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Abstract

This paper analyzes difference-in-differences designs with a continuous treatment. We show that
treatment-on-the-treated-type parameters are identified under a parallel trends assumption anal-
ogous to the binary treatment case. However, comparing these parameters across treatments is
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cally stronger, assumptions that eliminate selection bias. We further show that popular two-way
fixed effects estimands admit multiple interpretations, depending on the underlying causal build-
ing block, all having important limitations as meaningful summaries of treatment effects. Finally,
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1 Introduction

The canonical difference-in-differences (DiD) research design compares outcomes before and after
treatment started (difference one), between treated and untreated groups (difference two). However,
in many DiD applications, the treatment does not simply “turn on”, it has a “dose” or operates
with varying intensity. Pollution dissipates across space, affecting locations near its source more
severely than faraway locations. Localities spend different amounts on public goods and services, or
set different minimum wages. Students choose how long to stay in school.

Continuous treatments can offer advantages over binary ones.1 Variation in intensity makes it
possible to evaluate treatments that all units receive. A clear “dose-response” relationship between
outcomes and treatment intensity can bolster the case for a causal interpretation or test a theoretical
prediction. Finally, we may care more about the effect of changes in treatment intensity, such as
increased funding, pollution abatement, or expanded eligibility, than about the effect of the existence
of a treatment that already exists.

Despite how conceptually useful and practically common continuous DiD designs are, currently
available econometric results provide little guidance on applying and interpreting them, except in some
specific cases. In this paper, we introduce a set of tools that are suitable for DiD setups with variation
in treatment dosage. In particular, we (a) discuss how one can identify a variety of treatment effect
parameters by exploiting parallel-trends-type assumptions, (b) demonstrate that a simple linear two-
way fixed effects (TWFE) estimand accommodates multiple decompositions that are difficult to justify
as meaningful summaries of treatment effects, and (c) propose “forward-engineered” estimators that
directly target well-defined causal objects, allowing for more transparent interpretation and robust
inference in applications with treatment effect heterogeneity.

To foster intuition and simplify exposition, we start by discussing causal parameters in a two-
period DiD design in which units move from no treatment to a non-zero dose. We call the difference
between a unit’s potential outcome under dose d and its untreated potential outcome a level treatment
effect. We call the difference in a unit’s potential outcome with a marginal increase in the dose a
causal response (Angrist and Imbens, 1995). When treatment is binary, these two notions of treatment
effects coincide, but they do not under a continuous treatment. Importantly, level treatment effects
and causal responses can have meaningfully different interpretations, and we establish that they
generally require different identifying assumptions as well.

Comparisons between treated and untreated units identify average (level) treatment effect pa-
rameters under a parallel trends assumption on untreated potential outcomes, similar to binary DiD
designs. Comparisons between adjacent dose groups, however, do not identify average causal response
parameters under the “standard” parallel trends assumption. They include causal responses but are
contaminated by an additional term involving possibly different treatment effects of the same dose
for different dose groups—we refer to this additional term as selection bias.2 We discuss an alterna-

1We generally use “continuous” treatments also to mean multi-valued ordered discrete treatments, but make the
distinction explicit for certain results.

2In applications where units choose their amount of the treatment, it is natural to refer to this term as selection
bias. In other applications where the dose measures a unit’s amount of exposure to some treatment, a different term,
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tive, typically stronger assumption, which we call strong parallel trends, that says that the average
evolution of outcomes for the entire treated population under dose d is equal to the path of outcomes
that dose group d actually experienced. Thus, strong parallel trends justifies comparing dose groups
by restricting treatment effect heterogeneity. Strong parallel trends may not be plausible in many
applications. Currently, in empirical work, it is common for papers to write as if they have assumed
standard parallel trends and interpret their results as if they have assumed strong parallel trends.
Our results clarify what causal questions can be answered under standard parallel trends and what
causal questions require stronger assumptions.

The ideas discussed above are in the spirit of what Mogstad and Torgovitsky (2024) call forward
engineering, where the researcher clearly specifies target parameters and assumptions up front and
builds estimators to implement the identification strategy. Our second main contribution is to reverse
engineer the most common way that practitioners estimate continuous DiD designs, which is to run
a TWFE regression that includes time fixed effects (θt), unit fixed effects (ηi), and the interaction
of a dummy for the post-treatment period (Postt) with a variable that measures unit i’s dose or
treatment intensity, Di:

Yi,t = θt + ηi + βtwfeDi · Postt + vi,t. (1.1)

This TWFE specification is clearly motivated by DiD setups with two periods and two treatment
groups, though many prominent textbooks suggest using it in more general setups (e.g., Cameron and
Trivedi, 2005, Angrist and Pischke, 2008, and Wooldridge, 2010). There are several ways to interpret
βtwfe, each corresponding to a different type of causal parameter. We decompose it in terms of
level effects, scaled level effects, causal responses, and scaled high-versus-low (2 × 2) effects. Each
decomposition is a weighted integral of dose-specific causal parameters, and none provides a clear
causal and policy-relevant interpretation of βtwfe, at least not when treatment effects are allowed to
vary across doses and/or groups.3

For instance, we show that βtwfe can be expressed as a weighted integral of average level treat-
ment effect parameters but where the weights integrate to zero, indicating that βtwfe should not
be interpreted as an average (level) treatment effect. Interestingly, however, TWFE puts negative
weights on the below-average dose units and positive weights on above-average dose units, and, thus,
after re-scaling by a weighted average of the difference between doses for high- and low-dose units, is
equivalent to a weighted binary DiD using higher-dose units as the “treated” group and lower-dose
units as the “comparison” group, with weights proportional to a unit’s absolute distance from the
mean dose. Our next decomposition, based on average level treatment effect parameters scaled by
their dose, also displays negative weights, though their weights integrate up to one and not zero.

In contrast, a TWFE decomposition in terms of average causal response parameters has weights
that integrate up to one and are non-negative, but also includes a selection bias term stemming from

such as “heterogeneity bias”, could be more appropriate. For simplicity, throughout the paper, we simply refer to this
term as selection bias.

