trends assumption.

Proposition S3. Under Assumptions 1, 2, 3, and PT,8 and for h, l ∈ D+,

E[∆Y |D = h]− E[∆Y |D = l] = ATT (h|h)−ATT (l|l)

Proof. Notice that

E[∆Y |D = h]− E[∆Y |D = l] = E[Yt=2(h)− Yt=1(0)|D = h]− E[Yt=2(l)− Yt=1(0)|D = l]

= E[Yt=2(h)− Yt=2(0)|D = h]− E[Yt=2(l)− Yt=2(0)|D = l]

+
(
E[Yt=2(0)− Yt=1(0)|D = h]− E[Yt=2(0)− Yt=1(0)|D = l]

)
= ATT (h|h)−ATT (l|l)

where the first equality holds by plugging in potential outcomes for observed outcomes, the second
equality holds by adding and subtracting E[Yt=2(0)|D = h] and E[Yt=2(0)|D = l], and the last equality
holds by the definition of ATT (d|d) and by Assumption PT.

The result in Proposition S3 is the same as in Theorem 3.2(b) in the main text, though the
proof technique is different here as there does not exist an untreated comparison group in the setting
considered here.

Next, we provide an analogous result under strong parallel trends.

Proposition S4. Under Assumptions 1, 2, 3, and SPT, and for h, l ∈ D+,

E[∆Y |D = h]− E[∆Y |D = l] = ATT (h)−ATT (l)

8To be fully precise, Assumption 2 needs to be modified here to allow for no untreated units. Likewise, the parallel
trends assumption in Assumption PT does not immediately apply to this setting because P(D = 0) = 0 here. Instead,
by parallel trends, we mean that E[Yt=2(0) − Yt=1(0)|D = d] = E[Yt=2(0) − Yt=1(0)] which says that the path of
untreated potential outcomes is the same across all dose groups. We do not state this as a separate assumption partly
for brevity but also because, in a setting where P(D = 0) > 0, the condition here is simply an alternative way to write
Assumption PT.
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Proof. Notice that

E[∆Y |D = h]− E[∆Y |D = l] = E[Yt=2(h)− Yt=1(0)|D = h]− E[Yt=2(l)− Yt=1(0)|D = l]

= E[Yt=2(h)− Yt=1(0)|D > 0]− E[Yt=2(l)− Yt=1(0)|D > 0]

= E[Yt=2(h)− Yt=2(0)|D > 0]− E[Yt=2(l)− Yt=2(0)|D > 0]

= ATT (h)−ATT (l)

where the first equality holds by replacing observed outcomes with corresponding potential outcomes,
the second equality holds by Assumption SPT, the third equality holds by canceling the E[Yt=1(0)|D >

0] terms from the previous line and by adding and subtracting E[Yt=2(0)|D > 0], and the last equality
holds by the definition of ATT (d).

SC.2 Additional TWFE Decomposition Results

This section provides some extensions and additional details related to the TWFE decompositions
discussed in Section 3.3 in the main text.

Additional Results for TWFE Levels Decomposition

This first part of this section derives the expression for βtwfe in Equation (3.1) in the main text which
relates βtwfe to a weighted average of “more treated” units (units that experienced a dose larger than
E[D]) relative to “less treated” units (units that were untreated or experienced a dose smaller than
E[D]) scaled by a weighted average of the difference in treatment experienced by these two groups.
Recalling that Theorem 3.4(b) in the main text showed that the “weights” integrated to 0, the second
part of this section integrates separately the positive and negative parts of those weights (which are
separated on the basis of whether or not d is greater than the mean dose E[D]). The takeaway is that
the positive weights do not integrate to 1 (nor do the negative weights integrate to −1), but rather
they integrate to the reciprocal of the weighted distance between the effective treated and effective
comparison group discussed in the main text. This provides an explicit connection between the levels
decomposition in Theorem 3.4 and the alternative expression for βtwfe provided in Equation (3.1) in
the main text.

