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This supplementary appendix provides a number of additional results for “Difference-in-

Differences with a Continuous Treatment”. Appendix SA presents proof of the results in Theorem 3.4

in Section 3.3 on interpreting TWFE regressions with a continuous treatment. Appendix SB con-

tains more details about the setting with multiple time periods and variation in treatment timing

and dose intensity, and it expands upon the results provided in Appendix C in the main text. This

section also presents several results on interpreting TWFE regressions in the multiple-period setting.

Appendix SC provides proofs for all the results in the main text and in the supplementary appendix

concerning multiple periods and variation in treatment timing and dose intensity. Appendix SD pro-

vides results and proofs for a number of additional results that were discussed in the main text: results

for settings with no untreated units; additional results for TWFE decompositions with a continuous

treatment; and TWFE decompositions with a multi-valued discrete treatment. Finally, Appendix SE

provides results on relaxing the strong parallel trends assumption, which was briefly discussed in

Section 5.1 in the main text.

SA Proofs of Results from Section 3.3 of the Main Text

This section contains the proofs of the results in Theorem 3.4 in Section 3.3 on interpreting TWFE

regressions with a continuous treatment. To conserve on notation, we define

m∆(d) = E[∆Y |D = d],

We divide the proofs according to each part of the theorem. In the proof, we derive all the results in

terms of m∆(d). The result in Theorem 3.4 is stated in terms of various causal building block param-

eters. Those results follow immediately from the ones below by noting that, under Assumption PT,

• m∆(d)−m∆(0) = ATT (d|d)

• m′
∆(d) = ACRT (d|d) + ∂ATT (d|h)

∂h

∣∣∣
h=d︸ ︷︷ ︸

selection bias

∗University of Georgia. Email: brantly.callaway@uga.edu
†Federal Reserve Bank of Minneapolis and NBER. Email: andrew@goodman-bacon.com
‡Emory University. Email: pedro.santanna@emory.edu

1

mailto:brantly.callaway@uga.edu
mailto:andrew@goodman-bacon.com
mailto:pedro.santanna@emory.edu


• m∆(h)−m∆(l) = ATT (h|h)−ATT (l|l) = E[Yt(h)− Yt(l)|D = h] +
(
ATT (l|h)−ATT (l|l)

)
︸ ︷︷ ︸

selection bias

or, when Assumption SPT holds,

• m∆(d)−m∆(0) = ATT (d)

• m′
∆(d) = ACRT (d)

• m∆(h)−m∆(l) = ATT (h)−ATT (l) = E[Yt=2(h)− Yt=2(l)|D > 0]

Proof of Theorem 3.4(a)

Proof. First, notice that Equation (1.1) is equivalent to

∆Yi = (θt=2 − θt=1) + βtwfeDi +∆vi,t (S1)

which holds by taking first differences and because all units are untreated in the first period. There-

fore, it immediately follows that

βtwfe =
E[(D − E[D])∆Y ]

Var(D)

= E
[
(D − E[D])

Var(D)
(m∆(D)−m∆(0))

]
= E

[
(D − E[D])

Var(D)
(m∆(D)−m∆(0))

∣∣∣D > 0

]
P(D > 0)

= E
[
(D − E[D])

Var(D)
(m∆(D)−m∆(dL))

∣∣∣D > 0

]
P(D > 0)

+ E
[
(D − E[D])

Var(D)
(m∆(dL)−m∆(0))

∣∣∣D > 0

]
P(D > 0) (S2)

= A1 +A2

where the first equality holds because Equation (S1) is a simple linear regression of ∆Y on an

intercept and D, the second equality holds by the law of iterated expectations and because E[(D −
E[D])m∆(0)] = 0, the third equality holds because E[m∆(D) − m∆(0)|D = 0] = 0, and the fourth

equality holds by adding and subtracting m∆(dL) inside the expectation.

We consider A1 and A2 separately next. First, for A1,

A1 = E
[
(D − E[D])

Var(D)
(m∆(D)−m∆(dL))

∣∣∣D > 0

]
P(D > 0)

=
P(D > 0)

Var(D)

∫ dU

dL

(k − E[D])(m∆(k)−m∆(dL)) dFD|D>0(k)

=
P(D > 0)

Var(D)

∫ dU

dL

(k − E[D])

∫ k

dL

m′
∆(l) dl dFD|D>0(k)

=
P(D > 0)

Var(D)

∫ dU

dL

(k − E[D])

∫ dU

dL

1{l ≤ k}m′
∆(l) dl dFD|D>0(k)

=
P(D > 0)

Var(D)

∫ dU

dL

m′
∆(l)

∫ dU

dL

(k − E[D])1{l ≤ k} dFD|D>0(k) dl
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=
P(D > 0)

Var(D)

∫ dU

dL

m′
∆(l)E[(D − E[D])1{l ≤ D}|D > 0] dl

=
P(D > 0)

Var(D)

∫ dU

dL

m′
∆(l)E[(D − E[D])|D ≥ l]P(D ≥ l|D > 0) dl

=

∫ dU

dL

m′
∆(l)

(E[D|D ≥ l]− E[D])P(D ≥ l)

Var(D)
dl (S3)

where the first equality is the definition of A1, the second equality holds by rearranging terms and

writing the expectation as an integral, the third equality holds by the fundamental theorem of calculus,

the fourth equality rewrites the inner integral so that it is over dL to dU , the fifth equality holds by

changing the order of integration and rearranging terms, the sixth equality holds by rewriting the

inner integral as an expectation, the seventh equality holds by the law of iterated expectations (and

since D ≥ l =⇒ D > 0), and the last equality holds by combining terms.

Next, for A2, it immediately holds that

A2 = E
[
(D − E[D])

Var(D)
(m∆(dL)−m∆(0))

∣∣∣D > 0

]
P(D > 0)

=
(E[D|D > 0]− E[D])P(D > 0)dL

Var(D)

(m∆(dL)−m∆(0))

dL
(S4)

where the first equality is the definition of A2, and the second equality holds by multiplying and

dividing by dL.

Then, the first result in Part (a) holds by combining Equations (S3) and (S4). That the weights

are all positive holds immediately since (E[D|D ≥ l]− E[D]) > 0 for all l ≥ dL, P(D ≥ l) > 0 for all

l ≥ dL, (E[D|D > 0]− E[D]) > 0, P(D > 0) > 0, and Var(D) > 0.

Next, we next show that
∫ dU
dL

wacrt
1 (l) dl + wacrt

0 = 1. First, notice that∫ dU

dL

wacrt
1 (l) dl + wacrt

0 =
1

Var(D)

{∫ dU

dL

E[D|D ≥ l]P(D ≥ l) dl

− E[D]

∫ dU

dL

P(D ≥ l) dl

+ E[D|D > 0]P(D > 0)dL

− E[D]P(D > 0)dL

}
=

1

Var(D)

{
B1 −B2 +B3 −B4

}
and we consider B1, B2, B3, and B4 in turn.

For B1, first notice that for all l ∈ Dc
+,

E[D|D ≥ l]P(D ≥ l) = E[D1{D ≥ l}|D ≥ l]P(D ≥ l)

= E[D1{D ≥ l}] (S5)
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which holds by the law of iterated expectations and implies that

B1 =

∫ dU

dL

E[D|D ≥ l]P(D ≥ l) dl

=

∫ dU

dL

∫
D
d1{d ≥ l} dFD(d) dl

=

∫
D
d

(∫ dU

dL

1{l ≤ d} dl
)

dFD(d)

=

∫
D
d(d− dL) dFD(d)

= E[D2]− E[D]dL (S6)

where the first line is the definition of B1, the second equality holds by Equation (S5), the third

equality holds by changing the order of integration, the fourth equality holds by carrying out the

inner integration, and the last equality holds by rewriting the integral as an expectation.

Next, for term B2,

B2 = E[D]

∫ dU

dL

P(D ≥ l) dl

= E[D]P(D > 0)

∫ dU

dL

P(D ≥ l|D > 0) dl

= E[D]P(D > 0)

∫ dU

dL

∫ dU

dL

1{d ≥ l} dFD|D>0(d) dl

= E[D]P(D > 0)

∫ dU

dL

(∫ dU

dL

1{l ≤ d} dl
)

dFD|D>0(d)

= E[D]P(D > 0)

∫ dU

dL

(d− dL) dFD|D>0(d)

= E[D]P(D > 0)
(
E[D|D > 0]− dL

)
= E[D]2 − E[D]P(D > 0)dL (S7)

where the first equality is the definition of B2, the second equality holds by the law of iterated

expectations, the third equality holds by writing P(D ≥ l|D > 0) as an integral, the fourth equality

changes the order of integration, the fifth equality carries out the inside integration, the sixth equality

rewrites the integral as an expectation, and the last equality holds by combining terms and by the

law of iterated expectations.

Next,

B3 = E[D|D > 0]P(D > 0)dL

= E[D]dL (S8)

which holds by the law of iterated expectations. And finally, recall that

B4 = E[D]P(D > 0)dL (S9)
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Thus, from Equations (S6) to (S9), it follows that

B1 −B2 +B3 −B4 = E[D2]− E[D]2 = Var(D)

which implies the result.

Proof of Theorem 3.4(b)

Proof. From the proof of Part (a), we have that

βtwfe =
P(D > 0)

Var(D)
E
[
(D − E[D])(m∆(D)−m∆(0))

∣∣∣D > 0
]

=
P(D > 0)

Var(D)

∫ dU

dL

(l − E[D])(m∆(l)−m∆(0)) dFD|D>0(l)

=
1

Var(D)

∫ dU

dL

(l − E[D])(m∆(l)−m∆(0))fD(l) dl

=

∫ dU

dL

wlev
1 (l)(m∆(l)−m∆(0)) dl

where the second equality holds by writing the expectation as an integral, the third equality holds

under Assumption 4(a), and the last equality holds by the definition of wlev
1 .

Next, we show the properties of the weights for this part of the theorem. The weights can be

negative since l can be less than E[D]. To see that the weights integrate to zero, first note that

wlev
0 (m∆(0)−m∆(0)) = 0, so that the previous expression for βtwfe can equivalently be written as

βtwfe =

∫ dU

dL

wlev
1 (l)(m∆(l)−m∆(0)) dl + wlev

0 (m∆(0)−m∆(0))

Then, notice that∫ dU

dL

wlev
1 (l) dl + wlev

0 =

(∫ dU

dL

(l − E[D]) dFD(l) + (0− E[D])P(D = 0)

)/
Var(D)

=

(∫
D
(l − E[D]) dFD(l)

)/
Var(D)

= (E[D]− E[D])/Var(D)

= 0

where the first equality holds by the definitions of wlev
1 and wlev

0 , the second equality combines terms,

and the third and fourth equalities hold immediately. This completes the proof.

Proof of Theorem 3.4(c)

Proof. From the proof of Theorem 3.4(a), we have that

βtwfe =
P(D > 0)

Var(D)
E
[
(D − E[D])(m∆(D)−m∆(0))

∣∣∣D > 0
]

=
P(D > 0)

Var(D)

∫ dU

dL

(l − E[D])(m∆(l)−m∆(0)) dFD|D>0(l)
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=
P(D > 0)

Var(D)

∫ dU

dL

(l − E[D])l
(m∆(l)−m∆(0))

l
dFD|D>0(l)

=
1

Var(D)

∫ dU

dL

(l − E[D])l
(m∆(l)−m∆(0))

l
fD(l) dl

=

∫ dU

dL

ws(l)
(m∆(l)−m∆(0))

l
dl

where the second equality holds by writing the expectation as an integral, the third equality holds by

multiplying and dividing by l, the fourth equality holds under Assumption 4(a), and the last equality

holds by the definition of ws.

The weights can be negative because it is possible that l < E[D] for some values of l ∈ Dc
+. That

the weights integrate to 1 holds because∫ dU

dL

ws(l) dl =

(∫ dU

dL

(l − E[D])l dFD(l) + (0− E[D]) 0P(D = 0)

)/
Var(D)

=

(∫
D
(l − E[D])l dFD(l)

)/
Var(D)

= (E[D2]− E[D]2)
/
Var(D) = 1

where the first equality uses the definition of the weights and that (0 − E[D]) 0P(D = 0) = 0, the

second equality comes from combining terms, and the last line holds immediately.

Proof of Theorem 3.4(d)

Proof. From the proof of part (a), we have that

β = E
[
(D − E[D])

Var(D)
m∆(D)

]
=

1

Var(D)

∫
D
(h− E[D])m∆(h) dFD(h)

=
1

Var(D)

∫
D

(
h−

∫
D
l dFD(l)

)
m∆(h) dFD(h)

=
1

Var(D)

∫
D

∫
D
(h− l)m∆(h) dFD(h) dFD(l)

=
1

Var(D)

∫
D

∫
D,h>l

(h− l)(m∆(h)−m∆(l)) dFD(h) dFD(l)

=
1

Var(D)

∫
D

∫
D,h>l

(h− l)2
(m∆(h)−m∆(l))

(h− l)
dFD(h) dFD(l) (S10)

where the second equality holds by writing the expectation as an integral, the third equality by

writing E[D] as an integral, the fourth equality rearranges terms, the fifth equality holds because the

integrations are symmetric, and the last equality holds by multiplying and dividing by (h− l).

The above arguments hold if the treatment is continuous or discrete. Under Assumption 4(a),

Equation (S10) =
1

Var(D)

∫ dU

dL

∫
D,h>l

(h− l)2
(m∆(h)−m∆(l))

(h− l)
fD(h)fD(l) dh dl

6



+
1

Var(D)

∫ dU

dL

h2
m∆(h)−m∆(0)

h
fD(h)P(D = 0) dh

which holds by splitting up the first integral in Equation (S10) by whether l ∈ Dc
+ or l = 0. Then,

the first part of this result holds by the definition of w2×2
1 and w2×2

0 .

That the weights are all positive holds immediately by their definitions. That the weights integrate

to one holds because∫ dU

dL

∫
D,h>l

w2×2,cont
1 (l, h) dh dl +

∫ dU

dL

w2×2,cont
0 (h) dh =

1

Var(D)

∫
D

∫
D
1{h > l}(h− l)2 dFD(h) dFD(l)

=
1

2

∫
D

∫
D
(h− l)2 dFD(h) dFD(l)

/
Var(D)

= 1

where the first equality holds by combining the integrals and the definition of the weights (it amounts

to re-writing the integrals as in Equation (S10)), the second equality holds because
∫
D
∫
D 1{h >

l}(h − l)2 dFD(h) dFD(l) =
∫
D
∫
D 1{h ≤ l}(h − l)2 dFD(h) dFD(l) (and these two terms add up to

the expression on the next line), and the third equality holds because the double integral is equal to

2Var(D). This completes the proof.

SB Additional Details for Multiple Periods and Variation in Treat-

ment Timing and Dose

The first part of this section provides some additional identification results for settings with multiple

periods. The second part reverse engineers a linear TWFE regression in the case with multiple periods

and variation in treatment timing.

SB.1 Additional Identification Results with Multiple Periods

This section contains two identification results for settings with multiple time periods that supplement

the results in Appendix C in the main text and are useful for some later parts of the Supplementary

Appendix.

Theorem S1. Under Assumptions 1-MP, 2-MP(a), 3-MP, and SPT-MP, and for all g ∈ Ḡ, t =

2, . . . , T such that t ≥ g, and for all d ∈ D+,

ATT (g, t, d) = E[Yt − Yg−1|G = g,D = d]− E[Yt − Yg−1|Wt = 0]

Theorem S1 complements Theorem C.1 from the main text and shows that, if one invokes strong

parallel trends, then the same estimand that identifies ATT (g, t, d|g, d) under parallel trends, identifies
ATT (g, t, d).

Finally, for this section, we show that the same sort of selection bias terms as we emphasized in

the main text can show up when making comparisons across doses (and, hence, show up in causal

response parameters) in a setting with multiple periods and variation in treatment timing and dose
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under parallel trends assumptions. And, also like in the main text, strong parallel trends can be used

to eliminate these selection bias terms.