3The decompositions that we provide are specific to the particular TWFE regression specification in Equation (1.1),
which we focus on due to its ubiquity in empirical work with a continuous treatment. Some of the drawbacks we discuss
below, particularly regarding weighting schemes inherited from the TWFE regression, could be addressed by considering
a more flexible specification. See, e.g., Wooldridge (2025) for a discussion involving binary treatments.
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effect heterogeneity across doses. The strong parallel trends assumption eliminates this selection
bias. The weights on causal responses at different doses, however, differ from the distribution of
the dose among the treated, which creates a further challenge to interpreting βtwfe, even if strong
parallel trends holds. The weights are also undesirably sensitive to the size of the untreated group.
In our application, if we drop the untreated group, which changes the weights but does not change
the underlying average causal responses, our estimate of βtwfe shrinks by 78%. Our decomposition
of βtwfe based on scaled 2 × 2 average effects as building blocks also highlights limitations of using
βtwfe as a causal summary parameter.

We demonstrate that these drawbacks are easily avoidable and discuss different DiD estimators
that build upon our identification results and recover interpretable causal parameters. When the
treatment is discrete, this is as simple as running a linear regression with multiple treatment indica-
tors, which is similar to staggered DiD setups (Callaway and Sant’Anna, 2021). When the treatment
is continuous, there are several options, including adopting a parametric, semiparametric, or non-
parametric regression model. In particular, we discuss how to adapt the data-driven sieve-based
nonparametric regression proposed by Chen, Christensen, and Kankanala (2025) to our context, al-
though we note that other semi/nonparametric procedures are also possible. We also show how to
construct causal summary measures of our average treatment effect functions that bypass the TWFE
weighting problems by using the dose density as weights. Our results suggest that one can easily
summarize average level treatment effects among treated units by comparing the average change in
outcomes for all treated units to the average change in outcomes for untreated units. This can be
estimated by running a binary DiD with a “treatment dummy” equal to one for any units with posi-
tive doses. Summarizing average causal responses using dose density weights involves estimating an
average derivative, which is simple to compute using “flexible” linear regressions. We also discuss
how to construct event-study results using these summary measures, which can then be used to assess
the plausibility of the parallel trends assumptions.

To contrast our proposed estimators with TWFE in practical settings, we revisit Acemoglu and
Finkelstein’s 2008 study of a 1983 Medicare reform that eliminated labor subsidies for hospitals. The
original paper uses a TWFE estimator to compare the change in capital-labor ratios between hospitals
whose input prices were more or less affected by the end of the subsidy. It concludes that price
regulations favoring capital significantly increase capital use. The distinction between level treatment
effect parameters and causal responses is important in this example: a positive level treatment effect
shows that the policy as a whole increased the use of capital, while causal responses describe which
subsidy levels generated the largest responses. We find that the reform raised capital-labor ratios
by about 18 percent (on average), which is 50 percent larger than the comparable TWFE estimate
because of the weighting issues highlighted by our decompositions. We also estimate variable average
causal response (ACRT ) parameters that are quite large at low subsidy levels—implying elasticities
of substitution greater than 2—yet slightly negative for most positive doses. These negative ACRT
estimates cast doubt about the plausibility of the strong parallel trends assumption, the simple
two-factor model of hospital production, or both. Our results support Acemoglu and Finkelstein’s
2008 conclusion that the 1983 Medicare reform led hospitals to favor capital over labor, but suggest

3



caution in a policy interpretation about which subsidy levels have the largest effects or an economic
interpretation in terms of production function parameters.

Related Literature: Our paper contributes to the literature on modern DiD methods; see, e.g.,
Baker et al. (2025) for an overview. We contribute to this literature by highlighting challenges
associated with using TWFE with continuous treatments, discussing the role of different parallel
trends assumptions to learn about different causal parameters, and providing easy-to-use estimation
procedures that can highlight treatment effect heterogeneity with continuous treatments.

The closest paper to ours is Fricke (2017), which focuses on DiD setups with two time periods
and three treatment dosages: H, L, and 0. Fricke (2017) shows that under standard parallel trends,
one can identify dose-specific average treatment effect among dose groups in two-period DiD designs.
He also considers stronger assumptions that permit causal interpretation of the H vs. L contrast
when an untreated group is not available. We generalize his identification results to DiD settings
with richer treatment distributions, including continuous cases, multiple time periods, and staggered
treatment adoptions. This allows us to (i) discuss a broader set of parameters of interest that
are suitable for incremental changes in treatment dose, (ii) discuss event-study and other types
of treatment aggregations, (iii) derive decomposition results that question the causal meaning of
TWFE estimates under treatment effect heterogeneity, and (iv) offer identification-based estimation
templates for researchers to avoid the pitfalls of simple TWFE specifications with continuous/multi-
valued treatments.

Our paper is also related to a series of papers on more complicated non-binary DiD setups. de
Chaisemartin and D’Haultfoeuille (2018) focuses on fuzzy designs, where a researcher is interested in
individual-level effects of a binary treatment that has been aggregated across units into a continuous
“treatment rate.” In contrast, we study “sharp” designs in which the treatment exposure is itself
continuous or multi-valued discrete at the unit-level. The approach proposed in de Chaisemartin and
D’Haultfoeuille (2025) can also accommodate continuous treatments, although they focus on aggre-
gated target parameters rather than dose-specific estimators of treatment effect heterogeneity, as we
do. They also do not discuss identification, nor estimation, related to average causal response param-
eters, an important focus of our analysis. de Chaisemartin et al. (2025) builds on de Chaisemartin
and D’Haultfoeuille (2025) and considers a DiD setup with continuous treatments with potentially
non-staggered (but static) treatments. Our proposal differs in its target parameters and DiD designs.
Similarly to de Chaisemartin and D’Haultfoeuille (2025), de Chaisemartin et al. (2025) average ef-
fects of discrete rather than marginal changes of treatments. On the other hand, de Chaisemartin
et al. (2025) allows for units to already be exposed to the treatment in the first period and considers
instrumental variable extensions, which we do not.

Our decompositions also relate to the literature on TWFE bias in heterogeneous treatment effect
settings with a binary treatment (e.g., Borusyak, Jaravel, and Spiess, 2024; de Chaisemartin and
D’Haultfoeuille, 2020; Goodman-Bacon, 2021; Sun and Abraham, 2021) but we extend this logic to
continuous treatments and highlight that the same TWFE regression coefficient can have multiple
interpretations depending on the “building blocks”, and that new “bias” terms may appear, depending
on the type of parallel trends assumption being used. A perhaps more practically relevant message
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from our decompositions is that, even when all weights are non-negative, TWFE can still provide
an unappealing causal summary parameter. Interestingly, if one replaces our DiD setting with a
cross-sectional design with a randomly assigned dose, all four of our decomposition results would still
hold, highlighting that linear specifications may not be desirable with continuous treatments, even
when the dose is fully randomized.