Corollary S1. Under Assumptions 1, 2, 3, and 4(a),

βtwfe =
E
[
wbin
1 (D)∆Y

∣∣∣D > E[D]
]
− E

[
wbin
0 (D)∆Y

∣∣∣D ≤ E[D]
]

E
[
wbin
1 (D)D

∣∣∣D > E[D]
]
− E

[
wbin
0 (D)∆D

∣∣∣D ≤ E[D]
] . (S18)

If, in addition, Assumption PT also holds, then

βtwfe =
E
[
wbin
1 (D)ATT (D|D)

∣∣∣D > E[D]
]
− E

[
wbin
0 (D)ATT (D|D)

∣∣∣D ≤ E[D]
]

E
[
wbin
1 (D)D

∣∣∣D > E[D]
]
− E

[
wbin
0 (D)∆D

∣∣∣D ≤ E[D]
] . (S19)
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where

wbin
1 (d) :=

∣∣d− E[D]
∣∣

E
[∣∣D − E[D]

∣∣∣∣∣D > E[D]
]

wbin
0 (d) :=

∣∣d− E[D]
∣∣

E
[∣∣D − E[D]

∣∣∣∣∣D ≤ E[D]
]

which satisfy E
[
wbin
1 (D)

∣∣D > E[D]
]
= E

[
wbin
0

∣∣D ≤ E[D]
]
= 1.

Proof. To start with, recall that

βtwfe =
E[(D − E[D])∆Y ]

Var(D)
=:

βnum
βden

where we consider the numerator and denominator separately below. Next, notice that

0 = E[(D − E[D])]

= E
[
(D − E[D])

∣∣∣D ≤ E[D]
]
P(D ≤ E[D]) + E

[
(D − E[D])

∣∣∣D > E[D]
]
P(D > E[D])

where the second equality holds by the law of iterated expectations. Rearranging the previous ex-
pression, we have that

E
[
|D − E[D]|

∣∣∣D ≤ E[D]
]
P(D ≤ E[D]) = E

[
|D − E[D]|

∣∣∣D > E[D]
]
P(D > E[D]) =: δ

where the equality uses that the sign of (D−E[D]) is fully determined in both conditional expectations.
Next, similar to above, split the numerator of βtwfe on the basis of whether or not D > E[D]:

βnum = E
[
(D − E[D])∆Y

∣∣∣D > E[D]
]
P(D > E[D]) + E

[
(D − E[D])∆Y

∣∣∣D ≤ E[D]
]
P(D ≤ E[D])

and, now consider,

βnum
δ

= E

[
|D − E[D]|

E
[
|D − E[D]|

∣∣D > E[D]
]∆Y

∣∣∣D > E[D]

]
− E

[
|D − E[D]|

E
[
|D − E[D]|

∣∣D ≤ E[D]
]∆Y

∣∣∣D ≤ E[D]

]
= E

[
wbin
1 (D)∆Y

∣∣∣D > E[D]
]
− E

[
wbin
0 (D)∆Y

∣∣∣D ≤ E[D]
]

(S20)

which uses the two different expressions for δ given above. Also, notice that it also immediately
follows that E[wbin

1 (D)|D > E[D]] = E[wbin
0 |D ≤ E[D]] = 1. Thus, βnum/δ can be thought of as a

weighted average of the change in outcomes for units with D > E[D] relative to a weighted average
of the change in outcomes for units with D ≤ E[D], where the weights are larger for units with values
of D further away from E[D].

Similarly, since Var(D) = E[(D−E[D])D], we can apply the same argument to the denominator,
and show that

βden
δ

= E
[
wbin
1 (D)D

∣∣∣D > E[D]
]
− E

[
wbin
0 (D)D

∣∣∣D ≤ E[D]
]

(S21)

This can be thought of as a weighted average of D for units with D > E[D] relative to units with
D ≤ E[D], or, in other words, the distance between the mean of D for the “effective” treated group
relative to the “effective” comparison group given the weighting scheme discussed above. Taking the
ratio of Equations S20 and S21 completes the proof for the expression in Equation (S18). That the
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weights are positive and have mean one follows immediately from their definitions. The result in
Equation (S19) holds because

E
[
wbin
1 (D)∆Y

∣∣∣D > E[D]
]
= E

[
wbin
1 (D)E[∆Y |D]

∣∣∣D > E[D]
]

= E
[
wbin
1 (D)

(
E[∆Y |D]− E[∆Y |D = 0]

)∣∣∣D > E[D]
]
+ E[∆Y |D = 0]

= E
[
wbin
1 (D)ATT (D|D)

∣∣∣D > E[D]
]
+ E[∆Y |D = 0] (S22)

where the first equality holds by the law of iterated expectations, the second equality holds by adding
and subtracting E[∆Y |D = 0] and because E[∆Y |D = 0] is non-random and E