Theorem S2. Under Assumptions 1-MP, 2-MP, and 3-MP, and for all g ∈ Ḡ, t = 2, . . . , T such

that t ≥ g, and for all d ∈ Dc
+,

(1) If, in addition, Assumption PT-MP holds, then

∂

∂d
E[Yt − Yg−1|G = g,D = d] =

∂

∂d
ATT (g, t, d|g, d)

= ACRT (g, t, d|g, d) + ∂ATT (g, t, d|g, l)
∂l

∣∣∣∣∣
l=d︸ ︷︷ ︸

selection bias

.

(2) If, in addition, Assumption SPT-MP holds, then

∂

∂d
E[Yt − Yg−1|G = g,D = d] =

∂

∂d
ATT (g, t, d) = ACRT (g, t, d).

The proof of Theorem S2 is provided in Appendix SC. Theorem S2 provides an analogous result

for the case with multiple periods and variation in treatment timing and dose to Theorems 3.2 and 3.3

in the main text.

SB.2 TWFE estimators with multiple time periods and variation in treatment

timing

In applications with multiple periods and variation in treatment timing and dose, empirical researchers

typically estimate the TWFE regression

Yi,t = θt + ηi + βtwfeWi,t + vi,t. (S11)

where Wi,t = Di1{t ≥ Gi}. Equation (S11) is the same as the TWFE regression in the baseline case

with two periods in Equation (1.1) in the main text, only with the notation slightly adjusted to match

the setup of this section. In the main text, we related βtwfe to several different types of causal effect

parameters (see Theorem 3.4 in the main text). In this section, we provide related results for the

setting with multiple time periods and variation in treatment timing with a particular emphasis on

the comparisons underlying βtwfe and in causal interpretations (especially causal response interpreta-

tions) of βtwfe in the presence of treatment effect heterogeneity. The results in this section generalize

the results in several recent papers on TWFE estimates, including Goodman-Bacon (2021) and de

Chaisemartin and D’Haultfoeuille (2020), to our staggered DiD setup with variation in treatment

intensity. In this section, we modify our previous notation slightly by setting Gi = T + 1 for units

that do not participate in the treatment in any period (rather than Gi = ∞), which simplifies the

exposition in several places in this section.

To start with, write population versions of TWFE adjusted variables as

Ẅi,t = (Wi,t − W̄i)−

(
E[Wt]−

1

T

T∑
t=1

E[Wt]

)
, where W̄i =

1

T

T∑
t=1

Wi,t.
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The estimand for βtwfe in Equation (S11) is given by

βtwfe =

1

T

T∑
t=1

E[Ẅi,tYi,t]

1

T

T∑
t=1

E[Ẅ 2
i,t]

. (S12)

We present both a “mechanical” decomposition of the TWFE estimator and a “causal” decom-

position of the estimand that relates assumptions to interpretation. To define these decompositions,

we introduce a bit of new notation. First, define the fraction of periods that units in group g spend

treated as

Ḡg =
T − (g − 1)

T
.

For the untreated group g = T + 1 so that ḠT+1 = 0.

Next, we define time periods over which averages are taken. For averaging variables across time

periods, we use the following notation, for t1 ≤ t2,

Ȳ
(t1,t2)
i =

1

t2 − t1 + 1

t2∑
t=t1

Yi,t.

It is also convenient to define some particular averages across time periods. For two time periods g

and k, with k > g, (below, g and k will often index groups defined by treatment timing), we define

Ȳ
PRE(g)
i = Ȳ

(1,g−1)
i , Ȳ

MID(g,k)
i = Ȳ

(g,k−1)
i , Ȳ

POST (k)
i = Ȳ

(k,T )
i , Ȳ

POST (g)
i = Ȳ

(g,T )
i .

Ȳ
PRE(g)
i is the average outcome for unit i in periods 1 to g − 1, Ȳ

MID(g,k)
i is the average outcome

for unit i in periods g to k − 1, and Ȳ
POST (k)
i is the average outcome for unit i in periods k to T .

Below, when g and k index groups, Ȳ
PRE(g)
i is the average outcome for unit i in periods before units

in either group are treated, Ȳ
MID(g,k)
i is the average outcome for unit i in periods after group g has

become treated but before group k has been treated, and Ȳ
POST (k)
i is the average outcome for unit

i after both groups have become treated.

Following Goodman-Bacon (2021), we motivate the decomposition of the TWFE estimand by

considering the four types of simple DiD estimands that can be formed using only one source of

variation. The first comparison is a within-treatment-group comparison of paths of outcomes among

units that experienced different amounts of the treatment.

δWITHIN (g) =
Cov(Ȳ POST (g) − Ȳ PRE(g), D|G = g)

Var(D|G = g)
. (S13)

The second comparison is based on treatment timing. It compares paths of outcomes between a

particular timing group g and a “later-treated” group k (i.e., k > g) in the periods after group g is

9



treated but before group k becomes treated relative to their common pre-treatment periods.1

δMID,PRE(g, k) =
E
[(
Ȳ MID(g,k) − Ȳ PRE(g)

)
|G = g

]
− E

[(
Ȳ MID(g,k) − Ȳ PRE(g)

)
|G = k

]
E[D|G = g]

. (S14)

Note that this term encompasses comparisons of group g to the “never-treated” group.

The third comparison is between paths of outcomes for the “later-treated” group k in its post-

treatment period relative to a pre-treatment period adjusted by the same path of outcomes for the

“early-treated” group g.

δPOST,MID(g, k) =
E
[(
Ȳ POST (k) − Ȳ MID(g,k)

)
|G = k

]
− E

[(
Ȳ POST (k) − Ȳ MID(g,k)

)
|G = g

]
E[D|G = k]

.

(S15)

It is undesirable that this term shows up in the expression for βtwfe, as it uses the already-treated

group g as the comparison group for group k.

The final comparison that shows up in the TWFE estimand is between paths of outcomes between

“early” and “late” treated groups in their common post-treatment periods relative to their common

pre-treatment periods. In other words, this comparison comes from the “endpoints” where the two

timing groups are either both untreated or both treated with possibly different average doses.

δPOST,PRE(g, k) =
E
[(
Ȳ POST (k) − Ȳ PRE(g)

)
|G = g

]
− E

[(
Ȳ POST (k) − Ȳ PRE(g)

)
|G = k

]
E[D|G = g]− E[D|G = k]

. (S16)

Next, we show how βtwfe weights these simple DiD terms together and discuss its theoretical

interpretation under parallel trends assumptions. To characterize the weights, first, define pg =

P(G = g) and

pg|{g,k} = P(G = g|G ∈ {g, k}).

We also define the following weights, which measure the variance of the treatment variable used to

estimate each of the simple DiD terms in equations Equations (S13) to (S16).

wg,within(g) = Var(D|G = g)(1− Ḡg)Ḡgpg

/
1

T

T∑
t=1

E[Ẅ 2
i,t],

wg,post(g, k) = E[D|G = g]2(1− Ḡg)(Ḡg − Ḡk)(pg + pk)
2pg|{g,k}(1− pg|{g,k})

/
1

T

T∑
t=1

E[Ẅ 2
i,t],

wk,post(g, k) = E[D|G = k]2Ḡk(Ḡg − Ḡk)(pg + pk)
2pg|{g,k}(1− pg|{g,k})

/
1

T

T∑
t=1

E[Ẅ 2
i,t],

wlong(g, k) = (E[D|G = g]− E[D|G = k])2Ḡk(1− Ḡg)(pg + pk)
2pg|{g,k}(1− pg|{g,k})

/
1

T

T∑
t=1

E[Ẅ 2
i,t].

Our next result combines the simple DiD terms and their variance weights to provide a mechanical

decomposition of βtwfe in DiD setups with variation in treatment timing and variation in treatment

intensity.

1Each of the following expressions also includes a term in the denominator. Below, this term is useful for interpreting
differences across groups as partial effects of more treatment, but, for now, we largely ignore the expressions in the
denominator. That being said, the denominator is important to the definition of each term.
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Proposition S1. Under Assumptions 1-MP, 2-MP(a), and 3-MP, βtwfe in Equation (S11) can be

written as

βtwfe =
∑
g∈G

wg,within(g)δWITHIN (g)

+
∑
g∈G

∑
k∈G,k>g

{
wg,post(g, k)δMID,PRE(g, k) + wk,post(g, k)δPOST,MID(g, k) + wlong(g, k)δPOST,PRE(g, k)

}
.

In addition, (i) wg,within(g) ≥ 0, wg,post(g, k) ≥ 0, wk,post(g, k) ≥ 0, and wlong(g, k) ≥ 0 for all g ∈ G
and k ∈ G with k > g, and (ii)

∑
g∈G w

g,within(g)+
∑

g∈G
∑

k∈G,k>g

{
wg,post(g,k)(g, k)+wk,post(g, k)+

wlong(g, k)
}
= 1.

Proposition S1 generalizes the decomposition theorem for binary staggered timing designs in

Goodman-Bacon (2021) to our setup with variation in treatment intensity. Notice that it does not

require Assumption 2-MP(b) and is, therefore, compatible with a binary, multi-valued, continuous,

or mixed treatment. It says that βtwfe can be written as a weighted average of the four comparisons

in Equations (S13) to (S16). These weights are all positive and sum to one.

Proposition S1 provides a new, explicit description of what kinds of comparisons TWFE uses to

compute βtwfe, but it does not on its own provide guidance on how to interpret TWFE estimates.

Next, we analyze the theoretical interpretation of each of these simple DiD estimands under different

assumptions and then discuss what this implies about the (arguably implicit) identifying assumptions

and estimand for TWFE. We need to introduce additional notation that applies to the underlying

causal parameters in the DiD terms in Equations (S13) through (S16):

wwithin
1 (g, l) =

(
E[D|G = g,D ≥ l]− E[D|G = g]

)
Var(D|G = g)

P(D ≥ l|G = g),

w1(g, l) =
P(D ≥ l|G = g)

E[D|G = g]
, w0(g) =

dL
E[D|G = g]

,

wacross
1 (g, k, l) =

(P(D ≥ l|G = g)− P(D ≥ l|G = k))

(E[D|G = g]− E[D|G = k])
,

w̃across
1 (g, k, l) =

P(D ≥ l|G = k)

(E[D|G = g]− E[D|G = k])
, w̃across

0 (g, k) =
dL

(E[D|G = g]− E[D|G = k])
.

In addition, define the following differences in paths of outcomes over time

πPOST (k̃),PRE(g̃)(g) = E
[(
Ȳ POST (k̃) − Ȳ PRE(g̃)

) ∣∣∣G = g
]
− E

[(
Ȳ POST (k̃) − Ȳ PRE(g̃)

) ∣∣∣D = 0
]
,

πMID(g̃,k̃),PRE(g̃)(g) = E
[(
Ȳ MID(g̃,k̃) − Ȳ PRE(g̃)

) ∣∣∣G = g
]
− E

[(
Ȳ MID(g̃,k̃) − Ȳ PRE(g̃)

) ∣∣∣D = 0
]
,

πPOST (k̃),MID(g̃,k̃)(g) = E
[(
Ȳ POST (k̃) − Ȳ MID(g̃,k̃)

) ∣∣∣G = g
]
− E

[(
Ȳ POST (k̃) − Ȳ MID(g̃,k̃)

) ∣∣∣D = 0
]
,

and, similarly,

π
POST (k̃),PRE(g̃)
D (g, d) = E

[(
Ȳ POST (k̃) − Ȳ PRE(g̃)

) ∣∣∣G = g,D = d
]
− E

[(
Ȳ POST (k̃) − Ȳ PRE(g̃)

) ∣∣∣D = 0
]
,

π
MID(g̃,k̃),PRE(g̃)
D (g, d) = E

[(
Ȳ MID(g̃,k̃) − Ȳ PRE(g̃)

) ∣∣∣G = g,D = d
]
− E

[(
Ȳ MID(g̃,k̃) − Ȳ PRE(g̃)

) ∣∣∣D = 0
]
,

π
POST (k̃),MID(g̃,k̃)
D (g, d) = E

[(
Ȳ POST (k̃) − Ȳ MID(g̃,k̃)

) ∣∣∣G = g,D = d
]
− E

[(
Ȳ POST (k̃) − Ȳ MID(g̃,k̃)

) ∣∣∣D = 0
]
,

which are the same paths of outcomes but conditional on having dose d.
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The following result is our main result on interpreting TWFE estimates with a continuous treat-

ment.

Theorem S3. Under Assumptions 1-MP, 2-MP, and 3-MP,

(1) The four comparisons in Equations (S13) to (S16) can be written as

δWITHIN (g) =

∫ dU

dL

wwithin
1 (g, l)

∂π
POST (g),PRE(g)
D (g, l)

∂l
dl,

δMID,PRE(g, k) =

∫ dU

dL

w1(g, l)
∂π

MID(g,k),PRE(g)
D (g, l)

∂l
dl + w0(g)

π
MID(g,k),PRE(g)
D (g, dL)

dL

− w0(g)
πMID(g,k),PRE(g)(k)

dL
,

δPOST,MID(g, k) =

∫ dU

dL

w1(k, l)
∂π

POST (k),MID(g,k)
D (k, l)

∂l
dl + w0(k)

πPOST (k),MID(g,k)(k, dL)

dL

− w0(k)

(
πPOST (k),PRE(g)(g)− πMID(g,k),PRE(g)(g)

dL

)
,

δPOST,PRE(g, k) =

∫ dU

dL

wacross
1 (g, k, l)

∂π
POST (k),PRE(g)
D (g, l)

∂l
dl

−

{∫ dU

dL

w̃across
1 (g, k, l)

(
∂π

POST (k),PRE(g)
D (k, l)

∂l
−

∂π
POST (k),PRE(g)
D (g, l)

∂l

)
dl

+ w̃across
0 (g, k)

(
π
POST (k),PRE(g)
D (k, dL)− π

POST (k),PRE(g)
D (g, dL)

dL

)}
.

(2) If, in addition, Assumption SPT-MP holds, then

δWITHIN (g) =

∫ dU

dL

wwithin
1 (g, l)ACRT

POST (g)
(g, l)dl,

δMID,PRE(g, k) =

∫ dU

dL

w1(g, l)ACRT
MID(g,k)

(g, l) dl + w0(g)
ATT

MID(g,k)
(g, dL)

dL
,

δPOST,MID(g, k) =

∫ dU

dL

w1(k, l)ACRT
POST (k)

(k, l) dl + w0(k)
ATT

POST (k)
(k, dL)

dL

− w0(k)

(
πPOST (k),PRE(g)(g)− πMID(g,k),PRE(g)(g)

dL

)
,

δPOST,PRE(g, k) =

∫ dU

dL

wacross
1 (g, k, l)ACRT

POST (k)
(g, l) dl

−

{∫ dU

dL

w̃across
1 (g, k, l)

(
∂π

POST (k),PRE(g)
D (k, l)

∂l
−

∂π
POST (k),PRE(g)
D (g, l)

∂l

)
dl

+ w̃across
0 (g, k)

(
π
POST (k),PRE(g)
D (k, dL)− π

POST (k),PRE(g)
D (g, dL)

dL

)}
.
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In addition, (i) wwithin
1 (g, d) ≥ 0, w1(g, d) ≥ 0, and w0(g) ≥ 0, for all g ∈ G and d ∈ Dc

+ and (ii)∫ dU
dL

wwithin
1 (g, l) dl = 1,

∫ dU
dL

w1(g, l) dl + w0(g) = 1, and
∫ dU
dL

wacross
1 (g, k, l) dl = 1.

Part (1) of Theorem S3 links the four sets of comparisons in the TWFE estimator in Proposition S1

to derivatives of conditional expectations along with some additional (nuisance) paths of outcomes.

Part (2) of Theorem S3 imposes the multi-period version of strong parallel trends in Assumption SPT-

MP. Under Assumption SPT-MP, δWITHIN (g) and δMID,PRE(g, k) both deliver weighted averages of

ACRT -type parameters. However, δPOST,MID(g, k) and δPOST,PRE(g, k) still involve non-negligible

nuisance terms. Under Assumption SPT-MP, the additional term in δPOST,MID(g, k) involves the

difference between treatment effects for group g in group k’s post-treatment periods relative to treat-

ment effects for group g in the periods after group g is treated but before group k is treated—that

is, treatment effect dynamics. Parallel trends assumptions do not imply that this term is equal to 0.

And, in the special case where the treatment is binary, this term corresponds to the “problematic”

term related to treatment effect dynamics in Goodman-Bacon (2021).