Finally, we note that some of our causal response decomposition builds on Yitzhaki (1996, Propo-
sition 2), which expresses the slope coefficient in a regression of an outcome on a continuous variable
as a weighted average of underlying local slopes. Besides differences related to causal interpretations
and panel data, we mildly extend those results to accommodate a mass of untreated units.

2 Motivating Continuous DiD from an Empirical Perspective

To fix ideas and provide intuition for our results, we revisit Acemoglu and Finkelstein’s 2008 (AF)
study of how price regulations affect firms’ input choices. When Medicare began in 1965, hospitals
received reimbursements from the federal government for a share of their labor and capital expen-
ditures proportional to the fraction of total patient days accounted for by Medicare recipients (mi).
Hospital i thus faced input prices equal to (1 − sLmi)w for labor and (1 − sKmi)r for capital, where
sL and sK are the labor and capital subsidy rates and w and r are market wages and rental rates. In
1983, Medicare moved to the Prospective Payment System (PPS), which replaced the labor subsidy
with a small payment per episode/diagnosis. This set sL = 0 but left the capital subsidy unchanged.
Therefore, the price of labor for a given hospital rose from (1 − sLmi)w to w, skewing relative factor
prices.

The statutory relationship between a hospital’s Medicare volume, mi, and the change in its price
of labor, sLmiw, motivates AF’s use of a continuous DiD design comparing changes in capital/labor
ratios before and after 1983 between hospitals with different pre-PPS Medicare inpatient shares.
AF’s description, estimation, and interpretation of this empirical strategy touch on some of the most
common ways of justifying and implementing continuous DiD designs.

One motivation for this design is practical: variation in a dose (or exposure) permits the evaluation
of treatments for which binary DiD is either infeasible or undesirable. In AF’s case, about 15 percent
of hospitals were “untreated” by the change in Medicare’s subsidy policy because they served non-
Medicare-eligible populations, like children or psychiatric patients, so one may be concerned about
whether these constitute a valid comparison group. AF therefore describe mi, which is the hospital’s
Medicare volume in 1983, as an “attractive source of variation” in the price of labor both because
it varies substantially—the mean of mi among treated hospitals is 0.45, and the standard deviation
is 0.15—and because hospitals with mi > 0 may be more comparable to each other than treated
hospitals are to untreated hospitals.

Another common justification for continuous DiD designs is that a “dose-response” relationship
between exposure and outcomes can support a causal interpretation or test a theoretical prediction.
Meyer (1995, p. 158), for example, argues that “differences in the intensity of the treatment across
different groups allow one to examine if the changes in outcomes differ across treatment levels in the
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expected direction.” AF lay out a simple theoretical framework in which the move to PPS should (i)
raise capital/labor ratios and (ii) do so more strongly for hospitals with higher pre-PPS values of mi.
They view their continuous DiD design as a way to estimate a causal effect of PPS as a whole and
test the theoretical predictions of their model.

Finally, researchers often advocate for continuous DiD designs because they can be used to esti-
mate average causal effects of small changes in the dose. In many economic models, price and income
elasticities determine optimal policies like tax rates, tax bases, subsidies, and regulations (Hendren,
2016), but these are continuous concepts that can be estimated accurately only with continuous
variation. AF’s theoretical framework implies that, under some assumptions, DiD estimates provide
information about hospitals’ elasticity of substitution between capital and labor, although AF do not
argue for this kind of “marginal” interpretation.

Figure 1: Two-Way Fixed Effects Event-Study Estimates of the Effect of Medicare’s Reimbursement
Reform on Hospital Input Mix
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Notes: The figure plots TWFE event-study coefficients and their 95% confidence intervals from regressions with hospital fixed
effects, year fixed effects, and the 1983 Medicare inpatient share (mi) interacted with either a dummy for years after 1983 (static
TWFE specification) or the year dummies (event study). The outcome variable is the depreciation share of total operating
expenses, a measure of hospitals’ capital/labor ratio. The data cover the years 1980-1986 and come from the American Hospital
Association’s annual survey (American Hospital Association, 1986). The results are not numerically identical to AF’s because we
drop 860 hospitals (out of 6,741) with missing outcomes for some years.

In terms of estimation, AF use the standard tool for continuous DiD designs: a TWFE regression
with hospital and year fixed effects. They follow textbook advice. Wooldridge (2010, p. 132) observes
that a two-period DiD regression estimator “can be easily modified to allow for continuous, or at
least non-binary, ‘treatments’.” Angrist and Pischke (2008, p. 234) emphasize “a second advantage
of regression DD is that it facilitates the study of policies other than those that can be described
by a dummy.” They also follow common practice and describe their identifying assumption as an
extension of the parallel trends assumption from binary designs: “Without the introduction of PPS,
hospitals with different mi’s would not have experienced differential changes in their outcomes in the
post-PPS period” (emphasis added).

Figure 1 reproduces AF’s DiD event-study coefficients for each calendar year, relative to 1983,
and the estimate of βtwfe from an equation like (1.1). AF interpret these results as indicative that
after 1983, capital/labor ratios rose more strongly for hospitals with higher values of mi, without a
substantial differential change in input mix before PPS. Our impression is that event-study results
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like those in Figure 1 would usually be interpreted as strong causal evidence because there are
(relatively) small pre-trend estimates, large estimates in post-treatment periods, and tight confidence
intervals. What is missing from most continuous DiD analyses, however, is a specific statement about
what causal parameters researchers would like to estimate, the assumptions under which they are
identified, and a formal justification for a particular estimator. Our goal is to shed light on these
three issues.

3 Baseline Case: A New Treatment with Two Periods

We illustrate our main points in a setup with two periods of panel data, t = 1 and t = 2. In the first
period, no unit is treated. In the second period, some units receive a treatment “dose,” denoted by
Di, and others remain untreated. Extensions to multiple periods and staggered setups are discussed
in Section 5. We denote the support of D by D. Di can be (absolutely) continuous or can be multi-
valued discrete, but to simplify the exposition, we refer to it as “continuous.” We define potential
outcomes for unit i in period t as Yi,t(0, d), where potential outcomes are indexed by the treatment
sequence (Robins, 1986). As we focus on the setup where all units have d = 0 in period t = 1, we
simplify the potential outcome notation and henceforth write Yi,t(d), where d is the dosage in period
t = 2. This is the outcome that unit i would experience in period t under (period-two) dose d. In
each time period t, the observed outcome for unit i is Yi,t = Yi,t(Di). We assume that all expectations
are finite and well-defined. Henceforth, we omit the unit index i to make the notation less cluttered
and define ∆Y = Yt=2 − Yt=1.