[
wbin
1 (D)

∣∣∣D > E[D]
]

has mean one, and the last equality holds under Assumption PT. The same sort of argument can be
used to show that

E
[
wbin
0 (D)∆Y

∣∣∣D ≤ E[D]
]
= E

[
wbin
0 (D)ATT (D|D)

∣∣∣D ≤ E[D]
]
+ E[∆Y |D = 0] (S23)

where, by construction, ATT (0|0) = 0. Taking the difference between the expressions in Equa-
tions (S22) and (S23) and then combining these expressions with the above results for Equation (S18)
completes the proof for the expression in Equation (S19).9

Corollary S2. Under Assumptions 1, 2, 3, and 4(a),

wlev
0 +

∫ E[D]

dL

wlev
1 dl =

∫ dU

E[D]
wlev
1 (l) dl =

1

E
[
wbin
1 (D)D

∣∣∣D > E[D]
]
− E

[
wbin
0 (D)D

∣∣∣D ≤ E[D]
]

where wbin
1 and wbin

0 are defined in Corollary S1.

Proof. We showed that wlev
0 +

∫ E[D]
dL

wlev
1 (l) dl =

∫ dU
E[D]w

lev
1 (l) dl in Theorem 3.4(b). Therefore, consider∫ dU

E[D]
wlev
1 (l) dl =

∫ dU

E[D]

(l − E[D])

Var(D)
fD(l) dl

=
E
[
|D − E[D]|

∣∣∣D > E[D]
]
P(D > E[D])

Var(D)

=
δ

βden

=
1

E
[
wbin
1 (D)D

∣∣∣D > E[D]
]
− E

[
wbin
0 (D)D

∣∣∣D ≤ E[D]
]

where the first equality holds by the definition of wlev
1 (l), the second equality holds by the law of

iterated expectations and because (D−E[D]) is positive conditional on D > E[D], the third equality
holds from the expressions for δ and βden in the proof of Corollary S1, and the last equality holds by
Equation (S21) above. This completes the proof.

9Notice that if we were to invoke Assumption SPT, a result analogous to the one in Equation (S19) holds with
ATT (D) replacing ATT (D|D).
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Scaled-Levels Decomposition for Fixed Dose

Next, we consider interpreting βtwfe as ATT (d)/d for some particular fixed value of d. This is similar
to the scaled-level effects discussed in Section 3.3 in the main text except that we fix d instead of
relating βtwfe to a weighted average of this type of scaled level effect across all values of the dose.

In this section and the next, we define the following weights

wdiff (d1, d2) :=
1

d2 − d1

ws,+
1 (d) :=

d− dL
d

Also, recall that we defined m∆(d) = E[∆Y |D = d] in the main text—we use this shorthand notation
in the results below.

Proposition S5. Under Assumptions 1, 2, 3, 4(a), and PT,

ATT (d|d)
d

− βtwfe =
(
1− ws,+

1 (d)
)ATT (dL|dL)

dL

(
1− wacr

0(
1− ws,+

1 (d)
))︸ ︷︷ ︸

+

∫ dU

dL

ws,+
1 (d)wdiff (d, dL)m

′
∆(l)

(
1− dwacr

1 (l)
)

︸ ︷︷ ︸ dl
−
{∫ dU

d
m′

∆(l)w
acr
1 (l) dl

}
where m′

∆(l) = ACRT (l|l) + ∂ATT (l|h)
∂h

∣∣∣
h=l

.
If Assumption SPT holds instead of Assumption PT, then the same sort of result holds with

ATT (d) replacing ATT (d|d) on the LHS of the previous equation and with m′
∆(l) = ACRT (l) on the

RHS of the previous equation.