The additional nuisance term in δPOST,PRE(g, k) involves differences in partial effects of more

treatment across groups in their common post-treatment periods. Parallel trends does not restrict

these partial effects to be equal to each other. This term does not show up in the case with a binary

treatment because, by construction, the distribution of the dose is the same across groups. It is

helpful to further consider where this expression comes from. For simplicity, temporarily suppose

that the partial effect of more dose is positive and constant across groups, time, and dose. In this

case, if group g has more dose on average than group k, then its outcomes should increase more from

group g and k’s common pre-treatment period to their common post-treatment period. This is the

comparison that shows up in δPOST,PRE(g, k). However, when partial effects are not the same across

groups and times (which is not implied by any parallel trends assumption), then, for example, it

could be the case that the partial effect of dose is positive for all groups and time periods but greater

for group k relative to group g. If these differences are large enough, it could lead to the cross-group,

long-difference comparisons in δPOST,PRE(g, k) having the opposite sign.

Next, we discuss what sort of extra conditions can (i) guarantee that βtwfe is a (pos-

itively) weighted average of underlying causal responses or (ii) for βtwfe = ACRT glob :=

E
[
ACRT dose(D)

∣∣∣G ≤ T
]
, i.e., the overall average causal response.2 To do so, we introduce re-

strictions on different types of treatment effect heterogeneity.

Assumption S1 (Assumptions Limiting Treatment Effect Heterogeneity).

(a) [No Treatment Effect Dynamics] For all g ∈ Ḡ and t ≥ g (i.e, post-treatment periods for group

g), ACRT (g, t, d) and ATT (g, t, dL) do not vary with t.

(b) [Homogeneous Causal Responses across Groups] For all g ∈ Ḡ with t ≥ g and k ∈ Ḡ with

t ≥ k, ACRT (g, t, d) = ACRT (k, t, d) and ATT (g, t, dL) = ATT (k, t, dL).

(c) [Homogeneous Causal Responses across Dose] For all g ∈ Ḡ with t ≥ g, ACRT (g, t, d) does

not vary across d, and, in addition, ATT (g, t, dL)/dL = ACRT (g, t, d).

2ACRT dose(d) is the “global” version of ACRT dose(d|d) from the main text. It is defined as ∂ATTdose(d)
∂d

where

ATT dose(d) := E[TE(d)|G ≤ T ].
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Assumption S1 introduces three additional conditions limiting treatment effect heterogeneity. As-

sumption S1(a) imposes that, within a timing-group, the causal response to the treatment does not

vary across time, which rules out treatment effect dynamics. Assumption S1(b) imposes that, for

a fixed time period, causal responses to the treatment are constant across timing-groups. Assump-

tion S1(c) imposes that, within timing-group and time period, the causal response to more dose is

constant across different values of the dose.

Proposition S2. Under Assumptions 1-MP, 2-MP, 3-MP, and SPT-MP,

(a) If, in addition, Assumption S1(a) holds, then

δPOST,MID(g, k) =

∫ dU

dL

w1(k, l)ACRT
POST (k)

(k, l) dl + w0(k)
ATT

POST (k)
(k, dL)

dL
.

(b) If, in addition, Assumption S1(b) holds, then

δPOST,PRE(g, k) =

∫ dU

dL

wacross
1 (g, k, l)ACRT

POST (k)
(g, l) dl.

(c) If, in addition, Assumption S1(a), (b), and (c) hold, then

βtwfe = ACRT glob.

Proposition S2 provides additional conditions under which the nuisance terms in δPOST,MID(g, k)

and δPOST,PRE(g, k) are equal to 0. For δPOST,MID(g, k), these nuisance terms will be equal to 0 if

there are no treatment effect dynamics; that is, the causal response to more dose does not vary across

time. Ruling out these sorts of treatment effect dynamics is analogous to the kinds of conditions

that are required to rule out negative weights in TWFE estimates with a binary treatment. For

δPOST,PRE(g, k), the nuisance terms will be equal to 0 if there are homogeneous causal responses

across groups—that the causal response to more dose is the same across groups conditional on having

the same amount of dose and being in the same time period. Neither of these assumptions is implied

by any of the parallel trends assumptions that we have considered, and they are both potentially very

strong. Therefore, under both Assumption S1(a) and (b), βtwfe is equal to a weighted average of

average causal response parameters, but these weights continue to be driven by the TWFE estimation

strategy and, like in the baseline two-period case, can continue to deliver poor estimates of the overall

average causal response to the treatment. If all of the conditions in Assumption S1(a), (b), and (c)

hold, then it implies that ACRT (g, t, d) does not vary by timing group, time period, or the amount

of dose, and part (c) of Proposition S2 says that βtwfe is equal to the overall average causal response

under these additional, strong conditions.

SC Proofs of Results from Appendix C and Appendix SB

This section contains the proofs of results from Appendix C and Appendix SB, which encompass our

results on DiD with a continuous treatment and with multiple periods and variation in treatment

timing and dose intensity.
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SC.1 Proof of Results from Appendix C

This section proves Theorem C.1, Theorem S1, and Theorem S2.

Proof of Theorem C.1

Proof. For the first part, notice that

ATT (g, t, d|g, d) = E[Yt(g, d)− Yt(0)|G = g,D = d]

= E[Yt(g, d)− Yg−1(0)|G = g,D = d]− E[Yt(0)− Yg−1(0)|G = g,D = d]

= E[Yt(g, d)− Yg−1(0)|G = g,D = d]−
t∑

s=g

E[Ys(0)− Ys−1(0)|G = g,D = d]

= E[Yt(g, d)− Yg−1(0)|G = g,D = d]−
t∑

s=g

E[Ys(0)− Ys−1(0)|Wt = 0]

= E[Yt(g, d)− Yg−1(0)|G = g,D = d]− E[Yt(0)− Yg−1(0)|Wt = 0]

= E[Yt − Yg−1|G = g,D = d]− E[Yt − Yg−1|Wt = 0]

where the first equality is the definition of ATT (g, t, d|g, d), the second equality holds by adding and

subtracting E[Yg−1(0)|G = g,D = d], the third equality holds by adding and subtracting E[Ys(0)|G =

g,D = d] for s = g, . . . , (t−1), the fourth equality holds under Assumption PT-MP, the fifth equality

holds by canceling all the terms involving E[Ys(0)|Wt = 0] for s = g, . . . , (t − 1) (i.e., from the

reverse of the argument for the third equality), and the last equality holds from writing the potential

outcomes in terms of their observed counterparts.

For the second part, notice that

ACRT (g, t, d|g, d) = ∂

∂l

{
E [Yt(g, l)|G = g,D = d]

}∣∣∣∣∣
l=d

=
∂

∂l

{
E [Yt(g, l)− Yg−1(0)|G = g,D = d]

}∣∣∣∣∣
l=d

=
∂

∂l

{
E [Yt(g, l)− Yg−1(0)|G = g,D = l]

}∣∣∣∣∣
l=d

=
∂E[Yt − Yg−1|G = g,D = d]

∂d

where the first equality holds by the definition of ACRT (g, t, d|g, d), the second equality holds by

subtracting E[Yg−1(0)|G = g,D = d] (which does not depend on l and, hence, has zero derivative),

the third equality holds by Assumption SPT-MP, and the last equality holds by replacing potential

outcomes with their observed counterpart and evaluating the partial derivative at l = d.

Proof of Theorem S1

Proof. Notice that,

ATT (g, t, d) = E[Yt(g, d)− Yt(0)|G = g]
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= E[Yt(g, d)− Yg−1(g, d)|G = g]− E[Yt(0)− Yg−1(0)|G = g]

=
t∑

s=g

E[Ys(g, d)− Ys−1(g, d)|G = g]−
t∑

s=g

E[Ys(0)− Ys−1(0)|G = g]

=

t∑
s=g

E[Ys(g, d)− Ys−1(g, d)|G = g,D = d]−
t∑

s=g

E[Ys(0)− Ys−1(0)|Wt = 0]

= E[Yt(g, d)− Yg−1(g, d)|G = g,D = d]− E[Yt(0)− Yg−1(0)|Wt = 0]

= E[Yt − Yg−1|G = g,D = d]− E[Yt − Yg−1|Wt = 0]

where the first equality holds by the definition of ATT (g, t, d), the second equality adds and subtracts

E[Yg−1(g, d)|G = g] (this equation also uses the no anticipation condition in Assumption 3-MP which

implies that E[Yg−1(g, d)|G = g] = E[Yg−1(0)|G = g]), the third equality holds by writing both “long

differences” as summations over “short differences”, the fourth equality holds by Assumption SPT-

MP, the fifth equality holds by canceling all of the intermediate terms in the summations over short

differences, and the last equality holds by writing potential outcomes in terms of their corresponding

observed outcomes and is the result.

Proof of Theorem S2

Proof. To start with, notice that

∂

∂d
E[Yt − Yg−1|G = g,D = d] =

∂

∂d

{
E[Yt − Yg−1|G = g,D = d]− E[Yt − Yg−1|Wt = 0]

}
(S17)

which holds because the second term does not depend on d. Thus, under Assumption PT-MP, we

have that

∂

∂d
E[Yt − Yg−1|G = g,D = d] =

∂

∂d
ATT (g, t, d|g, d)

= ACRT (g, t, d|g, d) + ∂ATT (g, t, d|g, l)
∂l

∣∣∣∣∣
l=d

where the first equality holds by Equation (S17) and Theorem C.1, and the second equality holds by

the linearity of differentiation and the definition of ACRT (g, t, d|g, d).
Under Assumption SPT-MP, we have that

∂

∂d
E[Yt − Yg−1|G = g,D = d] =

∂

∂d
ATT (g, t, d)

= ACRT (g, t, d)

where the first equality holds by Equation (S17) and Theorem S1, and the second equality holds by

the definition of ACRT (g, t, d). This completes the proof.

SC.2 Proofs of Results from Appendix SB.2

This section contains the proofs for interpreting TWFE regressions in the case with a continuous

treatment, multiple periods, and variation in treatment timing as in Appendix SB.2.
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Before proving the main results in this section, we introduce some additional notation. Let

v(g, t) = 1{t ≥ g} − Ḡg (S18)

where the term 1{t ≥ g} is equal to one in post-treatment time periods for units in group g and

recalling that we defined Ḡg = T−g+1
T which is the fraction of periods that units in group g are

exposed to the treatment (and notice that this latter term does not depend on the particular time

period t). Further, notice that v(g, t) is positive in post-treatment time periods and negative in pre-

treatment time periods for units in a particular group. Finally, also note that, for the “never-treated”

group, g = T + 1, so that both terms in the expression for v are equal to 0.

Furthermore, recall that, for 1 ≤ t1 ≤ t2 ≤ T , we defined

Ȳ
(t1,t2)
i =

1

t2 − t1 + 1

t2∑
t=t1

Yi,t

where below (and following the notation used throughout the paper), we sometimes leave the subscript

i implicit.

We next state and prove some additional results that are helpful for proving the main results. The

first lemma rewrites (overall) expected dose experienced in period t adjusted by the overall expected

dose (across periods and units) in a form that is useful in proving later results.

Lemma S1. Under Assumptions 1-MP, 2-MP(a), and 3-MP,

E[Wt]−
1

T

T∑
s=1

E[Ws] =
∑
g∈G

∫
D
dv(g, t) dFD|G(d|g)pg

Proof. First, notice that

E[Wt] =
∑
g∈G

∫
D
E[Wt|G = g,D = d] dFD|G(d|g)pg

=
∑
g∈G

∫
D
d1{t ≥ g} dFD|G(d|g)pg (S19)

where the first equality holds by the law of iterated expectations and the second equality holds

because, after conditioning on group and dose, Wt is fully determined. Thus,

E[Wt]−
1

T

T∑
s=1

E[Ws] =
∑
g∈G

∫
D
d1{t ≥ g} dFD|G(d|g)pg −

1

T

T∑
s=1

∑
g∈G

∫
D
d1{s ≥ g} dFD|G(d|g)pg

=
1

T

T∑
s=1

∑
g∈G

∫
D
d (1{t ≥ g} − 1{s ≥ g}) dFD|G(d|g)pg

=
∑
g∈G

∫
D
d

{
1

T

T∑
s=1

1{t ≥ g} − 1{s ≥ g}

}
dFD|G(d|g)pg

=
∑
g∈G

∫
D
d

{
1{t ≥ g} − T − g + 1

T

}
dFD|G(d|g)pg
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=
∑
g∈G

∫
D
dv(g, t) dFD|G(d|g)pg

where the first equality applies Equation (S19) to both terms, the second equality combines terms by

averaging the first term across time periods, the third equality re-orders the summations/integrals,

the fourth equality holds because 1{t ≥ g} does not depend on s and by counting the fraction of

periods where s ≥ g, and the last equality holds by the definition of v(g, t).

The next lemma provides an intermediate result for the expression for the numerator of βtwfe in

Equation (S12).

Lemma S2. Under Assumptions 1-MP, 2-MP(a), and 3-MP,

1

T

T∑
t=1

E[Ẅi,tYi,t] =
1

T

T∑
t=1

{∑
g∈G

∫
D
d (E[Yt|G = g,D = d]− E[Yt]) v(g, t) dFD|G(d|g)pg

}

Proof. Starting with the term on the left-hand side, we have that

1

T

T∑
t=1

E[Ẅi,tYi,t]

=
1

T

T∑
t=1

{
E[Wi,tYi,t]− E[W̄iYi,t]−

(
E[Wt]−

1

T

T∑
s=1

E[Ws]

)
E[Yt]

}

=
1

T

T∑
t=1

{
E[D1{t ≥ G}Yt]− E

[
D
T −G+ 1

T
Yt

]
−

(
E[Wt]−

1

T

T∑
s=1

E[Ws]

)
E[Yt]

}

=
1

T

T∑
t=1

{∑
g∈G

∫
D

(
E[d1{t ≥ g}Yt|G = g,D = d]− E

[
d
T − g + 1

T
Yt

∣∣∣G = g,D = d

])
dFD|G(d|g)pg

−

(
E[Wt]−

1

T

T∑
s=1

E[Ws]

)
E[Yt]

}

=
1

T

T∑
t=1

{∑
g∈G

∫
D
d
(
E[Yt|G = g,D = d]v(g, t)

)
dFD|G(d|g)pg −

(
E[Wt]−

1

T

T∑
s=1

E[Ws]

)
E[Yt]

}

=
1

T

T∑
t=1

{∑
g∈G

∫
D
d
(
E[Yt|G = g,D = d]v(g, t)

)
dFD|G(d|g)pg −

∑
g∈G

∫
D
dv(g, t) dFD|G(d|g)pg

E[Yt]

}

=
1

T

T∑
t=1

{∑
g∈G

∫
D
d (E[Yt|G = g,D = d]− E[Yt]) v(g, t) dFD|G(d|g)pg

}

where the first equality holds by the definition of Ẅi,t, the second equality holds by plugging in for

Wi,t and W̄i, the third equality holds by the law of iterated expectations, the fourth equality holds

by the definition of v(g, t), the fifth equality holds by Lemma S1, and the sixth equality combines

terms.

Next, based on the result in Lemma S2, we can write the numerator of βtwfe as

1

T

T∑
t=1

E[Ẅi,tYi,t]

18



=
1

T

T∑
t=1

{∑
g∈G

∫
D
d (E[Yt|G = g,D = d]− E[Yt]) v(g, t) dFD|G(d|g)pg

}

=
1

T

T∑
t=1

∑
g∈G

∫
D
d
(
E[Yt|G = g,D = d]− E[Yt|G = g]

)
v(g, t) dFD|G(d|g)pg (S20)

+
1

T

T∑
t=1

∑
g∈G

∫
D
d
(
E[Yt|G = g]− E[Yt]

)
v(g, t) dFD|G(d|g)pg (S21)

where the first equality holds from Lemma S2 and the second equality holds by adding and subtracting

E[Yt|G = g].

The expression in Equation (S20) involves comparisons between units in the same timing group

but that have different doses. The expression in Equation (S21) involves comparisons across different

timing groups. We consider each of these terms in more detail below.