3.1 Parameters of Interest with a Continuous Treatment

The potential outcomes notation Yt(d) reflects that treatment can take many values, and so each unit
can experience many types of causal effects. The level treatment effect of dose d in time period t for
a given unit is defined as its potential outcome when D = d minus its untreated potential outcome:
Yt(d)−Yt(0). Level treatment effects measure the treatment effect at time t from switching treatment
dosage from 0 to d. This is a straightforward extension of a binary “treatment effect” to a continuous
“treatment effect function” or “dose-response function.”

But zero-treatment is not the only relevant counterfactual. We define a unit’s causal response
at d as Y ′

t (d), the derivative of the potential outcome with respect to dose d (when the treatment
is continuous),4 or as the difference in potential outcomes between adjacent doses scaled by the
difference in the doses,

(
Yt(dj) − Yt(dj−1)

)/
(dj − dj−1) (when the treatment is discrete). Causal

responses measure the treatment effect at time t of a marginal increment of dose d. These two types
of treatment effects—the level of Yt(d)−Yt(0) or its slope, Y ′

t (d)—define unit-level causal parameters
in continuous designs, and connect to results in the instrumental variables (IV) literature on multi-
valued discrete or continuous endogenous variables (Angrist and Imbens, 1995, Angrist, Graddy, and
Imbens, 2000).

4This is a slight abuse of notation as we do not require Yt(d) to be differentiable (or even continuous), but rather
we mean here the causal effect of a marginal increase in the dose on a unit’s outcome: limh→0+ (Yt(d + h) − Yt(d))/h.
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We focus on “building block” parameters that are averages of these two kinds of causal effects
in the post-treatment period, t = 2. Average level treatment effects (which we refer to as average
treatment effects) extend definitions from the binary case:

ATT (d|d′) = E[Yt=2(d) − Yt=2(0)|D = d′] and ATT (d) = E[Yt=2(d) − Yt=2(0)|D > 0],

where ATT (d|d′) is the average effect of dose d compared to zero dosage in the post treatment period
t = 2 on units that actually experienced dose d′. When d′ = d, this is the ATT local to units that
received dose d. ATT (d) is the average difference between potential outcomes under dose d relative
to untreated potential outcomes across all treated units, not just those that experienced dose d, in
time period t = 2.

Average causal response parameters for absolutely continuous treatments are defined as

ACRT (d|d′) = ∂ATT (l|d′)
∂l

∣∣∣∣
l=d

= ∂E[Yt=2(l)|D = d′]
∂l

∣∣∣∣
l=d

and ACRT (d) = ∂ATT (d)
∂d

= ∂E[Yt=2(d)|D > 0]
∂d

.

ACRT (d|d′) is the average effect of a marginal dose increase from d for dose group d′. It equals the
derivative of ATT (l|d′) with respect to l, evaluated at l = d, which is equivalent to the derivative of
the t = 2 average potential outcome function with respect to dose d among dose group d′. ACRT (d)
is the average causal response of dose d across all treated units. For discrete treatments, average
causal responses are defined in a similar way but with slightly different notation:

ACRT (dj |dk) = E[Yt=2(dj) − Yt=2(dj−1)|D = dk]
dj − dj−1

and ACRT (dj) = E[Yt=2(dj) − Yt=2(dj−1)|D > 0]
dj − dj−1

.

ACRT (dj |dk) equals the difference in mean potential outcomes between dose level dj and the next
lowest dose dj−1 in period t = 2 for dose group dk, scaled by the difference between the two doses.
Similarly, ACRT (dj) gives the average causal response of dose dj relative to dose dj−1, but it is for
the entire treated group. We note that our definition of ACRT (dj |dk) and ACRT (dj) differs from
the definitions in Angrist and Imbens (1995), as it scales the changes in expected potential outcomes
by the change in dosage.

Figure 2 illustrates these parameters graphically. The concave line plots an average treatment
effect function against the dose for dose group d, ATT (·|d). If we consider dose levels d and d′, there
are two possible ATT parameters. The first, ATT (d|d), the level of dose group d’s average treatment
effect function at d, is an average treatment effect that is “local” to units that experienced dose d. The
second, ATT (d′|d), is also “local” to dose group d, but refers to the effect they would experience at
dose d′ even though they did not actually receive that dose. The continuous-dose ACRT parameters
are the slopes of tangent lines to the ATT (·|d) function, and the discrete-dose ACRT parameters are
the slopes of lines connecting two points on the ATT (·|d) function. As with ATT ’s, our definitions
encompass causal responses to doses other than the one a group actually receives (i.e., ACRT (d′|d)).

A proper interpretation of continuous DiD results hinges on which type of parameter one wants,
can identify, and can estimate. For instance, even if all ATT (d|d) parameters are large and positive,
some ACRT (d|d) parameters could be zero or negative. A researcher misinterpreting a large ATT
estimate as an ACRT , in this case, would mistakenly conclude that a policy to raise every unit’s
dose would have large effects. A researcher confusing a small ACRT for an ATT would mistakenly
conclude that a policy was ineffective, even though it actually just has small effects at the margin.
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Figure 2: Causal Parameters in a Continuous Difference-in-Differences Design

l

AT T (l|d)
AT T (d′|d)

AT T (d|d)

d′ = d + 1d

ACRT (d′|d)
(discrete)

ACRT (d|d)
(continuous)

ACRT (d′|d)
(continuous)

Notes: The figure plots AT T (·|d) (the average effect of experiencing each dose for dose group d). We highlight causal parameters
for two doses, d and d′. AT T (d|d) and AT T (d′|d) are average treatment effect on the treated parameters and refer to the height
of the curve. ACRT (d|d) and ACRT (d′|d) are average causal response parameters and refer to the slope of the curve. We show
them for a continuous dose, when the ACRT is the slope of a tangent line, and for a discrete dose when ACRT is the slope of a
line connecting two discrete points on AT T (d|d).