Proof. To start with, consider the path of outcomes experienced by dose group d relative to the
untreated group scaled by d:

m∆(d)−m∆(0)

d
=

m∆(d)−m∆(dL)

d
+

m∆(dL)−m∆(0)

d

=
(d− dL)

d

m∆(d)−m∆(dL)

d− dL
+

dL
d

m∆(dL)−m∆(0)

dL

=
(d− dL)

d

∫ d
dL

m′
∆(l) dl

d− dL
+

dL
d

m∆(dL)−m∆(0)

dL

= ws,+
1 (d)

∫ d

dL

wdiff (d, dL)m
′
∆(l) dl +

(
1− ws,+

1 (d)
)m∆(dL)−m∆(0)

dL
(S24)

where the first equality holds by adding and subtracting m∆(dL)/d, the second equality holds by
multiplying and dividing the first term by (d − dL) and the second term by dL, the third equality
holds by the fundamental theorem of calculus, and the last line holds by the definitions of wdiff and
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ws,+
1 . Further, notice that the weights integrate/sum to 1:

ws,+
1 (d)

∫ d

dL

wdiff (d, dL) dl +
(
1− ws,+

1 (d)
)
=

(d− dL)

d

1

d− dL

∫ d

dL

dl︸ ︷︷ ︸
=1

+
dL
d

= 1

which suggests interpreting (m∆(d)−m∆(0))/d as an average of derivative-type terms. Then, using
a similar argument for βtwfe as the one used in Equation (S27) below and combining it with the
expression in Equation (S24), we have that

m∆(d)−m∆(0)

d
− βtwfe =

(
1− ws,+

1 (d)
)(m∆(dL)−m∆(0))

dL

(
1− wacr

0(
1− ws,+

1 (d)
))

+

∫ dU

dL

ws,+
1 (d)wdiff (d, dL)m

′
∆(l)

(
1− dwacr

1 (l)
)
dl

−
{∫ dU

d
m′

∆(l)w
acr
1 (l) dl

}
As in Theorem 3.1, under Assumption PT, m∆(d) − m∆(0) = ATT (d|d), and, as in Theorem 3.2,
m′

∆(l) = ACRT (l|l) + ∂ATT (l|h)
∂h

∣∣∣
h=l

(notice that this term includes selection bias). Under Assump-
tion SPT, m∆(d)−m∆(0) = ATT (d) and m′

∆(l) = ACRT (l). This completes the proof.

In other words, in general, βtwfe is not equal to ATT (d|d)/d (under parallel trends) or ATT (d)/d
(under strong parallel trends) for two reasons: (i) they put different weights on the same effects (the
underlined terms above), and (ii) the value of βtwfe additionally depends on effects of the treatment
for doses greater than d (the third term, in brackets, in the proposition).

Scaled-2× 2 Decomposition for Fixed Doses

Finally, we consider interpreting βtwfe as ATT (d2|d2)−ATT (d1|d1)
d2−d1

or ATT (d2)−ATT (d1)
d2−d1

for two fixed doses
d1 and d2 that satisfy dL < d1 < d2 < dU . This is similar to the scaled 2 × 2 effects discussed in
Section 3.3 except for that here we fix the values of d1 and d2 rather than relating βtwfe to a weighted
average of all possible scaled 2× 2 effects.

Proposition S6. Under Assumptions 1, 2, 3, 4(a), and PT and for dL < d1 < d2 < dU ,
ATT (d2|d2)−ATT (d1|d1)

d2 − d1
− βtwfe

=

∫ d2

d1

wdiff (d1, d2)m
′
∆(l)

(
1− (d2 − d1)w

acr
1 (l)

)
︸ ︷︷ ︸ dl

−
{∫ d1

dL

m′
∆(l)w

acr
1 (l) dl +

∫ dU

d2

m′
∆(l)w

acr
1 (l) dl + wacr

0

(m∆(dL)−m∆(0))

dL

}
where m′

∆(l) = ACRT (l|l) + ∂ATT (l|h)
∂h

∣∣∣
h=l

.
If Assumption SPT holds instead of Assumption PT, then the same sort of result holds with

ATT (d2) − ATT (d1) replacing ATT (d2|d2) − ATT (d1|d1) on the LHS of the previous equation and
with m′

∆(l) = ACRT (l) on the RHS of the previous equation.
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Proof. To start with, consider the path of outcomes under dose d2 relative to the path of outcomes
under dose d1 scaled by (d2 − d1), and notice that

m∆(d2)−m∆(d1)

d2 − d1
=

∫ d2

d1

1

d2 − d1
m′

∆(l) dl =

∫ d2

d1

wdiff (d1, d2)m
′
∆(l) dl (S25)

where the first equality holds by the law of iterated expectations, and the second equality by the
definition of wdiff . In addition, notice that the “weights” here integrate to one:∫ d2

d1

wdiff (d1, d2) dl =
1

d2 − d1

∫ d2

d1

dl = 1

Now, move to considering βtwfe. From Equation (A.6) in the proof of Theorem 3.4 in the main text,
we have that