Lemma S3. Under Assumptions 1-MP, 2-MP(a), and 3-MP,

1

T

T∑
t=1

∑
g∈G

∫
D
d
(
E[Yt|G = g,D = d]− E[Yt|G = g]

)
v(g, t) dFD|G(d|g)pg

=
∑
g∈G

{
(1− Ḡg)ḠgCov

(
Ȳ POST (g) − Ȳ PRE(g), D

∣∣∣G = g
)}

pg

Proof. Notice that

1

T

T∑
t=1

∑
g∈G

∫
D
d
(
E[Yt|G = g,D = d]− E[Yt|G = g]

)
v(g, t) dFD|G(d|g)pg

=
1

T

T∑
t=1

{∑
g∈G

E[Yt(D − E[D|G = g])|G = g]v(g, t)pg

}

=
∑
g∈G

{
1

T

T∑
t=1

E[Yt(D − E[D|G = g])|G = g]v(g, t)

}
pg

=
∑
g∈G

{
− 1

T

(T − g + 1)

T

g−1∑
t=1

E[Yt(D − E[D|G = g])|G = g]

+
1

T

(g − 1)

T

T∑
t=g

E[Yt(D − E[D|G = g])|G = g]

}
pg

=
∑
g∈G

{
g − 1

T

(T − g + 1)

T

(
1

T − g + 1

T∑
t=g

E[Yt(D − E[D|G = g])|G = g]

− 1

g − 1

g−1∑
t=1

E[Yt(D − E[D|G = g])|G = g]

)}
pg

=
∑
g∈G

{
g − 1

T

(T − g + 1)

T

(
E
[(
Ȳ POST (g) − Ȳ PRE(g)

)
(D − E[D|G = g])

∣∣G = g
])}

pg
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=
∑
g∈G

{
(1− Ḡg)Ḡg

(
E
[(
Ȳ POST (g) − Ȳ PRE(g)

)
(D − E[D|G = g])

∣∣G = g
])}

pg

=
∑
g∈G

{
(1− Ḡg)ḠgCov

(
Ȳ POST (g) − Ȳ PRE(g), D

∣∣∣G = g
)}

pg

where the first equality holds by the law of iterated expectations (and combining terms involving d

and Yt), the second equality changes the order of the summations, the third equality holds by splitting

the summation involving t in time period g and plugs in for v(g, t) (which is constant within group

g and across time periods from 1, . . . , g − 1 and from g, . . . , T ), the fourth equality multiplies and

divides by terms so that the inside expressions can be written as averages, the fifth equality holds by

changing the order of the expectation and averaging over time periods, the sixth equality holds by

the definition of Ḡg, and the last equality holds by the definition of covariance.

Next, we consider the expression from Equation (S21) above, which arises from differences in

outcomes across groups. We handle this term over several following results.

Lemma S4. Under Assumptions 1-MP, 2-MP(a), and 3-MP,

1

T

T∑
t=1

{∑
g∈G

∫
D
d
(
E[Yt|G = g]− E[Yt]

)
v(g, t) dFD|G(d|g)pg

}

=
1

T

T∑
t=1

{∑
g∈G

∑
k∈G,k>g

(
E[D|G = g]v(g, t)− E[D|G = k]v(k, t)

)(
E[Yt|G = g]− E[Yt|G = k]

)
pkpg

}
Proof. Notice that

1

T

T∑
t=1

{∑
g∈G

∫
D
d
(
E[Yt|G = g]− E[Yt]

)
v(g, t) dFD|G(d|g)pg

}

=
1

T

T∑
t=1

{∑
g∈G

E[D|G = g]
(
E[Yt|G = g]− E[Yt]

)
v(g, t)pg

}

=
1

T

T∑
t=1

{∑
g∈G

E[D|G = g]
(
E[Yt|G = g]−

∑
k∈G

E[Yt|G = k]pk

)
v(g, t)pg

}

=
1

T

T∑
t=1

{∑
g∈G

∑
k∈G

E[D|G = g]v(g, t)
(
E[Yt|G = g]− E[Yt|G = k]

)
pkpg

}

=
1

T

T∑
t=1

{∑
g∈G

∑
k∈G,k>g

(
E[D|G = g]v(g, t)− E[D|G = k]v(k, t)

)(
E[Yt|G = g]− E[Yt|G = k]

)
pkpg

}
where the first equality holds by integrating over D, the second equality holds by the law of iterated

expectations, the third equality holds by combining terms, and the last equality holds because all

combinations of g and k occur twice.

Lemma S4 is helpful because it shows that the cross-group part of the TWFE estimator can be

written as comparisons for each group relative to later-treated groups.

Next, we provide an important intermediate result. Before stating this result, notice that

E[D|G = g]v(g, t)− E[D|G = k]v(k, t)
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=


−E[D|G = g]Ḡg + E[D|G = k]Ḡk for t < g < k

E[D|G = g](1− Ḡg) + E[D|G = k]Ḡk for g ≤ t < k

E[D|G = g](1− Ḡg)− E[D|G = k](1− Ḡk) for g < k ≤ t

(S22)

which holds by the definition of v and is useful for the proof of the following lemma.

Lemma S5. Under Assumptions 1-MP, 2-MP(a), and 3-MP,

1

T

T∑
t=1

{∑
g∈G

∫
D
d
(
E[Yt|G = g]− E[Yt]

)
v(g, t) dFD|G(d|g)pg

}

=
∑
g∈G

∑
k∈G,k>g

{
E[D|G = g](1− Ḡg)(Ḡg − Ḡk)

(
E
[(
Ȳ MID(g,k) − Ȳ PRE(g))|G = g

]
− E

[(
Ȳ MID(g,k) − Ȳ PRE(g))|G = k

])

+ E[D|G = k]Ḡk(Ḡg − Ḡk)

(
E
[(
Ȳ POST (k) − Ȳ MID(g,k))|G = k

]
− E

[(
Ȳ POST (k) − Ȳ MID(g,k))|G = g

])
+ (E[D|G = g]− E[D|G = k])Ḡk(1− Ḡg)

(
E
[(
Ȳ POST (k) − Ȳ PRE(g))|G = g

]
− E

[(
Ȳ POST (k) − Ȳ PRE(g))|G = k

])}
pkpg

Proof. The result holds as follows

1

T

T∑
t=1

{ ∑
g∈G

∫
D
d
(
E[Yt|G = g]− E[Yt]

)
v(g, t) dFD|G(d|g)pg

}

=
∑
g∈G

∑
k∈G,k>g

{
1

T

T∑
t=1

(
E[D|G = g]v(g, t)− E[D|G = k]v(k, t)

)(
E[Yt|G = g]− E[Yt|G = k]

)}
pkpg

=
∑
g∈G

∑
k∈G,k>g

{
1

T

(
−E[D|G = g]Ḡg + E[D|G = k]Ḡk

) g−1∑
t=1

(
E[Yt|G = g]− E[Yt|G = k]

)

+
1

T

(
E[D|G = g](1− Ḡg) + E[D|G = k]Ḡk

) k−1∑
t=g

(
E[Yt|G = g]− E[Yt|G = k]

)

+
1

T

(
E[D|G = g](1− Ḡg)− E[D|G = k](1− Ḡk)

) T∑
t=k

(
E[Yt|G = g]− E[Yt|G = k]

)}
pkpg

=
∑
g∈G

∑
k∈G,k>g

{
(1− Ḡg)

(
−E[D|G = g]Ḡg + E[D|G = k]Ḡk

) (
E[Ȳ PRE(g)|G = g]− E[Ȳ PRE(g)|G = k]

)
+ (Ḡg − Ḡk)

(
E[D|G = g](1− Ḡg) + E[D|G = k]Ḡk

) (
E[Ȳ MID(g,k)|G = g]− E[Ȳ MID(g,k)|G = k]

)
+ Ḡk

(
E[D|G = g](1− Ḡg)− E[D|G = k](1− Ḡk)

) (
E[Ȳ POST (k)|G = g]− E[Ȳ POST (k)|G = k]

)}
pkpg

=
∑
g∈G

∑
k∈G,k>g

{
(1− Ḡg)

(
−E[D|G = g](Ḡg − Ḡk) + (E[D|G = k]− E[D|G = g])Ḡk

) (
E[Ȳ PRE(g)|G = g]− E[Ȳ PRE(g)|G = k]

)
+ (Ḡg − Ḡk)

(
E[D|G = g](1− Ḡg) + E[D|G = k]Ḡk

) (
E[Ȳ MID(g,k)|G = g]− E[Ȳ MID(g,k)|G = k]

)
+ Ḡk

(
(E[D|G = g]− E[D|G = k])(1− Ḡg)− E[D|G = k](Ḡg − Ḡk)

) (
E[Ȳ POST (k)|G = g]− E[Ȳ POST (k)|G = k]

)}
pkpg

=
∑
g∈G

∑
k∈G,k>g

{
E[D|G = g](1− Ḡg)(Ḡg − Ḡk)

(
E
[(
Ȳ MID(g,k) − Ȳ PRE(g)

)
|G = g

]
− E

[(
Ȳ MID(g,k) − Ȳ PRE(g)

)
|G = k

])

+ E[D|G = k]Ḡk(Ḡg − Ḡk)

(
E
[(
Ȳ POST (k) − Ȳ MID(g,k)

)
|G = k

]
− E

[(
Ȳ POST (k) − Ȳ MID(g,k)

)
|G = g

])
+ (E[D|G = g]− E[D|G = k])Ḡk(1− Ḡg)

(
E
[(
Ȳ POST (k) − Ȳ PRE(g)

)
|G = g

]
− E

[(
Ȳ POST (k) − Ȳ PRE(g)

)
|G = k

])}
pkpg

where the first equality uses the result in Lemma S4, the second equality changes the order of the

summations (splitting them at g and k where the values of v(g, t) and v(k, t) change) and uses
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Equation (S22), the third equality holds by averaging over time periods (which involves multiplying

and dividing by g − 1 in the first line, multiplying and dividing by k − g in the second line, and

multiplying and dividing by T − k+1 in the last line), the fourth equality rearranges the expressions

for the weights, and the fifth equality holds by rearranging terms with common weights.

Define the following weights

w̃g,within(g) = Var(D|G = g)(1− Ḡg)Ḡgpg

w̃g,post(g, k) = E[D|G = g]2(1− Ḡg)(Ḡg − Ḡk)pkpg

w̃k,post(g, k) = E[D|G = k]2Ḡk(Ḡg − Ḡk)pkpg

w̃long(g, k) = (E[D|G = g]− E[D|G = k])2Ḡk(1− Ḡg)pkpg

which correspond to wg,within(g), wg,post(g, k), wk,post(g, k), and wlong(g, k) above except they do not

divide by T−1
∑T

t=1 E[Ẅ 2
i,t].

3 The next result provides a decomposition of the numerator of βtwfe.

Lemma S6. Under Assumptions 1-MP, 2-MP(a), and 3-MP,

1

T

T∑
t=1

E[Ẅi,tYi,t] =
∑
g∈G

w̃g,within(g)δWITHIN (g)

+
∑
g∈G

∑
k∈G,k>g

{
w̃g,post(g, k)δMID,PRE(g, k) + w̃k,post(g, k)δMID,POST (g, k) + w̃long(g, k)δPOST,PRE(g, k)

}
Proof. Notice that

1

T

T∑
t=1

E[Ẅi,tYi,t]

=
∑
g∈G

{
(1− Ḡg)ḠgCov

(
Ȳ POST (g) − Ȳ PRE(g), D

∣∣∣G = g
)}

pg

+
∑
g∈G

∑
k∈G,k>g

{
E[D|G = g](1− Ḡg)(Ḡg − Ḡk)

(
E
[(
Ȳ MID(g,k) − Ȳ PRE(g))|G = g

]
− E

[(
Ȳ MID(g,k) − Ȳ PRE(g))|G = k

])

+ E[D|G = k]Ḡk(Ḡg − Ḡk)

(
E
[(
Ȳ POST (k) − Ȳ MID(g,k))|G = k

]
− E

[(
Ȳ POST (k) − Ȳ MID(g,k))|G = g

])
+ (E[D|G = g]− E[D|G = k])Ḡk(1− Ḡg)

(
E
[(
Ȳ POST (k) − Ȳ PRE(g))|G = g

]
− E

[(
Ȳ POST (k) − Ȳ PRE(g))|G = k

])}
pkpg

=
∑
g∈G

{
Var(D|G = g)(1− Ḡg)Ḡg

Cov
(
Ȳ POST (g) − Ȳ PRE(g), D

∣∣∣G = g
)

Var(D|G = g)

}
pg

+
∑
g∈G

∑
k∈G,k>g

{
E[D|G = g]2(1− Ḡg)(Ḡg − Ḡk)

E
[(
Ȳ MID(g,k) − Ȳ PRE(g)

)
|G = g

]
− E

[(
Ȳ MID(g,k) − Ȳ PRE(g)

)
|G = k

]
E[D|G = g]


+ E[D|G = k]2Ḡk(Ḡg − Ḡk)

E
[(
Ȳ POST (k) − Ȳ MID(g,k)

)
|G = k

]
− E

[(
Ȳ POST (k) − Ȳ MID(g,k)

)
|G = g

]
E[D|G = k]



3To make this clear, additionally notice that pkpg = (pg + pk)
2pg|{g,k}(1− pg|{g,k}) which holds by multiplying and

dividing both pk and pg by (pg + pk) and by the definition of pg|{g,k}. This expression completely aligns these weights

with wg,within(g), wg,post(g, k), wk,post(g, k), and wlong(g, k) up to dividing by T−1 ∑T
t=1 E[Ẅ

2
i,t].
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+ (E[D|G = g]− E[D|G = k])2Ḡk(1− Ḡg)

E
[(
Ȳ POST (k) − Ȳ PRE(g)

)
|G = g

]
− E

[(
Ȳ POST (k) − Ȳ PRE(g)

)
|G = k

]
(E[D|G = g]− E[D|G = k])

}
pkpg

=
∑
g∈G

w̃g,within(g)δWITHIN (g)

+
∑
g∈G

∑
k∈G,k>g

{
w̃g,post(g, k)δMID,PRE(g, k) + w̃k,post(g, k)δMID,POST (g, k) + w̃long(g, k)δPOST,PRE(g, k)

}
where the first equality holds from plugging the results of Lemmas S3 and S5 into Equations (S20)

and (S21); the second equality holds by multiplying and dividing the first term by Var(D|G = g),

the second term by E[D|G = g], the third term by E[D|G = k], and the last term by (E[D|G = g]−
E[D|G = k]); and the third equality holds by the definitions of w̃g,within(g), w̃g,post(g, k), w̃k,post(g, k),

w̃long(g, k), δWITHIN (g), δMID,PRE(g, k), δMID,POST (g, k), δPOST,PRE(g, k).

Lemma S7. Under Assumptions 1-MP, 2-MP(a), and 3-MP,

1

T

T∑
t=1

E[Ẅ 2
i,t] =

∑
g∈G

w̃g,within(g) +
∑
g∈G

∑
k∈G,k>g

{
w̃g,post(g, k) + w̃k,post(g, k) + w̃long(g, k)

}
Proof. To start with, notice that E[Ẅ 2

i,t] = E[Ẅi,tWi,t]. Then, we can apply the arguments of Lem-

mas S2 to S6 but with Wi,t replacing Yi,t. This implies that

1

T

T∑
t=1

E[Ẅ 2
i,t]

=
∑
g∈G

w̃g,within(g)
Cov(W̄POST (g) − W̄PRE(g), D|G = g)

Var(D|G = g)

+
∑
g∈G

∑
k∈G,k>g

{
w̃g,post(g, k)

E
[
(W̄MID(g,k) − W̄PRE(g))|G = g

]
− E

[
(W̄MID(g,k) − W̄PRE(g))|G = k

]
E[D|G = g]

+ w̃k,post(g, k)
E
[
(W̄POST (k) − W̄MID(g,k))|G = k

]
− E

[
(W̄POST (k) − W̄MID(g,k))|G = g

]
E[D|G = k]

+ w̃long(g, k)
E
[
(W̄POST (k) − W̄PRE(g))|G = g

]
− E

[
(W̄POST (k) − W̄PRE(g))|G = k

]
E[D|G = g]− E[D|G = k]

}
=
∑
g∈G

w̃g,within(g) +
∑
g∈G

∑
k∈G,k>g

{
w̃g,post(g, k) + w̃k,post(g, k) + w̃long(g, k)

}
where the last equality holds by noting that W̄ = D in post-treatment periods and W̄ = 0 in

pre-treatment periods, and then by canceling terms.