The above-mentioned causal parameters are functional parameters because they are allowed to
vary arbitrarily across dose groups d and across (counterfactual) doses d′. This contrasts with βtwfe

from (1.1), which is a single number. In many applications, it may be desirable to aggregate these
functional parameters into lower-dimensional objects that are easier to report and may be more
precisely estimated. We focus on aggregations that average the functional parameters discussed
above using the distribution of the dose among all treated units,

ATT loc = E[ATT (D|D)|D > 0] and ATT glob = E[ATT (D)|D > 0]

ACRT loc = E[ACRT (D|D)|D > 0] and ACRT glob = E[ACRT (D)|D > 0].

These provide natural ways to summarize the underlying parameters. We use the loc superscript to
denote that ATT loc and ACRT loc summarize treatment effects that are local effects of particular
doses, while we use the superscript glob to denote that ATT glob and ACRT glob summarize treatment
effects of particular doses globally (i.e., across all treated units). All four of these parameters provide
“best” approximations in the sense of minimizing the mean squared distance between the summary
parameter and the functional parameters. Also, note that ACRT loc and ACRT glob are average
derivative-type parameters, and average derivatives have been widely studied in econometrics.

3.2 Identification with a Continuous Treatment

This section discusses the identification of average treatment effect and average causal response pa-
rameters. Toward this end, we make the following assumptions.

Assumption 1 (Random Sampling). The observed data consist of {Yi,t=2, Yi,t=1, Di}n
i=1, which is

independent and identically distributed.

Assumption 2 (Treatment). In period t = 1, no unit is treated, while in period t = 2, the treatment
dosage D has support D = {0} ∪ D+, where D+ ⊆ (0,∞). In addition, P(D = 0) > 0.
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Assumption 3 (No-Anticipation and Observed Outcomes). For all units, and all d ∈ D,
Yi,t=1 = Yi,t=1(d) = Yi,t=1(0) and Yi,t=2 = Yi,t=2(Di).

Assumption 1 says that we observe two periods of iid panel data. Assumption 2 formalizes that
a mass of units do not participate in the treatment in either period (we discuss the case with no
untreated units in more detail at the end of this section), and the rest receive a positive amount of
the treatment that can vary in amount across units. Assumption 3 says that units do not anticipate
future treatments, so we observe untreated potential outcomes for all units in the first period. In
the second period, we observe the potential outcome corresponding to the actual dose that unit i
experienced.

3.2.1 Identification under parallel trends

Identification of average level treatment effects follows closely from the DiD setup with binary treat-
ments. In particular, our results rely on an extension of the binary parallel trends assumption.

Assumption PT (Parallel Trends). For all d ∈ D+,

E[Yt=2(0) − Yt=1(0)|D = d] = E[Yt=2(0) − Yt=1(0)|D = 0].

Assumption PT says that the average evolution of outcomes that units with any dose d would have
experienced without treatment is the same as the evolution of outcomes that units in the untreated
group actually experienced. Binary DiD designs also rely on assumptions like this. To simplify the
exposition below, we often simply refer to Assumption PT as parallel trends (PT). The following
result shows that under Assumption PT, ATT (d|d) is identified; all proofs are in Appendix A.

Theorem 3.1. Under Assumptions 1, 2, 3, and PT, ATT (d|d) is identified for all d ∈ D+, and it is
given by

ATT (d|d) = E[∆Y |D = d] − E[∆Y |D = 0].

Furthermore, ATT loc = E[∆Y |D > 0] − E[∆Y |D = 0].

Theorem 3.1 states that ATT (d|d) equals the difference between the change in outcomes for dose
group d and the untreated group. It generalizes Fricke (2017)’s result for two doses to richer treatment
patterns. As a direct consequence, by averaging all the ATT (d|d)’s over the distribution of non-zero
dosages, we have that the summary parameter ATT loc is identified by simply comparing units with
a positive dose to untreated units. On the other hand, parallel trends, as defined in Assumption PT,
is not strong enough to guarantee the identification of ATT (d).

The identification of average causal response parameters differs from the identification of ATT
parameters because it requires comparisons between dose groups.

Assumption 4 (Continuous or Multi-Valued Discrete Treatment). The treatment is either continu-
ous or multi-valued discrete. More precisely, one of the following is true:

(a) D+ = Dc
+, where Dc

+ = (dL, dU ) with fD|D>0 a Lebesgue density which satisfies fD|D>0(d) > 0
for all d ∈ Dc

+, and E[∆Y |D = d] is differentiable on Dc
+.
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(b) D+ = Dmv
+ where Dmv

+ ⊂ N+, with N+ = {1, 2, 3, . . .} denotes the strictly positive natural
numbers. Let dj denote the jth element of Dmv

+ . In addition, P(D = d) > 0 for all d ∈ Dmv
+ .

Assumption 4 distinguishes between cases with a continuous 4(a) or discrete 4(b) treatment.
Assumption 4(a) allows for the smallest value of the treatment to be arbitrarily close to zero or
strictly larger than zero, both of which are common in applications.

Our central identification result is that causal response parameters are not identified under As-
sumption PT, because comparisons between different dose groups are biased when treatment effects
(of the same dose) vary across dose groups, even when the average evolution of untreated potential
outcomes is the same.

Theorem 3.2. Under Assumptions 1, 2, 3, and PT, comparisons of paths of outcomes among dif-
ferent dose groups recover a mix of causal effect parameters and selection bias terms. Specifically,

(a) For (h, l) ∈ D+ × D+,

E[∆Y |D = h] − E[∆Y |D = l] = ATT (h|h) −ATT (l|l)

= E[Yt=2(h) − Yt=2(l)|D = h]︸ ︷︷ ︸
causal effect

+
(
ATT (l|h) −ATT (l|l)

)
︸ ︷︷ ︸

selection bias

.

(b) If Assumption 4(a) also holds, then, for d ∈ Dc
+,

∂E[∆Y |D = d]
∂d

= ∂ATT (d|d)
∂d

= ACRT (d|d) + ∂ATT (d|l)
∂l

∣∣∣
l=d︸ ︷︷ ︸

local selection bias

;

(c) Alternatively, if Assumption 4(b) also holds,

E[∆Y |D = dj ] − E[∆Y |D = dj−1]
dj − dj−1

= ACRT (dj |dj) + ATT (dj−1|dj) −ATT (dj−1|dj−1)
dj − dj−1︸ ︷︷ ︸

scaled selection bias

.