βtwfe = E
[
(D − E[D])

Var(D)
(m∆(D)−m∆(dL))

∣∣∣D > 0

]
P(D > 0) + E

[
(D − E[D])

Var(D)
(m∆(dL)−m∆(0))

∣∣∣D > 0

]
P(D > 0)

Focusing on the first term in the above expression, and, again, from the proof of Theorem 3.4, we
have that

E
[
(D − E[D])

Var(D)
(m∆(D)−m∆(dL))

∣∣∣D > 0

]
P(D > 0)

=

∫ dU

dL

m′
∆(l)w

acr
1 (l) dl

=

{∫ d1

dL

m′
∆(l)w

acr
1 (l) dl +

∫ d2

d1

m′
∆(l)w

acr
1 (l) dl +

∫ dU

d2

m′
∆(l)w

acr
1 (l) dl

}
(S26)

where the second equality just splits the integral into three parts and, as in the main text, wacr
1 (l) =

(E[D|D≥l]−E[D])P(D≥l)
Var(D) . Taking the difference between the expressions in Equations S25 and S26, we

have that
m∆(d2)−m∆(d1)

d2 − d1
− βtwfe =

∫ d2

d1

wdiff (d1, d2)m
′
∆(l)

(
1− (d2 − d1)w

acr
1 (l)

)
︸ ︷︷ ︸ dl

−

{∫ d1

dL

m′
∆(l)w

acr
1 (l) dl +

∫ dU

d2

m′
∆(l)w

acr
1 (l) dl + wacr

0

(m∆(dL)−m∆(0))

dL

}
(S27)

where, as in the main text, wacr
0 = (E[D|D>0]−E[D])P(D>0)dL

Var(D) .
As in Theorem 3.2, under Assumption PT, m∆(d2) − m∆(d1) = ATT (d2|d2) − ATT (d1|d1) =

E[Yt=2(d2)−Yt=2(d1)|D = d2]+
(
ATT (d1|d2)−ATT (d2|d2)

)
and m′

∆(l) = ACRT (l|l)+ ∂ATT (l|h)
∂h

∣∣∣
h=l

(notice that both of these expressions also include selection bias). Under Assumption SPT, m∆(d2)−
m∆(d1) = ATT (d2)−ATT (d1) and m′

∆(l) = ACRT (l). This completes the proof.

This shows that, in general, βtwfe will be different from ATT (d2|d2)−ATT (d1|d1)
d2−d1

(under parallel
trends) or ATT (d2)−ATT (d1)

d2−d1
(under strong parallel trends) due to (i) different weights on underlying

derivative terms (i.e., m′
∆(l)) for values of l between d1 and d2 (this is the underlined term in

the expression in the proposition), and (ii) because βtwfe additionally depends on effects of the
treatment for values outside of [d1, d2] (this is the second term in curly brackets in the expression in
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the proposition).

SC.3 TWFE Decomposition with a Multi-Valued Discrete Treatment

The following theorem provides the discrete analog of Theorem 3.4 from the main text. The weights
in the decomposition are the same ones as those used in the main text, which are reported in Table 1
in the main text, with the exception that fD(l) should be understood as pl in the discrete case. In
this section, we continue to use the notation m∆(d) = E[∆Y |D = d].

Theorem S4. Under Assumptions 1, 2, 3, 4(b), and PT, βtwfe can be decomposed in the following
ways:

(a) Causal Response Decomposition:

βtwfe =
∑

dj∈Dmv
+

wacr
1 (dj)(dj − dj−1)

{
ACRT (dj |dj) +

(
ATT (dj−1|dj)−ATT (dj−1|dj−1)

)
dj − dj−1︸ ︷︷ ︸

selection bias

}

where the weights, wacr
1 (dj)(dj − dj−1) are always positive and sum to 1.

(b) Levels Decomposition:

βtwfe =
∑

dj∈Dmv
+

wlev
1 (dj)ATT (dj |dj)

where wlev
1 (dj) ≶ 0 for dj ≶ E[D], and

∑
dj∈Dmv

+

wlev
1 (dj) + wlev

0 = 0.

(c) Scaled Levels Decomposition:

βtwfe =
∑

dj∈Dmv
+

ws(dj)
ATT (dj |dj)

dj
,

where ws(dj) ≶ 0 for dj ≶ E[D], and
∑

dj∈Dmv
+

ws(dj) = 1.