Proof of Proposition S1

Proof. Proposition S1 immediately holds from applying the result in Lemma S6 in the expression for

βtwfe in Equation (S12). That the weights are all positive holds immediately by their definitions.

That they sum to one holds by the definitions of the weights and is an immediate implication of

Lemma S7.

Next, we move to proving Theorem S3. To do this, we provide expressions for each of the

comparisons that show up in Proposition S1 in terms of derivatives of paths of outcomes. These
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results invoke Assumption 2-MP(b) and, therefore, use that the treatment is actually continuous,

but they do not invoke any parallel trends assumptions. That said, it would be straightforward to

adapt these results to the case with a discrete multi-valued treatment along the lines of the baseline

two-period case considered in the main text.

It is also useful to note that

∂π
POST (k̃),PRE(g̃)
D (g, d)

∂d
=

∂E
[(
Ȳ POST (k̃) − Ȳ PRE(g̃)

) ∣∣∣G = g,D = d
]

∂d
,

∂π
MID(g̃,k̃),PRE(g̃)
D (g, d)

∂d
=

∂E
[(
Ȳ MID(g̃,k̃) − Ȳ PRE(g̃)

) ∣∣∣G = g,D = d
]

∂d
,

∂π
POST (k̃),MID(g̃,k̃)
D (g, d)

∂d
=

∂E
[(
Ȳ POST (k̃) − Ȳ MID(g̃,k̃)

) ∣∣∣G = g,D = d
]

∂d
,

which holds because the second parts of each πD term do not vary with the dose.

Next, we consider a result for the numerator (which is the main term) of δWITHIN (g) in Equa-

tion (S13).

Lemma S8. Under Assumptions 1-MP, 2-MP, and 3-MP,

Cov
(
Ȳ POST (g) − Ȳ PRE(g), D

∣∣∣G = g
)

=

∫ dU

dL

(
E[D|G = g,D ≥ l]− E[D|G = g]

)
P(D ≥ l|G = g)

∂E[Ȳ POST (g) − Ȳ PRE(g)|G = g,D = l]

∂l
dl

Proof. First, notice that

Cov
(
Ȳ POST (g) − Ȳ PRE(g), D

∣∣∣G = g
)
= E

[(
Ȳ POST (g) − Ȳ PRE(g)

)
(D − E[D|G = g])|G = g

]
Then, the proof follows essentially the same arguments as in Theorem 3.4(a) in the main text with

Ȳ POST (g) − Ȳ PRE(g) replacing ∆Y and the other arguments relating to the distribution of the dose

holding conditional on being in group g. The second term, involving dL, in Theorem 3.4(a) does not

show up here as, by construction, there are no untreated units in group g.

Lemma S8 says that part of δWITHIN (g) in the TWFE regression estimator comes from a weighted

average of ∂E[Ȳ POST (g)−Ȳ PRE(g)|G=g,D=d]
∂d .

Next, we consider the numerator (which is the main term) in the expression for δMID,PRE(g, k)

in Equation (S14). This term is quite similar to the baseline two-period case considered in Theo-

rem 3.4(a) because units in group k have not been treated yet.

Lemma S9. Under Assumptions 1-MP, 2-MP, and 3-MP, and for k > g,

E
[(
Ȳ MID(g,k) − Ȳ PRE(g)

) ∣∣∣G = g
]
− E

[(
Ȳ MID(g,k) − Ȳ PRE(g)

) ∣∣∣G = k
]

=

∫ dU

dL

P(D ≥ l|G = g)
∂E[Ȳ MID(g,k) − Ȳ PRE(g)|G = g,D = l]

∂l
dl

+ dL
E[Ȳ MID(g,k) − Ȳ PRE(g)|G = g,D = dL]− E[Ȳ MID(g,k) − Ȳ PRE(g)|D = 0]

dL

− dL
E[Ȳ MID(g,k) − Ȳ PRE(g)|G = k]− E[Ȳ MID(g,k) − Ȳ PRE(g)|D = 0]

dL
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Proof. To start with, notice that

E
[(
Ȳ MID(g,k) − Ȳ PRE(g)

) ∣∣∣G = g
]
− E

[(
Ȳ MID(g,k) − Ȳ PRE(g)

) ∣∣∣G = k
]

= E
[(
Ȳ MID(g,k) − Ȳ PRE(g)

) ∣∣∣G = g
]
− E

[(
Ȳ MID(g,k) − Ȳ PRE(g)

) ∣∣∣D = 0
]

−
(
E
[(
Ȳ MID(g,k) − Ȳ PRE(g)

) ∣∣∣G = k
]
− E

[(
Ȳ MID(g,k) − Ȳ PRE(g)

) ∣∣∣D = 0
])

=

∫ dU

dL

P(D ≥ l|G = g)
∂E[Ȳ MID(g,k) − Ȳ PRE(g)|G = g,D = l]

∂l
dl

+ dL
E[Ȳ MID(g,k) − Ȳ PRE(g)|G = g,D = dL]− E[Ȳ MID(g,k) − Ȳ PRE(g)|D = 0]

dL

− dL
E[Ȳ MID(g,k) − Ȳ PRE(g)|G = k]− E[Ȳ MID(g,k) − Ȳ PRE(g)|D = 0]

dL

where the first equality holds by adding and subtracting E
[(
Ȳ MID(g,k) − Ȳ PRE(g)

) ∣∣D = 0
]
. For the

second equality, notice that

E
[(
Ȳ MID(g,k) − Ȳ PRE(g)

) ∣∣∣G = g
]
− E

[(
Ȳ MID(g,k) − Ȳ PRE(g)

) ∣∣∣D = 0
]

= E
[(
Ȳ MID(g,k) − Ȳ PRE(g)

) ∣∣∣G = g
]
− E

[(
Ȳ MID(g,k) − Ȳ PRE(g)

) ∣∣∣G = g,D = dL

]
+ E

[(
Ȳ MID(g,k) − Ȳ PRE(g)

) ∣∣∣G = g,D = dL

]
− E

[(
Ȳ MID(g,k) − Ȳ PRE(g)

) ∣∣∣D = 0
]

Moreover,

E
[(
Ȳ MID(g,k) − Ȳ PRE(g)

) ∣∣∣G = g
]
− E

[(
Ȳ MID(g,k) − Ȳ PRE(g)

) ∣∣∣G = g,D = dL

]
=

∫ dU

dL

E
[(
Ȳ MID(g,k) − Ȳ PRE(g)

) ∣∣∣G = g,D = d
]
− E

[(
Ȳ MID(g,k) − Ȳ PRE(g)

) ∣∣∣G = g,D = dL

]
dFD|G(d|g)

=

∫ dU

dL

∫ dU

dL

1{l ≤ d}
∂E
[(
Ȳ MID(g,k) − Ȳ PRE(g)

)
|G = g,D = l

]
∂l

dl dFD|G(d|g)

=

∫ dU

dL

P(D ≥ l|G = g)
∂E[Ȳ MID(g,k) − Ȳ PRE(g)|G = g,D = l]

∂l
dl

where the first equality holds by the law of iterated expectations, the second equality holds by the

fundamental theorem of calculus, and the last equality holds by changing the order of integration and

simplifying.

Combining the above expressions implies the result.

Next, we consider the numerator (which is the main term) of δPOST,MID(g, k) in Equation (S15),

which comes from comparing paths of outcomes for newly treated groups relative to already-treated

groups.

Lemma S10. Under Assumptions 1-MP, 2-MP, and 3-MP, and for k > g,

E
[(
Ȳ POST (k) − Ȳ MID(g,k)

) ∣∣∣G = k
]
− E

[(
Ȳ POST (k) − Ȳ MID(g,k)

) ∣∣∣G = g
]

=

∫ dU

dL

P(D ≥ l|G = k)
∂E[Ȳ POST (k) − Ȳ MID(g,k)|G = k,D = l]

∂l
dl

+ dL
E[Ȳ POST (k) − Ȳ MID(g,k)|G = k,D = dL]− E[Ȳ POST (k) − Ȳ MID(g,k)|D = 0]

dL
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−
{
E[Ȳ POST (k) − Ȳ PRE(g)|G = g]− E[Ȳ POST (k) − Ȳ PRE(g)|D = 0]

−
(
E[Ȳ MID(g,k) − Ȳ PRE(g)|G = g]− E[Ȳ MID(g,k) − Ȳ PRE(g)|D = 0]

)}
Proof. Notice that

E
[(
Ȳ POST (k) − Ȳ MID(g,k)

) ∣∣∣G = k
]
− E

[(
Ȳ POST (k) − Ȳ MID(g,k)

) ∣∣∣G = g
]

=

(
E
[(
Ȳ POST (k) − Ȳ MID(g,k)

) ∣∣∣G = k
]
− E

[(
Ȳ POST (k) − Ȳ MID(g,k)

) ∣∣∣D = 0
])

−

(
E
[(
Ȳ POST (k) − Ȳ MID(g,k)

) ∣∣∣G = g
]
− E

[(
Ȳ POST (k) − Ȳ MID(g,k)

)
|D = 0

])

=

(
E
[(
Ȳ POST (k) − Ȳ MID(g,k)

) ∣∣∣G = k
]
− E

[(
Ȳ POST (k) − Ȳ MID(g,k)

) ∣∣∣D = 0
])

(S23)

−

{(
E
[(
Ȳ POST (k) − Ȳ PRE(g)

) ∣∣∣G = g
]
− E

[(
Ȳ POST (k) − Ȳ PRE(g)

) ∣∣∣D = 0
])

−
(
E
[(
Ȳ MID(g,k) − Ȳ PRE(g)

) ∣∣∣G = g
]
− E

[(
Ȳ MID(g,k) − Ȳ PRE(g)

) ∣∣∣D = 0
])}

=

∫ dU

dL

P(D ≥ l|G = k)
∂E[Ȳ POST (k) − Ȳ MID(g,k)|G = k,D = l]

∂l
dl (S24)

+ dL
E[Ȳ POST (k) − Ȳ MID(g, k)|G = k,D = dL]− E

[(
Ȳ POST (k) − Ȳ MID(g,k)

)
|D = 0

]
dL

−

{(
E
[(
Ȳ POST (k) − Ȳ PRE(g)

) ∣∣∣G = g
]
− E

[(
Ȳ POST (k) − Ȳ PRE(g)

) ∣∣∣D = 0
])

−
(
E
[(
Ȳ MID(g,k) − Ȳ PRE(g)

) ∣∣∣G = g
]
− E

[(
Ȳ MID(g,k) − Ȳ PRE(g)

) ∣∣∣D = 0
])}

where the first equality holds by adding and subtracting E
[(
Ȳ POST (k) − Ȳ MID(g,k)

)
|D = 0

]
, the

second equality holds by adding and subtracting both E
[
Ȳ PRE(g)|G = g

]
and E

[
Ȳ PRE(g)|D = 0

]
,

and the last equality holds by applying the same sort of arguments as in the proof of Lemma S9.

Finally, we consider the numerator (which is the main term) of δPOST,PRE(g, k) in Equation (S16).

Lemma S11. Under Assumptions 1-MP, 2-MP, and 3-MP, and for k > g,

E
[(
Ȳ POST (k) − Ȳ PRE(g))|G = g

]
− E

[(
Ȳ POST (k) − Ȳ PRE(g))|G = k

]
=

∫ dU

dL

(P(D ≥ l|G = g)− P(D ≥ l|G = k))
∂E[Ȳ POST (k) − Ȳ PRE(g)|G = g,D = l]

∂l
dl

−

{∫ dU

dL

P(D ≥ l|G = k)

(
∂E[Ȳ POST (k) − Ȳ PRE(g)|G = k,D = l]

∂l
− ∂E[Ȳ POST (k) − Ȳ PRE(g)|G = g,D = l]

∂l

)
dl

+ dL
E[Ȳ POST (k) − Ȳ PRE(g)|G = k,D = dL]− E[Ȳ POST (k) − Ȳ PRE(g)|D = 0]

dL

− dL
E[Ȳ POST (k) − Ȳ PRE(g)|G = g,D = dL]− E[Ȳ POST (k) − Ȳ PRE(g)|D = 0]

dL

}
.
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Proof. First, by adding and subtracting terms

E
[(
Ȳ POST (k) − Ȳ PRE(g)

) ∣∣∣G = g
]
− E

[(
Ȳ POST (k) − Ȳ PRE(g)

) ∣∣∣G = k
]

= E
[(
Ȳ POST (k) − Ȳ PRE(g)

) ∣∣∣G = g
]
− E

[(
Ȳ POST (k) − Ȳ PRE(g)

) ∣∣∣D = 0
]

−
(
E
[(
Ȳ POST (k) − Ȳ PRE(g)

) ∣∣∣G = k
]
− E

[(
Ȳ POST (k) − Ȳ PRE(g)

) ∣∣∣D = 0
])

.

Then, using similar arguments as in Lemma S9 above, one can show that

E
[(
Ȳ POST (k) − Ȳ PRE(g)

) ∣∣∣G = g
]
− E

[(
Ȳ POST (k) − Ȳ PRE(g)

) ∣∣∣D = 0
]

=

∫ dU

dL

P(D ≥ l|G = g)
∂E[Ȳ POST (k) − Ȳ PRE(g)|G = g,D = l]

∂l
dl

+ dL
E[Ȳ POST (k) − Ȳ PRE(g)|G = g,D = dL]− E[Ȳ POST (k) − Ȳ PRE(g)|D = 0]

dL

and that

E
[(
Ȳ POST (k) − Ȳ PRE(g)

) ∣∣∣G = k
]
− E

[(
Ȳ POST (k) − Ȳ PRE(g)

) ∣∣∣D = 0
]

=

∫ dU

dL

P(D ≥ l|G = k)
∂E[Ȳ POST (k) − Ȳ PRE(g)|G = k,D = l]

∂l
dl

+ dL
E[Ȳ POST (k) − Ȳ PRE(g)|G = k,D = dL]− E[Ȳ POST (k) − Ȳ PRE(g)|D = 0]

dL

Then, the result holds by adding and subtracting
∫ dU
dL

P(D ≥ l|G = k)∂E[Ȳ
POST (k)−Ȳ PRE(g)|G=g,D=l]

∂l dl

and combining terms.

Proof of Part (1) of Theorem S3

Proof. Starting from the result in Proposition S1, the expression for δWITHIN (g) comes from its

definition, the result in Lemma S8, and the definition of the weights wwithin
1 (g, l). The expres-

sion for δMID,PRE(g, k) comes from its definition, the result in Lemma S9, and the definitions

of w1(g, l) and w0(g). The expression for δPOST,MID(g, k) comes from combining its definition

with the result in Lemma S10, and the definitions of w1(k, l) and w0(k). Finally, the expres-

sion for δPOST,PRE(g, k) comes from its definition, the result in Lemma S11, and the definitions

of wacross
1 (g, k, l), w̃across

1 (g, k, l), and w̃across
0 (g, k).

That wwithin
1 (g, d) ≥ 0, w1(g, d) ≥ 0, w0(g) ≥ 0 for all g ∈ G and d ∈ Dc

+ all hold immediately

from the definitions of the weights. That
∫ dU
dL

wwithin
1 (g, l) dl = 1,

∫ dU
dL

w1(g, l) dl + w0(g) = 1, and∫ dU
dL

wacross
1 (g, k, l) dl = 1 hold from the same sorts of arguments used to show that the weights

integrate to 1 in the proof of Theorem 3.4(a).

Notice that none of the previous results have invoked any sort of parallel trends assumption.