Theorem 3.2 says that under parallel trends, comparisons of outcome paths between higher- and
lower-dose groups mix together (i) causal responses and (ii) a “selection bias” type of term that comes
from differences in average treatment effects of the same dose for different dose groups. Intuitively,
even if untreated potential outcomes evolve in the same way, observed paths of outcomes differ between
dose groups for two reasons. One is the causal response itself, which comes from differences in doses
(h versus l) causing differences in outcomes. The other is a selection bias type of contamination,
which comes from differences across dose groups in the average level effect of the particular dose
l—parallel trends does not rule out that different dose groups could experience different treatment
effects of the same dose.

Figure 3 illustrates this result for an example with two dose groups and two doses: d and d′ = d+1.
The slope of the line that connects the points (d,ATT (d|d)) and (d′, ATT (d′|d′)) is steeper than
the average causal response of interest, ACRT (d′|d′), because it jumps from one ATT function to
the other. This is captured by the selection bias term, a version of selection-on-gains that equals
the difference in treatment effects at the lower dose: ATT (d|d′) − ATT (d|d). It breaks the causal
interpretation because observed outcomes for lower-dose units are not a valid counterfactual for what
higher-dose units would have experienced at the lower dose. The selection bias is not identified
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Figure 3: Non-Identification of Average Causal Response with Treatment Effect Heterogeneity, Two
Discrete Doses

l

AT T (d′|d′)

AT T (d|d′)

AT T (d|d)

d′ = d + 1d

AT T (l|d)

AT T (l|d′)

ACRT (d′|d′)
= ACRT (d′|d′) + AT T (d|d′) − AT T (d|d)

Notes: The figure shows that comparing adjacent AT T (d|d)’s equals an ACRT parameter (the slope of the higher-dose group’s
AT T function) and selection bias (the difference between the two groups’ AT T functions at the lower dose).

as we do not observe Yt=2(d) for units that experienced dose d′. Such a result precludes a causal
interpretation of ATT (d|d) differences across doses under Assumption PT.

3.2.2 Identification under strong parallel trends

This section discusses an alternative, typically stronger assumption that allows for the identification
of ACRT (d) and ATT (d) parameters, which we refer to as strong parallel trends (SPT).

Assumption SPT (Strong Parallel Trends). For all d ∈ D,

E[Yt=2(d) − Yt=1(0)|D > 0] = E[Yt=2(d) − Yt=1(0)|D = d].

Under Assumption 3, the right-hand side of the equation in Assumption SPT is the (observed)
average evolution of outcomes for dose group d. Assumption SPT says that the average evolution of
outcomes for the entire treated population if all experienced dose d (the left-hand side of the previous
equation) is equal to the path of outcomes that dose group d actually experienced. In applications
where the treatment is binary, Assumption SPT, like Assumption PT, reduces to the usual parallel
trends assumption. Like the case with a binary treatment, it allows for treated units to select into
being treated. Among treated units, though, it rules out selection into a particular amount of the
treatment. With more complicated treatments, Assumption SPT notably differs from Assumption PT
because it involves potential outcomes under different doses, Yt(d), rather than only untreated po-
tential outcomes, Yt(0). While Assumption SPT is not strictly stronger than Assumption PT (e.g.,
notice that it does not require parallel trends in untreated potential outcomes for all dose groups),
we refer to it as strong parallel trends to indicate that in many applications it would be a stronger,
perhaps much stronger, assumption.

An alternative way to think about Assumption SPT is as an assumption that restricts treatment
effect heterogeneity.5 In particular, if one maintains Assumption PT, Assumption SPT is equivalent

5There are some instances of versions of strong parallel trends implicitly being discussed in empirical work.
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to assuming that ATT (d|d) = ATT (d) for all doses. This condition can also be viewed as a structural
assumption in the sense that it effectively allows one to extrapolate treatment effects of dose d among
dose group d to treatment effects of dose d for the entire treated population.

In the remainder of this section, we show that Assumption SPT is useful for recovering “global”
average causal effect parameters, which are straightforward to compare to each other, and, hence,
sidestep the selection bias issues discussed above. Before doing that, it is worth mentioning that we
are not proposing Assumption SPT as an assumption that empirical researchers should readily adopt;
in fact, in many applications, Assumption SPT may be a strong or implausible assumption. Rather,
our aim is to clarify that many natural target parameters in DiD applications with a continuous
treatment require stronger assumptions than the parallel trends as defined in Assumption PT.

Theorem 3.3. Under Assumptions 1, 2, 3, and SPT,
(a) For d ∈ D+, it follows that

ATT (d) = E[∆Y |D = d] − E[∆Y |D = 0].

(b) For (h, l) ∈ D+ × D+,

E[Yt=2(h) − Yt=2(l)|D > 0] = ATT (h) −ATT (l) = E[∆Y |D = h] − E[∆Y |D = l]

(c) When Assumption 4(a) holds (i.e., treatment is continuous), it follows that, for d ∈ Dc
+,

ACRT (d) = ∂E[∆Y |D = d]
∂d

(d) When Assumption 4(b) holds (i.e., treatment is discrete), it follows that

ACRT (dj) = E[∆Y |D = dj ] − E[∆Y |D = dj−1]
dj − dj−1

For part (a) of Theorem 3.3, recall that ATT (d|d) and ATT (d) differ when there is selection
into dose group d on the basis of treatment effects. Strong parallel trends rules out that kind of
selection, which means that comparing average outcome changes of dose group d to the untreated
group identifies ATT (d). Part (b) says that comparisons of the average change in outcomes over
time for different dose groups have a causal interpretation under Assumption SPT. For parts (c) and
(d), strong parallel trends ensures that each dose group d serves as a valid counterfactual for the
entire treated population under that specific dose d, and, hence, that causal response parameters are
identified under Assumption SPT.

Strong parallel trends only changes the interpretation of the estimand, not its form. One impor-
tant implication is that conventional pre-tests for differential changes across groups before treatment
cannot distinguish between Assumption PT and Assumption SPT. That is, because only untreated

Chodorow-Reich, Nenov, and Simsek (2021, p. 1636)’s cross-region study of marginal propensities to consume (MPC)
notes the possibility of finding a zero even when the MPC>0 in all areas: “if low wealth areas have high MPCs and high
wealth areas have low MPCs, an increase in the stock market could induce the same change in spending in both low and
high wealth areas.” Similarly, Saez, Slemrod, and Giertz (2012, p. 25) discuss a more restrictive version of strong parallel
trends in the context of estimating the elasticity of taxable income for two groups facing different positive tax changes:
“if the control group faces a tax change, difference-in-differences estimates will be consistent only if the elasticities are
the same for the two groups.”
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potential outcomes are observed before treatment under Assumption 3, these periods cannot test the
additional content of an assumption like SPT that necessarily involves treated potential outcomes.