(d) Scaled 2× 2 Decomposition

βtwfe =
∑
l∈D

∑
h∈D,h>l

w2×2
1 (l, h)


E[Yt=2(h)− Yt=2(l)|D = h]

h− l︸ ︷︷ ︸
causal response

+

(
ATT (l|h)−ATT (l|l)

)
h− l︸ ︷︷ ︸

selection bias


where the weights are always positive and sum to 1.

If one imposes Assumption SPT instead of Assumption PT, then the selection bias terms from part
(a) and part (d) become zero, and the remainder of the decompositions remain true, except one needs
to replace ACRT (dj |dj) with ACRT (dj) in part (a), ATT (dj |dj) with ATT (dj) in parts (b) and (c),
and E[Yt=2(h)− Yt=2(l)|D = h] with E[Yt=2(h)− Yt=2(l)|D > 0] in part (d).
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Proof of Theorem S4

We follow the same proof strategy as for the continuous case in the main text and mainly emphasize
the parts of the proof that are different from those in the continuous case. As in the continuous case,
our strategy is to provide a mechanical decomposition in terms of m∆(d) = E[∆Y |D = d]. Then,
given those results, the main results in the theorem hold because, under Assumption PT

• m∆(dj)−m∆(0) = ATT (dj |dj)

• m∆(dj)−m∆(dj−1)
dj−dj−1

= ACRT (dj |dj) +
ATT (dj−1|dj)−ATT (dj−1|dj−1)

dj − dj−1︸ ︷︷ ︸
selection bias

• For h, l ∈ Dmv
+ , m∆(h) − m∆(l) = ATT (h|h) − ATT (l|l) = E[Yt=2(h) − Yt=2(l)|D = h] +(

ATT (l|h)−ATT (l|l)
)

︸ ︷︷ ︸
selection bias

or, when Assumption SPT holds,

• m∆(dj)−m∆(0) = ATT (dj)

• m∆(dj)−m∆(dj−1)
dj−dj−1

= ACRT (dj)

• For h, l ∈ Dmv
+ , m∆(h)−m∆(l) = ATT (h)−ATT (l) = E[Yt=2(h)− Yt=2(l)|D > 0]

Proof of Theorem S4(a)

Proof. Notice that,

βtwfe = E
[
(D − E[D])

Var(D)
(m∆(D)−m∆(0))

]
=

1

Var(D)

∑
d∈D

(d− E[D])(m∆(d)−m∆(0))pd

=
1

Var(D)

∑
d∈D

(d− E[D])pd
∑

dj∈Dmv
+

1{dj ≤ d}(m∆(dj)−m∆(dj−1))

=
1

Var(D)

∑
dj∈Dmv

+

(m∆(dj)−m∆(dj−1))
∑
d∈D

(d− E[D])1{d ≥ dj}pd

=
∑

dj∈Dmv
+

(m∆(dj)−m∆(dj−1))
(E[D|D ≥ dj ]− E[D])P(D ≥ dj)

Var(D)

=
∑

dj∈Dmv
+

wacr
1 (dj)(dj − dj−1)

(m∆(dj)−m∆(dj−1))

(dj − dj−1)

where the second equality holds by writing the expectation as a summation, the third equality holds
by adding and subtracting m∆(dj) for all dj ’s between 0 and d, the fourth equality holds by changing
the order of the summations, the fifth equality writes the second summation as an expectation, and
the last equality holds by the definition of the weights and by multiplying and dividing by (dj−dj−1).
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That wacr
1 (dj)(dj − dj−1) > 0 holds immediately since wacr

1 (dj) ≥ 0 for all dj ∈ Dmv
+ and dj > dj−1.

Further, ∑
dj∈Dmv

+

wacr
1 (dj)(dj − dj−1)

=

 ∑
dj∈Dmv

+

E[1{D ≥ dj}D](dj − dj−1)− E[D]
∑

dj∈Dmv
+

P(D ≥ dj)(dj − dj−1)

/Var(D)

= (A−B)/Var(D)

We consider each of these terms in turn:

A =
∑

dj∈Dmv
+

∑
dk∈D

1{dk ≥ dj}dkpdk(dj − dj−1)

=
∑
dk∈D

pdkdk
∑

dj∈Dmv
+ ,dj≤dk

(dj − dj−1)

=
∑
dk∈D

pdkdk(dk − 0)

= E[D2]

where the first equality holds by writing the expectation for Term A as a summation, the second
equality holds by re-ordering the summations, the third equality holds by canceling all the duplicate
dj terms across summations (and because d0 = 0), and the last equality holds by the definition of
E[D2].