Next, we push forward the previous results once a researcher invokes parallel trends assumptions; in

Theorem S3, we consider the case where the researcher invoked Assumption SPT-MP, but here we

handle both that assumption and Assumption PT-MP. To further understand this, for 1 ≤ t1 < t2 ≤ T
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define

Ȳ
(t1,t2)
i (g, d) =

1

t2 − t1 + 1

t2∑
t=t1

Yi,t(g, t, d)

which averages potential outcomes from time periods t1 to t2 for unit i if they were in group g and

experienced dose d. Note that Ȳ
(t1,t2)
i = Ȳ

(t1,t2)
i (Gi, Di). Next, for t1 ≤ t2, define

ATT
(t1,t2)(g, d|g, d) = 1

t2 − t1 + 1

t2∑
t=t1

ATT (g, t, d|g, d) (S25)

which is the average treatment effect experienced by units in group g who experienced dose d averaged

across periods from t1 to t2. Likewise, define

ATT
(t1,t2)(g, d) =

1

t2 − t1 + 1

t2∑
t=t1

ATT (g, t, d) (S26)

which is the average treatment effect of dose d among all units in group g averaged across periods

from t1 to t2. An alternative expression for ATT
(t1,t2)(g, d|g, d) is given by

ATT
(t1,t2)(g, d|g, d) = E

[
Ȳ (t1,t2)(g, d)− Ȳ (t1,t2)(0)|G = g,D = d

]
which holds by the definition of ATT (g, t, d|g, d) and changing the order of the expectation and

the average over time periods; here, E[Ȳ (t1,t2)(0)|G = g,D = d] is the average outcome that units in

group g that experienced dose d would have experienced if they had not participated in the treatment

between time periods t1 and t2. Similarly, for ATT
(t1,t2)(g, d),

ATT
(t1,t2)(g, d) = E

[
Ȳ (t1,t2)(g, d)− Ȳ (t1,t2)(0)|G = g

]
In addition, define

ACRT
(t1,t2)(g, d|g, d) = ∂ATT

(t1,t2)(g, l|g, d)
∂l

∣∣∣
l=d

and ACRT
(t1,t2)(g, d) =

∂ATT
(t1,t2)(g, d)

∂d
(S27)

which are the average causal response to a marginal increase in the dose among units in group g

conditional on having experienced dose d (for ACRT (g, d|g, d)) and the average causal response to a

marginal increase in the dose among all units in group g.

The next result connects derivatives of conditional expectations to ACRT (g, t, d|g, d) and

ACRT (g, t, d) parameters under parallel trends assumptions. This is similar to Theorems 3.2, 3.3,

and C.1 in the main text and to Theorem S2 above.

Lemma S12. Under Assumptions 1-MP, 2-MP, and 3-MP, and for 1 ≤ t1 ≤ t2 < g ≤ t3 ≤ t4 ≤ T

(i.e., t1 and t2 are pre-treatment periods for group g, and t3 and t4 are post-treatment periods for

group g), and for d ∈ Dc
+,

(1) If, in addition, Assumption PT-MP holds, then

∂E
[
Ȳ (t3,t4) − Ȳ (t1,t2)|G = g,D = d

]
∂d

= ACRT
(t3,t4)(g, d|g, d) + ∂ATT

(t3,t4)(g, d|g, l)
∂l

∣∣∣
l=d︸ ︷︷ ︸

selection bias
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(2) If, in addition, Assumption SPT-MP holds, then

∂E
[
Ȳ (t3,t4) − Ȳ (t1,t2)|G = g,D = d

]
∂d

= ACRT
(t3,t4)(g, d)

Proof. For part (1), notice that, for 1 ≤ t1 ≤ t2 < g ≤ t3 ≤ t4 ≤ T (i.e., for group g, t1 and t2 are

pre-treatment time periods while t3 and t4 are post-treatment time periods), we can write

E
[
Ȳ (t3,t4) − Ȳ (t1,t2)

∣∣∣G = g,D = d
]
= E

[
Ȳ (t3,t4)(g, d)− Ȳ (t1,t2)(0)

∣∣∣G = g,D = d
]

= E
[
Ȳ (t3,t4)(g, d)− Ȳ (t3,t4)(0)

∣∣∣G = g,D = d
]

− E
[
Ȳ (t3,t4)(0)− Ȳ (t1,t2)(0)

∣∣∣G = g,D = d
]

= ATT
(t3,t4)(g, d|g, d)

− E
[
Ȳ (t3,t4)(0)− Ȳ (t1,t2)(0)

∣∣∣G = g,D = d
]

where the first equality holds by writing observed outcomes in terms of their corresponding potential

outcomes, the second equality holds by adding and subtracting E
[
Ȳ (t3,t4)(0)

∣∣G = g,D = d
]
, and the

last equality holds by the definition of ATT
(t3,t4)(g, d|g, d).

This equation looks very similar to DiD-type equations in simpler cases, such as when there are

two periods and two groups. The left-hand side is immediately identified. The right-hand side involves

a causal effect parameter of interest and an unobserved path of untreated potential outcomes that

would typically be handled using a parallel trends assumption.

In particular, under Assumption PT-MP,

E
[
Ȳ (t3,t4)(0)− Ȳ (t1,t2)(0)

∣∣∣G = g,D = d
]
= E

[
Ȳ (t3,t4)(0)− Ȳ (t1,t2)(0)

∣∣∣D = 0
]

which, importantly, does not vary across d or g. This suggests that, under Assumption PT-MP,

E
[
Ȳ (t3,t4) − Ȳ (t1,t2)

∣∣∣G = g,D = d
]
= ATT

(t3,t4)(g, d|g, d)− E
[
Ȳ (t3,t4)(0)− Ȳ (t1,t2)(0)

∣∣∣D = 0
]

Taking derivatives of both sides of the previous equation with respect to d implies the result.

For part (2), notice that,

E
[
Ȳ (t3,t4) − Ȳ (t1,t2)

∣∣∣G = g,D = d
]
= E

[
Ȳ (t3,t4)(g, d)− Ȳ (t1,t2)(0)

∣∣∣G = g,D = d
]

= E
[
Ȳ (t3,t4)(g, d)− Ȳ (t1,t2)(0)

∣∣∣G = g
]

= E
[
Ȳ (t3,t4)(g, d)− Ȳ (t3,t4)(0)

∣∣∣G = g
]

+ E
[
Ȳ (t3,t4)(0)− Ȳ (t1,t2)(0)

∣∣∣G = g
]

= ATT
(t3,t4)(g, d) + E

[
Ȳ (t3,t4)(0)− Ȳ (t1,t2)(0)

∣∣∣D = 0
]

where the first equality holds by writing observed outcomes in terms of their corresponding potential

outcomes, the second equality holds by Assumption SPT-MP, the third equality holds by adding and

subtracting E[Ȳ (t3,t4)(0)|G = g], and the last equality holds by the definition of ATT
(t3,t4)(g, d) and

by Assumption SPT-MP. Taking derivatives of both sides implies the result for part (2).

The result in Lemma S12 says that, under Assumption PT-MP, the derivative of the path of
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outcomes (averaged over some post-treatment periods) relative to some pre-treatment periods cor-

responds to averaging ACRT (g, t, d|g, d) across post-treatment time periods plus the derivative of

an averaged selection bias-type across some post-treatment time periods for group g. Similarly, un-

der Assumption SPT-MP, the derivative of the path of average outcomes in some post-treatment

periods relative to average outcomes in some pre-treatment periods corresponds to an average of

ACRT (g, t, d) across the same post-treatment time periods.

Lemma S13. Under Assumptions 1-MP, 2-MP, and 3-MP, and for 1 ≤ t1 ≤ t2 < g ≤ t3 ≤ t4 < k

(i.e., t1 and t2 are pre-treatment periods for both groups g and k, group g is treated before group k,

and t3 and t4 are post-treatment periods for group g but pre-treatment periods for group k),

(1) If, in addition, Assumption PT-MP holds, then

dL
E
[
Ȳ (t3,t4) − Ȳ (t1,t2)|G = g,D = dL

]
− E

[
Ȳ (t3,t4) − Ȳ (t1,t2)|G = k

]
dL

= dL
ATT

(t3,t4)(g, dL|g, dL)
dL

(2) If, in addition, Assumption SPT-MP holds, then

dL
E
[
Ȳ (t3,t4) − Ȳ (t1,t2)|G = g,D = dL

]
− E

[
Ȳ (t3,t4) − Ȳ (t1,t2)|G = k

]
dL

= dL
ATT

(t3,t4)(g, dL)

dL

Proof. For part (1), notice that

E
[
Ȳ (t3,t4) − Ȳ (t1,t2)

∣∣∣G = g,D = dL

]
− E

[
Ȳ (t3,t4) − Ȳ (t1,t2)

∣∣∣G = k
]

= E
[
Ȳ (t3,t4)(g, dL)− Ȳ (t1,t2)(0)

∣∣∣G = g,D = dL

]
− E

[
Ȳ (t3,t4)(0)− Ȳ (t1,t2)(0)

∣∣∣G = k
]

= E
[
Ȳ (t3,t4)(g, dL)− Ȳ (t3,t4)(0)

∣∣∣G = g,D = dL

]
+
{
E
[
Ȳ (t3,t4)(0)− Ȳ (t1,t2)(0)

∣∣∣G = g,D = dL

]
− E

[
Ȳ (t3,t4)(0)− Ȳ (t1,t2)(0)

∣∣∣G = k
]}

= ATT
(t3,t4)(g, dL|g, dL)

where the first equality holds by writing observed outcomes in terms of their corresponding potential

outcomes, the second equality holds by adding and subtracting E
[
Ȳ (t3,t4)(0)|G = g,D = dL

]
, and the

last equality holds by the definition of ATT
(t3,t4)(g, dL|g, dL) and because the difference between the

two terms involving paths of untreated potential outcomes on the second line of the previous equality

is equal to 0 under Assumption PT-MP. Then, the result holds by multiplying and dividing by dL.

For part (2),

E
[
Ȳ (t3,t4) − Ȳ (t1,t2)

∣∣∣G = g,D = dL

]
− E

[
Ȳ (t3,t4) − Ȳ (t1,t2)

∣∣∣G = k
]

= E
[
Ȳ (t3,t4)(g, dL)− Ȳ (t1,t2)(0)

∣∣∣G = g,D = dL

]
− E

[
Ȳ (t3,t4)(0)− Ȳ (t1,t2)(0)

∣∣∣G = k
]

= E
[
Ȳ (t3,t4)(g, dL)− Ȳ (t1,t2)(0)

∣∣∣G = g
]
− E

[
Ȳ (t3,t4)(0)− Ȳ (t1,t2)(0)

∣∣∣G = k
]

= E
[
Ȳ (t3,t4)(g, dL)− Ȳ (t3,t4)(0)

∣∣∣G = g
]

+
{
E
[
Ȳ (t3,t4)(0)− Ȳ (t1,t2)(0)

∣∣∣G = g
]
− E

[
Ȳ (t3,t4)(0)− Ȳ (t1,t2)(0)

∣∣∣G = k
]}

= ATT
(t3,t4)(g, dL)
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where the first equality holds by writing observed outcomes in terms of their corresponding potential

outcomes, the second equality holds by Assumption SPT-MP, the third equality holds by adding

and subtracting E[Ȳ (t3,t4)(0)|G = g], and the last equality holds by Assumption SPT-MP. The result

holds by multiplying and dividing by dL.

Proof of Part (2) of Theorem S3

Proof. The result holds immediately by using the results of Lemmas S12 and S13 in each of the

expressions for δWITHIN (g), δMID,PRE(g, k), δPOST,MID(g, k), and δPOST,PRE(g, k) in part (1) of

Theorem S3.

Proof of Proposition S2

Proof. For part (a), we consider the nuisance term involving πPOST (k),PRE(g)(g)−πMID(g,k),PRE(g)(g)

in the expression for δPOST,MID(g, k) in part (2) of Theorem S3. Then, using similar arguments as

in Lemma S9 and then under Assumption SPT-MP, it follows that

πPOST (k),PRE(g)(g) = E
[
Ȳ POST (k) − Ȳ PRE(g)

∣∣∣G = g
]
− E

[
Ȳ POST (k) − Ȳ PRE(g)

∣∣∣D = 0
]

=

∫ dU

dL

P(D ≥ l|G = g)ACRT
POST (k)

(g, l) dl + dL
ATT

POST (k)
(g, dL)

dL

and that

πMID(g,k),PRE(g)(g) = E
[
Ȳ MID(g,k) − Ȳ PRE(g)

∣∣∣G = g
]
− E

[
Ȳ MID(g,k) − Ȳ PRE(g)

∣∣∣D = 0
]

=

∫ dU

dL

P(D ≥ l|G = g)ACRT
MID(g,k)

(g, l) dl + dL
ATT

MID(g,k)
(g, dL)

dL

Under Assumption S1(a), ACRT (g, t, d) and ATT (g, t, dL) do not vary over time which implies

that, for all g ∈ G and k ∈ G with k > g, ACRT
POST (k)

(g, l) = ACRT
MID(g,k)

(g, l) for all

l ∈ Dc
+ and ATT

POST (k)
(g, dL) = ATT

MID(g,k)
(g, dL). This implies that πPOST (k),PRE(g)(g) =

πMID(g,k),PRE(g)(g) which implies the result for part (a).

For part (b), we consider the two nuisance terms in the expression for δPOST,PRE(g, k) in part

(2) of Theorem S3. For the first one, notice that, under Assumption SPT-MP,

∂π
POST (k),PRE(g)
D (k, l)

∂l
−

∂π
POST (k),PRE(g)
D (g, l)

∂l
= ACRT

POST (k)
(k, l)−ACRT

POST (k)
(g, l)

= 0

for l ∈ Dc
+ and where the second equality holds by Assumption S1(b) (which implies that, for a

particular time period, ACRT (g, t, d) does not vary across groups).

For the second nuisance term, the same sort of arguments imply that

π
POST (k),PRE(g)
D (k, dL)− π

POST (k),PRE(g)
D (g, dL)

dL
=

ATT
POST (k)

(k, dL)−ATT
POST (k)

(g, dL)

dL

= 0
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under Assumption S1(b).

Finally, for part (c), under Assumption S1(a), (b), and (c), ACRT (g, t, d) does not vary across

groups, time periods, or dose; since this does not vary, we denote it by ACRT for the remainder of the

proof. Moreover, from Theorem S3, we have that
∫ dU
dL

wwithin
1 (g, l) dl = 1,

∫ dU
dL

w1(g, l) dl+w0(g) = 1,

and that
∫ dU
dL

wacross
1 (g, k, l) = 1. From the first two parts of the current result, we also have that

the nuisance paths of outcomes in δPOST,MID(g, k) and δPOST,PRE(g, k) are both equal to 0 under

Assumption S1(a) and (b). This implies that, under the conditions for part (c), δWITHIN (g) =

δMID,PRE(g, k) = δPOST,MID(g, k) = δPOST,PRE(g, k) = ACRT . Finally, from Proposition S1,

we have that βtwfe is a weighted average of δWITHIN (g), δMID,PRE(g, k), δPOST,MID(g, k), and

δPOST,PRE(g, k). That these are all equal to each other implies that βtwfe = ACRT = ACRT glob.

SD Additional Theoretical Results

This appendix provides (and proves) a number of additional results that were referred to in the main

text.

SD.1 No Untreated Units

This section considers the causal interpretation of comparisons of paths of outcomes across dose

groups in settings with no untreated units under different versions of the parallel trends assumption.

Proposition S3. Under Assumptions 1, 2, 3, and PT,4 and for h, l ∈ D+,

E[∆Y |D = h]− E[∆Y |D = l] = ATT (h|h)−ATT (l|l)

Proof. Notice that

E[∆Y |D = h]− E[∆Y |D = l] = E[Yt=2(h)− Yt=1(0)|D = h]− E[Yt=2(l)− Yt=1(0)|D = l]

= E[Yt=2(h)− Yt=2(0)|D = h]− E[Yt=2(l)− Yt=2(0)|D = l]

+
(
E[Yt=2(0)− Yt=1(0)|D = h]− E[Yt=2(0)− Yt=1(0)|D = l]

)
= ATT (h|h)−ATT (l|l)

where the first equality holds by plugging in potential outcomes for observed outcomes, the second

equality holds by adding and subtracting E[Yt=2(0)|D = h] and E[Yt=2(0)|D = l], and the last equality

holds by the definition of ATT (d|d) and by Assumption PT.

The result in Proposition S3 is the same as in Theorem 3.2(b), though the proof technique is

different here, as there does not exist an untreated comparison group in the setting considered here.