Finally, the identification results in Theorem 3.3 immediately imply that averages of the ATT (d)
and ACRT (d) building blocks are identified as well. The following corollary states these results.

Corollary 3.1. Under Assumptions 1, 2, 3, and SPT,
(a) It follows that

ATT glob = E[∆Y |D > 0] − E[∆Y |D = 0].
(b) When Assumption 4(a) holds (i.e., treatment is continuous), it follows that

ACRT glob = E
[
∂E[∆Y |D = d]

∂d

∣∣∣∣
d=D

∣∣∣∣∣D > 0
]

=
∫ dU

dL

∂E[∆Y |D = d]
∂d

∣∣∣∣
d=s

fD|D>0(s)ds.

(c) When Assumption 4(b) holds (i.e., treatment is multi-valued), it follows that

ACRT glob =
J∑

j=1

(
E[∆Y |D = dj ] − E[∆Y |D = dj−1]

dj − dj−1

)
P(D = dj |D > 0).

These results highlight how identification in continuous DiD designs is fundamentally a question
about dose-specific building block parameters and the underlying parallel trends assumption, not the
aggregation choices that lead to particular summary parameters.

Remark 3.1 (No untreated units). Researchers often use continuous designs when all units in their
sample receive some amount of the treatment, having in mind comparing units that are “more treated”
to units that are “less treated”. Without untreated units, it is infeasible to compare dose group d to
an untreated group, and, hence, it is infeasible to directly recover ATT (d|d) or ATT (d). However, a
natural alternative is to compare dose group d to dose group dL (the lowest possible amount of the
treatment). In Appendix SD.1 in the Supplementary Appendix, we show that, under parallel trends,
when there are no untreated units,

E[∆Y |D = d] − E[∆Y |D = dL] = ATT (d|d) −ATT (dL|dL).

This shows that this comparison is related to underlying causal effect parameters under parallel trends;
however, recall from Theorem 3.2 that the expression on the right-hand side mixes together the average
causal response of moving from dL to d with selection bias. Under strong parallel trends, we have
instead that

E[∆Y |D = d] − E[∆Y |D = dL] = ATT (d) −ATT (dL) = E[Yt=2(d) − Yt=2(dL)|D > 0],

which does not include selection bias terms. This discussion highlights that (unlike a setting with a
binary treatment) continuous variation in the dose can be used to learn about causal effects even if
there is no untreated comparison group, but interpreting these results as causal effects of the treatments
requires strengthening Assumption PT. See also Fricke (2017) for a related discussion.

3.3 What Parameter Does TWFE Estimate?

Empirical researchers using continuous DiD designs typically estimate a single summary parameter
using a linear TWFE regression like Equation (1.1). This section links the TWFE estimand to
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our identification results for dose-specific parameters, describes the assumptions necessary to give
TWFE some causal interpretation, and discusses what that interpretation is. We focus on continuous
treatments and defer the discussion of multi-valued discrete treatments to Appendix SD.3 in the
Supplementary Appendix.

Our impression is that empirical researchers typically interpret βtwfe in three main (and related)
ways, implicitly relying on different building blocks. First, βtwfe is often directly interpreted as
a causal response parameter; that is, how much the outcome causally increases on average when
the treatment increases by one unit. This is the causal version of how regression coefficients are
often taught to be interpreted in introductory econometrics classes. Second, it is common to pick a
representative value for d, to report d×βtwfe, and interpret this quantity as ATT (d). This is the main
interpretation provided in Acemoglu and Finkelstein (2008): “Given that the average hospital has a
38 percent Medicare share prior to PPS, this estimate [i.e., of βtwfe, here equal to 1.129] suggests that
in its first 3 years, the introduction of PPS was associated with an increase in the depreciation share
of about 0.42 (≈ 1.129 × 0.38) for the average hospital.” Rearranging this expression shows that
under this interpretation βtwfe = ATT (d|d)/d, which relates βtwfe to a scaled level effect. Third,
it is common to take two different representative values of the dose, d1 and d2—a common choice
is the 25th percentiles and 75th percentiles of the dose—and interpret βtwfe as the average causal
response of moving from dose d1 to dose d2 scaled by the distance between d1 and d2; this is a scaled
2 × 2 effect. We aim to assess whether such types of interpretations are justified and under which
conditions.

Table 1: TWFE Decomposition Weights

Decomposition D > 0 Weights D = 0 Weights

Causal response wacrt
1 (l) = (E[D|D ≥ l] − E[D])P(D ≥ l)

Var(D) wacrt
0 = (E[D|D > 0] − E[D])P(D > 0)dL

Var(D)

Levels wlev
1 (l) = (l − E[D])

Var(D) fD(l) wlev
0 = −E[D]P(D = 0)

Var(D)

Scaled levels ws(l) = l
(l − E[D])

Var(D) fD(l)

Scaled 2 × 2 w2×2
1 (l, h) = (h− l)2fD(h)fD(l)

Var(D) w2×2
0 (h) = h2fD(h)P(D = 0)

Var(D)

Notes: The table provides the formulas for the weights used in the decompositions of βtwfe provided in this section.