Next,

B = E[D]
∑

dj∈Dmv
+

∑
dk∈D

1{dk ≥ dj}pdk(dj − dj−1)

= E[D]
∑
dk∈D

pdk
∑

dj∈Dmv
+ ,dj≤dk

(dj − dj−1)

= E[D]
∑
dk∈D

dkpdk

= E[D]2

where the first equality holds by writing the expectation for Term B as a summation, the second
equality holds by re-ordering the summations, the third equality holds by canceling all the duplicate
dj terms across summations (and because d0 = 0), and the last equality holds by the definition of
E[D].

This implies that A−B = Var(D), which implies that the weights sum to 1.

Proof of Theorem S4(b)

Proof. The proof is analogous to the continuous case in Theorem 3.4(b) in the main text except for
replacing the integral with a summation and fD(l) with pl. Then the result holds by the definition
of wlev.
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Proof of Theorem S4(c)

Proof. The proof is analogous to the continuous case in Theorem 3.4(c) in the main text except for
replacing the integral with a summation and fD(l) with pl. Then the result holds by the definition
of ws.

Proof of Theorem S4(d)

Proof. Up to Equation (A.14) in the main text, the steps of the proof of Theorem 3.4(d) for the
continuous case carry over to the discrete case. Under Assumption 4(b),

Equation (A.14) = 1

Var(D)

∑
l∈D

∑
h∈D,h>l

(h− l)2
(m∆(h)−m∆(l))

(h− l)
phpl

which holds immediately from Equation (A.14) and then the result holds by the definition of w2×2
1 .

That the weights are positive and sum to 1 holds by the same type of argument as used in the
continuous case.

SD Relaxing Strong Parallel Trends

In this section, we provide more details about the three possible ideas to weaken the strong parallel
trends assumption that were discussed in Section 5 in the main text.

SD.1 Partial Identification

To start with, we consider the case where a researcher only wishes to invoke parallel trends (As-
sumption PT) but is willing to assume that the sign of the selection bias is known. Without loss of
generality, we focus on the case where there is positive selection bias in the sense that, for dose d

and any two dose groups l and h with l < h, we have that ATT (d|l) ≤ ATT (d|h)—this is positive
selection bias in that the ATT of any dose is higher for the high dose group, h, relative to the low
dose group, l. The following result shows that, under this sort of condition, we can construct bounds
on differences between causal effect parameters at different values of the dose.

Proposition S7. Under Assumptions 1, 2, 3, 4(a), and PT and suppose without loss of generality
that for any d ∈ D+ and l < h, ATT (d|l) < ATT (d|h), then the following results hold

(1) E[Yt=2(h)− Yt=2(l)|D = h] ≤ E[∆Y |D = h]− E[∆Y |D = l] = ATT (h|h)−ATT (l|l)

(2) ACRT (d|d) ≤ ∂E[∆Y |D = d]

∂d

Proof. For part (1), from Theorem 3.2(a) in the main text, we have that, under Assumption PT,

E[∆Y |D = h]− E[∆Y |D = l] = ATT (h|h)−ATT (l|l)

= E[Yt=2(h)− Yt=2(l)|D = h] +
(
ATT (l|h)−ATT (l|l)

)
︸ ︷︷ ︸

≥0
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≥ E[Yt=2(h)− Yt=2(l)|D = h]

where the last inequality holds due to the positive selection bias.
For part (2), from Theorem 3.2(b) in the main text, we have that

∂E[∆Y |D = d]

∂d
= ACRT (d|d) + ∂ATT (d|l)

∂l

∣∣∣∣∣
l=d︸ ︷︷ ︸

≥0

≥ ACRT (d|d)

where the last inequality holds due to the positive selection bias.

Part (1) of Proposition S7 says that, given positive selection bias, the average causal response of
the high dose, h, relative to the low dose, l, for the high dose group is bounded by comparing the
average path of outcomes over time for the high dose group relative to the low dose group. Part (2)
says that, under positive selection bias, the ACRT (d|d) is bounded by the derivative of E[∆Y |D = d]

with respect to d.