4To be fully precise, Assumption 2 needs to be modified here to allow for no untreated units. Likewise, the parallel
trends assumption in Assumption PT does not immediately apply to this setting because P(D = 0) = 0 here. Instead,
by parallel trends, we mean that E[Yt=2(0) − Yt=1(0)|D = d] = E[Yt=2(0) − Yt=1(0)] which says that the path of
untreated potential outcomes is the same across all dose groups. We do not state this as a separate assumption partly
for brevity but also because, in a setting where P(D = 0) > 0, the condition here is simply an alternative way to write
Assumption PT.
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Next, we provide an analogous result under strong parallel trends.

Proposition S4. Under Assumptions 1, 2, 3, and SPT, and for h, l ∈ D+,

E[∆Y |D = h]− E[∆Y |D = l] = ATT (h)−ATT (l)

Proof. Notice that

E[∆Y |D = h]− E[∆Y |D = l] = E[Yt=2(h)− Yt=1(0)|D = h]− E[Yt=2(l)− Yt=1(0)|D = l]

= E[Yt=2(h)− Yt=1(0)|D > 0]− E[Yt=2(l)− Yt=1(0)|D > 0]

= E[Yt=2(h)− Yt=2(0)|D > 0]− E[Yt=2(l)− Yt=2(0)|D > 0]

= ATT (h)−ATT (l)

where the first equality holds by replacing observed outcomes with corresponding potential outcomes,

the second equality holds by Assumption SPT, the third equality holds by canceling the E[Yt=1(0)|D >

0] terms from the previous line and by adding and subtracting E[Yt=2(0)|D > 0], and the last equality

holds by the definition of ATT (d).

SD.2 Additional TWFE Decomposition Results

This section provides some extensions and additional details related to the TWFE decompositions

discussed in Section 3.3 in the main text.

Additional Results for TWFE Levels Decomposition

This first part of this section derives the expression for βtwfe in Equation (3.1) in the main text which

relates βtwfe to a weighted average of “more treated” units (units that experienced a dose larger than

E[D]) relative to “less treated” units (units that were untreated or experienced a dose smaller than

E[D]) scaled by a weighted average of the difference in treatment experienced by these two groups.

Recalling that Theorem 3.4(b) in the main text showed that the “weights” integrated to 0, the second

part of this section integrates separately the positive and negative parts of those weights (which are

separated on the basis of whether or not d is greater than the mean dose E[D]). The takeaway is that

the positive weights do not integrate to 1 (nor do the negative weights integrate to −1), but rather

they integrate to the reciprocal of the weighted distance between the effective treated and effective

comparison group discussed in the main text. This provides an explicit connection between the levels

decomposition in Theorem 3.4 and the alternative expression for βtwfe provided in Equation (3.1) in

the main text.

Corollary S1. Under Assumptions 1, 2, 3, and 4(a),

βtwfe =
E
[
wbin
1 (D)∆Y

∣∣∣D > E[D]
]
− E

[
wbin
0 (D)∆Y

∣∣∣D ≤ E[D]
]

E
[
wbin
1 (D)D

∣∣∣D > E[D]
]
− E

[
wbin
0 (D)D

∣∣∣D ≤ E[D]
] . (S28)
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If, in addition, Assumption PT also holds, then

βtwfe =
E
[
wbin
1 (D)ATT (D|D)

∣∣∣D > E[D]
]
− E

[
wbin
0 (D)ATT (D|D)

∣∣∣D ≤ E[D]
]

E
[
wbin
1 (D)D

∣∣∣D > E[D]
]
− E

[
wbin
0 (D)D

∣∣∣D ≤ E[D]
] . (S29)

where

wbin
1 (d) :=

∣∣d− E[D]
∣∣

E
[∣∣D − E[D]

∣∣∣∣∣D > E[D]
]

wbin
0 (d) :=

∣∣d− E[D]
∣∣

E
[∣∣D − E[D]

∣∣∣∣∣D ≤ E[D]
]

which satisfy E
[
wbin
1 (D)

∣∣D > E[D]
]
= E

[
wbin
0

∣∣D ≤ E[D]
]
= 1.

Proof. To start with, recall that

βtwfe =
E[(D − E[D])∆Y ]

Var(D)
=:

βnum
βden

where we consider the numerator and denominator separately below. Next, notice that

0 = E[(D − E[D])]

= E
[
(D − E[D])

∣∣∣D ≤ E[D]
]
P(D ≤ E[D]) + E

[
(D − E[D])

∣∣∣D > E[D]
]
P(D > E[D])

where the second equality holds by the law of iterated expectations. Rearranging the previous ex-

pression, we have that

E
[
|D − E[D]|

∣∣∣D ≤ E[D]
]
P(D ≤ E[D]) = E

[
|D − E[D]|

∣∣∣D > E[D]
]
P(D > E[D]) =: δ

where the equality uses that the sign of (D−E[D]) is fully determined in both conditional expectations.

Next, similar to above, split the numerator of βtwfe on the basis of whether or not D > E[D]:

βnum = E
[
(D − E[D])∆Y

∣∣∣D > E[D]
]
P(D > E[D]) + E

[
(D − E[D])∆Y

∣∣∣D ≤ E[D]
]
P(D ≤ E[D])

and now consider,

βnum
δ

= E

[
|D − E[D]|

E
[
|D − E[D]|

∣∣D > E[D]
]∆Y

∣∣∣D > E[D]

]
− E

[
|D − E[D]|

E
[
|D − E[D]|

∣∣D ≤ E[D]
]∆Y

∣∣∣D ≤ E[D]

]
= E

[
wbin
1 (D)∆Y

∣∣∣D > E[D]
]
− E

[
wbin
0 (D)∆Y

∣∣∣D ≤ E[D]
]

(S30)

which uses the two different expressions for δ given above. Also, notice that it also immediately

follows that E[wbin
1 (D)|D > E[D]] = E[wbin

0 |D ≤ E[D]] = 1. Thus, βnum/δ can be thought of as a

weighted average of the change in outcomes for units with D > E[D] relative to a weighted average

of the change in outcomes for units with D ≤ E[D], where the weights are larger for units with values

of D further away from E[D].

Similarly, since Var(D) = E[(D−E[D])D], we can apply the same argument to the denominator,

and show that

βden
δ

= E
[
wbin
1 (D)D

∣∣∣D > E[D]
]
− E

[
wbin
0 (D)D

∣∣∣D ≤ E[D]
]

(S31)
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This can be thought of as a weighted average of D for units with D > E[D] relative to units with

D ≤ E[D], or, in other words, the distance between the mean of D for the “effective” treated group

relative to the “effective” comparison group given the weighting scheme discussed above. Taking the

ratio of Equations S30 and S31 completes the proof for the expression in Equation (S28). That the

weights are positive and have mean one follows immediately from their definitions. The result in

Equation (S29) holds because

E
[
wbin
1 (D)∆Y

∣∣∣D > E[D]
]
= E

[
wbin
1 (D)E[∆Y |D]

∣∣∣D > E[D]
]

= E
[
wbin
1 (D)

(
E[∆Y |D]− E[∆Y |D = 0]

)∣∣∣D > E[D]
]
+ E[∆Y |D = 0]

= E
[
wbin
1 (D)ATT (D|D)

∣∣∣D > E[D]
]
+ E[∆Y |D = 0] (S32)

where the first equality holds by the law of iterated expectations, the second equality holds by adding

and subtracting E[∆Y |D = 0] and because E[∆Y |D = 0] is non-random and E
[
wbin
1 (D)

∣∣∣D > E[D]
]

has mean one, and the last equality holds under Assumption PT. The same sort of argument can be

used to show that

E
[
wbin
0 (D)∆Y

∣∣∣D ≤ E[D]
]
= E

[
wbin
0 (D)ATT (D|D)

∣∣∣D ≤ E[D]
]
+ E[∆Y |D = 0] (S33)

where, by construction, ATT (0|0) = 0. Taking the difference between the expressions in Equa-

tions (S32) and (S33) and then combining these expressions with the above results for Equation (S28)

completes the proof for the expression in Equation (S29).5

Corollary S2. Under Assumptions 1, 2, 3, and 4(a),

−(wlev
0 +

∫ E[D]

dL

wlev
1 dl) =

∫ dU

E[D]
wlev
1 (l) dl =

1

E
[
wbin
1 (D)D

∣∣∣D > E[D]
]
− E

[
wbin
0 (D)D

∣∣∣D ≤ E[D]
]

where wbin
1 and wbin

0 are defined in Corollary S1.

Proof. That −(wlev
0 +

∫ E[D]
dL

wlev
1 (l) dl) =

∫ dU
E[D]w

lev
1 (l) dl follow from Theorem 3.4(b) and linearity of

integrals. Therefore, consider∫ dU

E[D]
wlev
1 (l) dl =

∫ dU

E[D]

(l − E[D])

Var(D)
fD(l) dl

=
E
[
|D − E[D]|

∣∣∣D > E[D]
]
P(D > E[D])

Var(D)

=
δ

βden

=
1

E
[
wbin
1 (D)D

∣∣∣D > E[D]
]
− E

[
wbin
0 (D)D

∣∣∣D ≤ E[D]
]

where the first equality holds by the definition of wlev
1 (l), the second equality holds by the law of

iterated expectations and because (D−E[D]) is positive conditional on D > E[D], the third equality

5Notice that if we were to invoke Assumption SPT, a result analogous to the one in Equation (S29) holds with
ATT (D) replacing ATT (D|D).
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holds from the expressions for δ and βden in the proof of Corollary S1, and the last equality holds by

Equation (S31) above. This completes the proof.

Scaled-Levels Decomposition for Fixed Dose

Next, we consider interpreting βtwfe as ATT (d)/d for some particular fixed value of d. This is similar

to the scaled-level effects discussed in Section 3.3 in the main text except that we fix d instead of

relating βtwfe to a weighted average of this type of scaled level effect across all values of the dose.

In this section and the next, we define the following weights

wdiff (d1, d2) :=
1

d2 − d1

ws,+
1 (d) :=

d− dL
d

Also, recall that we defined m∆(d) = E[∆Y |D = d] in the main text—we use this shorthand notation

in the results below.

Proposition S5. Under Assumptions 1, 2, 3, 4(a), and PT,

ATT (d|d)
d

− βtwfe =
(
1− ws,+

1 (d)
)ATT (dL|dL)

dL

(
1− wacr

0(
1− ws,+

1 (d)
))︸ ︷︷ ︸

+

∫ dU

dL

ws,+
1 (d)wdiff (d, dL)m

′
∆(l)

(
1− dwacr

1 (l)
)

︸ ︷︷ ︸ dl
−
{∫ dU

d
m′

∆(l)w
acr
1 (l) dl

}
where m′

∆(l) = ACRT (l|l) + ∂ATT (l|h)
∂h

∣∣∣
h=l

.

If Assumption SPT holds instead of Assumption PT, then the same sort of result holds with

ATT (d) replacing ATT (d|d) on the LHS of the previous equation and with m′
∆(l) = ACRT (l) on the

RHS of the previous equation.

Proof. To start with, consider the path of outcomes experienced by dose group d relative to the

untreated group scaled by d:

m∆(d)−m∆(0)

d
=

m∆(d)−m∆(dL)

d
+

m∆(dL)−m∆(0)

d

=
(d− dL)

d

m∆(d)−m∆(dL)

d− dL
+

dL
d

m∆(dL)−m∆(0)

dL

=
(d− dL)

d

∫ d
dL

m′
∆(l) dl

d− dL
+

dL
d

m∆(dL)−m∆(0)

dL

= ws,+
1 (d)

∫ d

dL

wdiff (d, dL)m
′
∆(l) dl +

(
1− ws,+

1 (d)
)m∆(dL)−m∆(0)

dL
(S34)

where the first equality holds by adding and subtracting m∆(dL)/d, the second equality holds by

multiplying and dividing the first term by (d − dL) and the second term by dL, the third equality

holds by the fundamental theorem of calculus, and the last line holds by the definitions of wdiff and
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ws,+
1 . Further, notice that the weights integrate/sum to 1:

ws,+
1 (d)

∫ d

dL

wdiff (d, dL) dl +
(
1− ws,+

1 (d)
)
=

(d− dL)

d

1

d− dL

∫ d

dL

dl︸ ︷︷ ︸
=1

+
dL
d

= 1

which suggests interpreting (m∆(d)−m∆(0))/d as an average of derivative-type terms. Then, using

a similar argument for βtwfe as the one used in Equation (S37) below and combining it with the

expression in Equation (S34), we have that

m∆(d)−m∆(0)

d
− βtwfe =

(
1− ws,+

1 (d)
)(m∆(dL)−m∆(0))

dL

(
1− wacr

0(
1− ws,+

1 (d)
))

+

∫ dU

dL

ws,+
1 (d)wdiff (d, dL)m

′
∆(l)

(
1− dwacr

1 (l)
)
dl

−
{∫ dU

d
m′

∆(l)w
acr
1 (l) dl

}
As in Theorem 3.1, under Assumption PT, m∆(d) − m∆(0) = ATT (d|d), and, as in Theorem 3.2,

m′
∆(l) = ACRT (l|l) + ∂ATT (l|h)

∂h

∣∣∣
h=l

(notice that this term includes selection bias). Under Assump-

tion SPT, m∆(d)−m∆(0) = ATT (d) and m′
∆(l) = ACRT (l). This completes the proof.

In other words, in general, βtwfe is not equal to ATT (d|d)/d (under parallel trends) or ATT (d)/d

(under strong parallel trends) for two reasons: (i) they put different weights on the same effects (the

underlined terms above), and (ii) the value of βtwfe additionally depends on effects of the treatment

for doses greater than d (the third term, in brackets, in the proposition).

Scaled-2× 2 Decomposition for Fixed Doses

Finally, we consider interpreting βtwfe as ATT (d2|d2)−ATT (d1|d1)
d2−d1

or ATT (d2)−ATT (d1)
d2−d1

for two fixed doses

d1 and d2 that satisfy dL < d1 < d2 < dU . This is similar to the scaled 2 × 2 effects discussed in

Section 3.3 except that here we fix the values of d1 and d2 rather than relating βtwfe to a weighted

average of all possible scaled 2× 2 effects.

Proposition S6. Under Assumptions 1, 2, 3, 4(a), and PT and for dL < d1 < d2 < dU ,

ATT (d2|d2)−ATT (d1|d1)
d2 − d1

− βtwfe

=

∫ d2

d1

wdiff (d1, d2)m
′
∆(l)

(
1− (d2 − d1)w

acr
1 (l)

)
dl

−
{∫ d1

dL

m′
∆(l)w

acr
1 (l) dl +

∫ dU

d2

m′
∆(l)w

acr
1 (l) dl + wacr

0

(m∆(dL)−m∆(0))

dL

}
where m′

∆(l) = ACRT (l|l) + ∂ATT (l|h)
∂h

∣∣∣
h=l

.

If Assumption SPT holds instead of Assumption PT, then the same sort of result holds with

ATT (d2) − ATT (d1) replacing ATT (d2|d2) − ATT (d1|d1) on the LHS of the previous equation and

with m′
∆(l) = ACRT (l) on the RHS of the previous equation.
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Proof. To start with, consider the path of outcomes under dose d2 relative to the path of outcomes

under dose d1 scaled by (d2 − d1), and notice that

m∆(d2)−m∆(d1)

d2 − d1
=

∫ d2

d1

1

d2 − d1
m′

∆(l) dl =

∫ d2

d1

wdiff (d1, d2)m
′
∆(l) dl (S35)

where the first equality holds by the fundamental theorem of calculus, and the second equality by

the definition of wdiff . In addition, notice that the “weights” here integrate to one:∫ d2

d1

wdiff (d1, d2) dl =
1

d2 − d1

∫ d2

d1

dl = 1

Now, move to considering βtwfe. From Equation (S2) in the proof of Theorem 3.4 in the main text,

we have that

βtwfe =E
[
(D − E[D])

Var(D)
(m∆(D)−m∆(dL))

∣∣∣D > 0

]
P(D > 0)

+ E
[
(D − E[D])

Var(D)
(m∆(dL)−m∆(0))

∣∣∣D > 0

]
P(D > 0)

Focusing on the first term in the above expression, and, again, from the proof of Theorem 3.4, we

have that

E
[
(D − E[D])

Var(D)
(m∆(D)−m∆(dL))

∣∣∣D > 0

]
P(D > 0)

=

∫ dU

dL

m′
∆(l)w

acr
1 (l) dl

=

{∫ d1

dL

m′
∆(l)w

acr
1 (l) dl +

∫ d2

d1

m′
∆(l)w

acr
1 (l) dl +

∫ dU

d2

m′
∆(l)w

acr
1 (l) dl

}
(S36)

where the second equality just splits the integral into three parts and, as in the main text,

wacr
1 (l) = (E[D|D≥l]−E[D])P(D≥l)

Var(D) . Taking the difference between the expressions in Equations S35

and the representation of βtwfe above, we have that

m∆(d2)−m∆(d1)

d2 − d1
− βtwfe =

∫ d2

d1

wdiff (d1, d2)m
′
∆(l)

(
1− (d2 − d1)w

acr
1 (l)

)
dl

−

{∫ d1

dL

m′
∆(l)w

acr
1 (l) dl +

∫ dU

d2

m′
∆(l)w

acr
1 (l) dl + wacr

0

(m∆(dL)−m∆(0))

dL

}
(S37)

where, as in the main text, wacr
0 = (E[D|D>0]−E[D])P(D>0)dL

Var(D) .

As in Theorem 3.2, under Assumption PT, m∆(d2) − m∆(d1) = ATT (d2|d2) − ATT (d1|d1) =

E[Yt=2(d2)−Yt=2(d1)|D = d2]+
(
ATT (d1|d2)−ATT (d2|d2)

)
and m′

∆(l) = ACRT (l|l)+ ∂ATT (l|h)
∂h

∣∣∣
h=l

(notice that both of these expressions also include selection bias). Under Assumption SPT, m∆(d2)−
m∆(d1) = ATT (d2)−ATT (d1) and m′

∆(l) = ACRT (l). This completes the proof.

This shows that, in general, βtwfe will be different from ATT (d2|d2)−ATT (d1|d1)
d2−d1

(under parallel

trends) or ATT (d2)−ATT (d1)
d2−d1

(under strong parallel trends) due to (i) different weights on underlying

derivative terms (i.e., m′
∆(l)) for values of l between d1 and d2 (this is the underlined term in
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the expression in the proposition), and (ii) because βtwfe additionally depends on effects of the

treatment for values outside of [d1, d2] (this is the second term in curly brackets in the expression in

the proposition).

SD.3 TWFE Decomposition with a Multi-Valued Discrete Treatment

The following theorem provides the discrete analog of Theorem 3.4 from the main text. The weights

in the decomposition are the same ones as those used in the main text, which are reported in Table 1

in the main text, with the exception that fD(l) should be understood as pl in the discrete case. In

this section, we continue to use the notation m∆(d) = E[∆Y |D = d].

Theorem S4. Under Assumptions 1, 2, 3, 4(b), and PT, βtwfe can be decomposed in the following
ways:

(a) Causal Response Decomposition:

βtwfe =
∑

dj∈Dmv
+

wacr
1 (dj)(dj − dj−1)

{
ACRT (dj |dj) +

(
ATT (dj−1|dj)−ATT (dj−1|dj−1)

)
dj − dj−1︸ ︷︷ ︸
selection bias

}

where the weights, wacr
1 (dj)(dj − dj−1) are always positive and sum to 1.

(b) Levels Decomposition:

βtwfe =
∑

dj∈Dmv
+

wlev
1 (dj)ATT (dj |dj)

where wlev
1 (dj) ≶ 0 for dj ≶ E[D], and

∑
dj∈Dmv

+

wlev
1 (dj) + wlev

0 = 0.

(c) Scaled Levels Decomposition:

βtwfe =
∑

dj∈Dmv
+

ws(dj)
ATT (dj |dj)

dj
,

where ws(dj) ≶ 0 for dj ≶ E[D], and
∑

dj∈Dmv
+

ws(dj) = 1.

(d) Scaled 2× 2 Decomposition

βtwfe =
∑
l∈D

∑
h∈D,h>l

w2×2
1 (l, h)


E[Yt=2(h)− Yt=2(l)|D = h]

h− l︸ ︷︷ ︸
causal response

+

(
ATT (l|h)−ATT (l|l)

)
h− l︸ ︷︷ ︸

selection bias


where the weights are always positive and sum to 1.

If one imposes Assumption SPT instead of Assumption PT, then the selection bias terms from part
(a) and part (d) become zero, and the remainder of the decompositions remain true, except one needs
to replace ACRT (dj |dj) with ACRT (dj) in part (a), ATT (dj |dj) with ATT (dj) in parts (b) and (c),
and E[Yt=2(h)− Yt=2(l)|D = h] with E[Yt=2(h)− Yt=2(l)|D > 0] in part (d).
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Proof of Theorem S4

We follow the same proof strategy as for the continuous case in the main text and mainly emphasize

the parts of the proof that are different from those in the continuous case. As in the continuous case,

our strategy is to provide a mechanical decomposition in terms of m∆(d) = E[∆Y |D = d]. Then,

given those results, the main results in the theorem hold because, under Assumption PT

• m∆(dj)−m∆(0) = ATT (dj |dj)

• m∆(dj)−m∆(dj−1)
dj−dj−1

= ACRT (dj |dj) +
ATT (dj−1|dj)−ATT (dj−1|dj−1)

dj − dj−1︸ ︷︷ ︸
selection bias

• For h, l ∈ Dmv
+ , m∆(h) − m∆(l) = ATT (h|h) − ATT (l|l) = E[Yt=2(h) − Yt=2(l)|D = h] +(

ATT (l|h)−ATT (l|l)
)

︸ ︷︷ ︸
selection bias

or, when Assumption SPT holds,

• m∆(dj)−m∆(0) = ATT (dj)

• m∆(dj)−m∆(dj−1)
dj−dj−1

= ACRT (dj)

• For h, l ∈ Dmv
+ , m∆(h)−m∆(l) = ATT (h)−ATT (l) = E[Yt=2(h)− Yt=2(l)|D > 0]

Proof of Theorem S4(a)

Proof. Notice that,

βtwfe = E
[
(D − E[D])

Var(D)
(m∆(D)−m∆(0))

]
=

1

Var(D)

∑
d∈D

(d− E[D])(m∆(d)−m∆(0))pd

=
1

Var(D)

∑
d∈D

(d− E[D])pd
∑

dj∈Dmv
+

1{dj ≤ d}(m∆(dj)−m∆(dj−1))

=
1

Var(D)

∑
dj∈Dmv

+

(m∆(dj)−m∆(dj−1))
∑
d∈D

(d− E[D])1{d ≥ dj}pd

=
∑

dj∈Dmv
+

(m∆(dj)−m∆(dj−1))
(E[D|D ≥ dj ]− E[D])P(D ≥ dj)

Var(D)

=
∑

dj∈Dmv
+

wacr
1 (dj)(dj − dj−1)

(m∆(dj)−m∆(dj−1))

(dj − dj−1)

where the second equality holds by writing the expectation as a summation, the third equality holds

by adding and subtracting m∆(dj) for all dj ’s between 0 and d, the fourth equality holds by changing

the order of the summations, the fifth equality writes the second summation as an expectation, and

the last equality holds by the definition of the weights and by multiplying and dividing by (dj−dj−1).
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That wacr
1 (dj)(dj − dj−1) > 0 holds immediately since wacr

1 (dj) ≥ 0 for all dj ∈ Dmv
+ and dj > dj−1.

Further, ∑
dj∈Dmv

+

wacr
1 (dj)(dj − dj−1)

=

 ∑
dj∈Dmv

+

E[1{D ≥ dj}D](dj − dj−1)− E[D]
∑

dj∈Dmv
+

P(D ≥ dj)(dj − dj−1)

/Var(D)

= (A−B)/Var(D)

We consider each of these terms in turn:

A =
∑

dj∈Dmv
+

∑
dk∈D

1{dk ≥ dj}dkpdk(dj − dj−1)

=
∑
dk∈D

pdkdk
∑

dj∈Dmv
+ ,dj≤dk

(dj − dj−1)

=
∑
dk∈D

pdkdk(dk − 0)

= E[D2]

where the first equality holds by writing the expectation for Term A as a summation, the second

equality holds by re-ordering the summations, the third equality holds by canceling all the duplicate

dj terms across summations (and because d0 = 0), and the last equality holds by the definition of

E[D2].

Next,

B = E[D]
∑

dj∈Dmv
+

∑
dk∈D

1{dk ≥ dj}pdk(dj − dj−1)

= E[D]
∑
dk∈D

pdk
∑

dj∈Dmv
+ ,dj≤dk

(dj − dj−1)

= E[D]
∑
dk∈D

dkpdk

= E[D]2

where the first equality holds by writing the expectation for Term B as a summation, the second

equality holds by re-ordering the summations, the third equality holds by canceling all the duplicate

dj terms across summations (and because d0 = 0), and the last equality holds by the definition of

E[D].

This implies that A−B = Var(D), which implies that the weights sum to 1.

Proof of Theorem S4(b)

Proof. The proof is analogous to the continuous case in Theorem 3.4(b) in the main text except for

replacing the integral with a summation and fD(l) with pl. Then the result holds by the definition

of wlev.
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Proof of Theorem S4(c)

Proof. The proof is analogous to the continuous case in Theorem 3.4(c) in the main text except for

replacing the integral with a summation and fD(l) with pl. Then the result holds by the definition

of ws.

Proof of Theorem S4(d)

Proof. Up to Equation (S10) in the main text, the steps of the proof of Theorem 3.4(d) for the

continuous case carry over to the discrete case. Under Assumption 4(b),

Equation (S10) =
1

Var(D)

∑
l∈D

∑
h∈D,h>l

(h− l)2
(m∆(h)−m∆(l))

(h− l)
phpl

which holds immediately from Equation (S10) and then the result holds by the definition of w2×2
1 .

That the weights are positive and sum to 1 holds by the same type of argument as used in the

continuous case.

SE Relaxing Strong Parallel Trends

In this section, we provide more details about the three possible ideas to weaken the strong parallel

trends assumption that were discussed in Section 5 in the main text.

SE.1 Partial Identification

To start with, we consider the case where a researcher only wishes to invoke parallel trends (Assump-

tion PT) but is willing to assume that the sign of the selection bias is known. We focus on the case

where there is positive selection bias in the sense that, for dose d and any two dose groups l and h

with l < h, we have that ATT (d|l) ≤ ATT (d|h)—this is positive selection bias in that the ATT of

any dose is higher for the high dose group, h, relative to the low dose group, l. The following result

shows that, under this sort of condition, we can construct bounds on differences between causal effect

parameters at different values of the dose.

Proposition S7. Under Assumptions 1, 2, 3, 4(a), and PT and suppose that for any d ∈ D+ and

l < h, ATT (d|l) < ATT (d|h), then the following results hold

(1) E[Yt=2(h)− Yt=2(l)|D = h] ≤ E[∆Y |D = h]− E[∆Y |D = l] = ATT (h|h)−ATT (l|l)

(2) ACRT (d|d) ≤ ∂E[∆Y |D = d]

∂d

Proof. For part (1), from Theorem 3.2(a) in the main text, we have that, under Assumption PT,

E[∆Y |D = h]− E[∆Y |D = l] = ATT (h|h)−ATT (l|l)

= E[Yt=2(h)− Yt=2(l)|D = h] +
(
ATT (l|h)−ATT (l|l)

)
︸ ︷︷ ︸

≥0
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≥ E[Yt=2(h)− Yt=2(l)|D = h]

where the last inequality holds due to the positive selection bias.

For part (2), from Theorem 3.2(b) in the main text, we have that

∂E[∆Y |D = d]

∂d
= ACRT (d|d) + ∂ATT (d|l)

∂l

∣∣∣∣∣
l=d︸ ︷︷ ︸

≥0

≥ ACRT (d|d)

where the last inequality holds due to the positive selection bias.

Part (1) of Proposition S7 says that, given positive selection bias, the average causal response of

the high dose, h, relative to the low dose, l, for the high dose group is bounded by comparing the

average path of outcomes over time for the high dose group relative to the low dose group. Part (2)

says that, under positive selection bias, the ACRT (d|d) is bounded by the derivative of E[∆Y |D = d]

with respect to d.

SE.2 Local Strong Parallel Trends

In this section, we consider a local strong parallel trends assumption where, as discussed in the main

text, strong parallel trends holds in some sub-region Ds ⊆ D+. As discussed in the main text, we

focus on identifying a local causal effect parameter given by E[Yt=2(h)−Yt=2(l)|D ∈ Ds] for h, l ∈ Ds.

This is the average causal effect of experiencing dose h relative to dose l among all dose groups that

experienced a treatment in Ds. We consider the following assumption

Assumption Local-SPT. For all d ∈ Ds ⊆ D+,

E[Yt=2(d)− Yt=1(0)|D ∈ Ds] = E[Yt=2(d)− Yt=1(0)|D = d]

This assumption is similar to Assumption SPT from the main text, with the difference being that

it holds locally to the sub-region Ds. It is also different in spirit from Assumption PT as it does not

require the dose groups in Ds to be experiencing the same trend in untreated potential outcomes as

the untreated group. Next, we show that, for h, l ∈ Ds, the average causal effect of experiencing dose

h relative to dose l across dose groups in Ds, E[Yt=2(h) − Yt=2(l)|D ∈ Ds], is identified under this

assumption.

Proposition S8. Under Assumptions 1, 2, 3, 4(a), and Local-SPT, and for h, l ∈ Ds

E[Yt=2(h)− Yt=2(l)|D ∈ Ds] = E[∆Y |D = h]− E[∆Y |D = l]

Proof. For any h, l ∈ Ds, we have that

E[Yt=2(h)− Yt=2(l)|D ∈ Ds] = E[Yt=2(h)− Yt=1(0)|D ∈ Ds]− E[Yt=2(l)− Yt=1(0)|D ∈ Ds]

= E[Yt=2(h)− Yt=1(0)|D = h]− E[Yt=2(l)− Yt=1(0)|D = l]

= E[∆Y |D = h]− E[∆Y |D = l]
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where the first equality holds by adding and subtracting E[Yt=1(0)|D ∈ Ds], the second equality

uses Local-SPT, and the last equality holds by replacing potential outcomes with their observed

counterparts.

An immediate corollary to the previous result is that a local version of ACRT (d) is also identified:
∂E[Yt=2(d)|D ∈ Ds]

∂d
=

∂E[∆Y |D = d]

∂d
for d in the interior of Ds—notice that there are no selection

bias terms in this expression which is due to this being a version of strong parallel trends.

SE.3 Strong Parallel Trends Conditional-on-Covariates

In this section, we consider a conditional-on-covariates version of strong parallel trends that can

be used to recover conditional versions of ATT (d) parameters. We target ATTx(d) := E[Yt=2(d) −
Yt=2(0)|X = x,D > 0]. We consider the following assumption

Assumption SPT-X. For all d ∈ D,

E[Yt=2(d)− Yt=1(0)|X = x,D > 0] = E[Yt=2(d)− Yt=1(0)|X = x,D = d]

This is a conditional-on-covariates version of strong parallel trends. The following result shows

that ATTx(d) is identified under this condition.

Proposition S9. Under Assumptions 1, 2, 3, 4(a), and SPT-X,6

ATTx(d) = E[∆Y |X = x,D = d]− E[∆Y |X = x,D = 0]

Proof. For any d ∈ D+, we have that

ATTx(d) = E[Yt=2(d)− Yt=2(0)|X = x,D > 0]

= E[Yt=2(d)− Yt=1(0)|X = x,D > 0]− E[Yt=2(0)− Yt=1(0)|X = x,D > 0]

= E[Yt=2(d)− Yt=1(0)|X = x,D = d]− E[Yt=2(0)− Yt=1(0)|X = x,D = 0]

= E[∆Y |X = x,D = d]− E[∆Y |X = x,D = 0],

where the first equality holds by the definition of ATTx(d), the second equality holds by adding and

subtracting E[Yt=1(0)|X = x,D > 0], the third equality holds by Assumption SPT-X, and the last

equality by replacing potential outcomes with their observed counterparts.

An immediate corollary to the previous result is that the conditional on covariates version of

ACRT (d) is also identified. In particular, ACRTx(d) :=
∂ATTx(d)

∂d
=

∂E[∆Y |X = x,D = d]

∂d
. Notice

that there is no selection bias term in this expression.
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