SD.2 Local Strong Parallel Trends

In this section, we consider a local strong parallel trends assumption where, as discussed in the main
text, strong parallel trends holds in some sub-region Ds ⊆ D+. As discussed in the main text, we
focus on identifying a local causal effect parameter given by E[Yt=2(h)−Yt=2(l)|D ∈ Ds] for h, l ∈ Ds.
This is the average causal effect of experiencing dose h relative to dose l among all dose groups that
experienced a treatment in Ds. We consider the following assumption

Assumption Local-SPT. For all d ∈ Ds ⊆ D+,

E[Yt=2(d)− Yt=1(0)|D ∈ Ds] = E[Yt=2(d)− Yt=1(0)|D = d]

This assumption is similar to Assumption SPT from the main text with the difference being that
it holds locally to the sub-region Ds. It is also different in spirit from Assumption PT as it does not
require the dose groups in Ds to be experiencing the same trend in untreated potential outcomes as
the untreated group. Next, we show that, for h, l ∈ Ds, the average causal effect of experiencing dose
h relative to dose l across dose groups in Ds, E[Yt=2(h) − Yt=2(l)|D ∈ Ds], is identified under this
assumption.

Proposition S8. Under Assumptions 1, 2, 3, 4(a), and Local-SPT, and for h, l ∈ Ds

E[Yt=2(h)− Yt=2(l)|D ∈ Ds] = E[∆Y |D = h]− E[∆Y |D = l]

Proof. For any h, l ∈ Ds, we have that

E[Yt=2(h)− Yt=2(l)|D ∈ Ds] = E[Yt=2(h)− Yt=1(0)|D ∈ Ds]− E[Yt=2(l)− Yt=1(0)|D ∈ Ds]

= E[Yt=2(h)− Yt=1(0)|D = h]− E[Yt=2(l)− Yt=1(0)|D = l]

= E[∆Y |D = h]− E[∆Y |D = l]
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where the first equality holds by adding and subtracting E[Yt=1(0)|D ∈ Ds], the second equality
uses Local-SPT, and the last equality holds by replacing potential outcomes with their observed
counterparts.

An immediate corollary to the previous result is that a local version of ACRT (d) is also identified:
∂E[Yt=2(d)|D ∈ Ds]

∂d
=

∂E[∆Y |D = d]

∂d
for d in the interior of Ds—notice that there are no selection

bias terms in this expression which is due to this being a version of strong parallel trends.

SD.3 Strong Parallel Trends Conditional-on-Covariates

In this section, we consider a conditional-on-covariates version of strong parallel trends that can
be used to recover conditional versions of ATT (d) parameters. We target ATTx(d) := E[Yt=2(d) −
Yt=2(0)|X = x,D > 0]. We consider the following assumption

Assumption SPT-X. For all d ∈ D,

E[Yt=2(d)− Yt=1(0)|X = x,D > 0] = E[Yt=2(d)− Yt=1(0)|X = x,D = d]

This is a conditional-on-covariates version of strong parallel trends. The following result shows
that ATTx(d) is identified under this condition.

Proposition S9. Under Assumptions 1, 2, 3, 4(a), and SPT-X,10

ATTx(d) = E[∆Y |X = x,D = d]− E[∆Y |X = x,D = 0]

Proof. For any d ∈ D+, we have that

ATTx(d) = E[Yt=2(d)− Yt=2(0)|X = x,D > 0]

= E[Yt=2(d)− Yt=1(0)|X = x,D > 0]− E[Yt=2(0)− Yt=1(0)|X = x,D > 0]

= E[Yt=2(d)− Yt=1(0)|X = x,D = d]− E[Yt=2(0)− Yt=1(0)|X = x,D = 0]

= E[∆Y |X = x,D = d]− E[∆Y |X = x,D = 0],

where the first equality holds by the definition of ATTx(d), the second equality holds by adding and
subtracting E[Yt=1(0)|X = x,D > 0], the third equality holds by Assumption SPT-X, and the last
equality by replacing potential outcomes with their observed counterparts.

An immediate corollary to the previous result is that the conditional on covariates version of
ACRT (d) is also identified. In particular, ACRTx(d) :=

∂ATTx(d)

∂d
=

∂E[∆Y |X = x,D = d]

∂d
. Notice

that there is no selection bias term in this expression.
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