The next proposition presents our decompositions of βtwfe under parallel trends (Assumption PT)
and under strong parallel trends (Assumption SPT). The decompositions differ on the basis of the
underlying building block parameters: causal response parameters (ACRT (d|d) and ACRT (d)),
level treatment effect parameters (ATT (d|d) and ATT (d)), scaled level effects (ATT (d|d)/d and
ATT (d)/d), or scaled 2 × 2 effects (E[Yt=2(h) − Yt=2(l)|D = h]/(h− l) and E[Yt=2(h) − Yt=2(l)|D >

0]/(h − l)). These building blocks are connected with the dose-parameters discussed in Section 3.2
and how empirical researchers interpret βtwfe; see Appendix SD.2 in the Supplementary Appendix
for additional decompositions based on different building blocks. The weights attached to each of
these decompositions are presented in Table 1.
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Theorem 3.4. Under Assumptions 1, 2, 3, 4(a), and PT, βtwfe can be decomposed in the following
ways:

(a) Causal Response Decomposition:

βtwfe =
∫ dU

dL

wacrt
1 (l)

ACRT (l|l) + ∂ATT (l|h)
∂h

∣∣∣
h=l︸ ︷︷ ︸

selection bias

 dl + wacrt
0

ATT (dL|dL)
dL

where the weights are always positive and integrate to 1.
(b) Levels Decomposition:

βtwfe =
∫ dU

dL

wlev
1 (l)ATT (l|l) dl,

where wlev
1 (l) ≶ 0 for l ≶ E[D], and

∫ dU
dL

wlev
1 (l) dl + wlev

0 = 0.
(c) Scaled Levels Decomposition:

βtwfe =
∫ dU

dL

ws(l)ATT (l|l)
l

dl,

where ws(l) ≶ 0 for l ≶ E[D], and
∫ dU

dL
ws(l) dl = 1.

(d) Scaled 2 × 2 Decomposition

βtwfe =
∫ dU

dL

∫
D,h>l

w2×2
1 (l, h)

E[Yt=2(h) − Yt=2(l)|D = h]
h− l︸ ︷︷ ︸

causal response

+ ATT (l|h) −ATT (l|l)
h− l︸ ︷︷ ︸

selection bias

 dh dl

+
∫ dU

dL

w2×2
0 (l)ATT (l|l)

l
dl,

where the weights w2×2
1 and w2×2

0 are always positive and integrate to 1.

If one imposes Assumption SPT instead of Assumption PT, then the selection bias terms from Part
(a) and Part (d) become zero, and the remainder of the decompositions remain true, except one needs
to replace ACRT (l|l) with ACRT (l) in Part (a), ATT (l|l) with ATT (l) in Parts (b), (c) and (d),
and E[Yt=2(h) − Yt=2(l)|D = h] with E[Yt=2(h) − Yt=2(l)|D > 0] in Part (d).

Theorem 3.4 shows that the same TWFE estimand yields very different decomposition results,
depending on the type of parallel trends used and the particular causal parameter employed as
a building block for the analysis. Despite these multiple possible decompositions, one important
feature that arises from Theorem 3.4 is that the weighting associated with any of the decompositions
of βtwfe has some undesirable properties, making βtwfe an unappealing causal summary parameter
in DiD setups with continuous treatments. Yet, each of these different decompositions highlights
distinct concerns, as we discuss below.

Theorem 3.4(a) shows that when causal responses are taken as the building blocks of the analysis,
under Assumption PT, βtwfe is equal to a convex weighted average of ACRT (d|d) and the same
selection bias derived in Theorem 3.2.6 The sign of this selection bias depends on how treatment

6Part (a) is mechanically related to the results in Yitzhaki (1996) on interpreting linear projection coefficients with
a continuous regressor when the conditional expectation may be nonlinear. Part (a) also includes a term that shows
how TWFE handles a discrete jump from 0 to the minimum treated dose, dL. Paths of outcomes are not observed for
doses below dL, but the scaled AT T for dose group dL, AT T (dL|dL)/dL, is averaged into βtwfe.
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effects vary across dose groups at a given dose. If units in higher dose groups would have had larger
positive treatment effects at every dose, for example, then βtwfe will be larger than the weighted
average of the ACRT (d|d)’s that appear in Theorem 3.4(a). Figure 3 illustrates this case for two
groups. Strong parallel trends eliminates the selection bias term, but does not affect the weights.

Even under strong parallel trends, the particular interpretation of βtwfe in terms of ACRT (d)’s
hinges on the aggregation embodied in the weights wacrt

1 (d). Because wacrt
1 (d) is positive and integrates

to 1, under Assumption SPT βtwfe is weakly causal (Blandhol, Bonney, Mogstad, and Torgovitsky,
2025). However, it does not estimate a natural target parameter like ACRT glob because the TWFE
weights do not generally equal the dose distribution among treated, fD|D>0(d). Interestingly, the
weights wacrt

1 (l) underlying βtwfe depend on the entire distribution of the dose, making it sensitive to
the size of the untreated group. This property is rather unappealing. For example, in our application,
if we drop the untreated group (dropping the untreated group does not alter the underlying average
causal responses), our estimate of βtwfe shrinks by 78%. Instead of letting the estimation method
implicitly summarize the ACRT ’s, we recommend that researchers choose these aggregation schemes
explicitly. In our view, a natural and econometrically-guided way to aggregate the ACRT ’s into a
summary parameter is given by ACRT glob, which is identified (as indicated in Corollary 3.1) and
can also be easily estimated.

Part (b) expresses βtwfe as a weighted integral of ATT (d|d) under parallel trends with weights
that integrate to zero rather than one. Therefore, some weights are negative, and, hence, βtwfe is
not weakly causal when ATT (d|d) is taken as the building block. More significantly, βtwfe puts the
same amount of negative weight on ATT (d|d)’s for doses below E[D] as it does positive weight on
ATT (d|d)’s for doses above E[D]. One way to view this result is that TWFE uses above-average
dose units as an “effective treated group” and below-average dose units as an “effective comparison
group” that potentially includes some treated units. While the cumulative positive weights and
negative weights are equal to each other, they do not generally integrate to one within these groups,
which means that βtwfe does not equal the difference between a weighted average of outcome paths
for the effective treated group relative to the effective comparison group. In Appendix SD.2 in the
Supplementary Appendix, however, we bridge this gap and derive a corollary of the result in Part
(b) that makes the scaling issue related to this interpretation explicit and allows us to express βtwfe

as the following weighted Wald-estimand:

βtwfe =
E
[
wbin

1 (D)∆Y
∣∣∣D > E[D]

]
− E

[
wbin

0 (D)∆Y
∣∣∣D < E[D]

]
E
[
wbin

1 (D)D
∣∣∣D > E[D]

]
− E

[
wbin

0 (D)D
∣∣∣D < E[D]

] . (3.1)

The numerator of Equation (3.1) shows that βtwfe compares weighted average outcome changes above
and below E[D] with weights proportional to how far a unit’s dose is from E[D].7 The denominator
scales this comparison by the same weighted difference in D. This representation highlights some
challenges of using βtwfe to summarize the average level-effect of a continuous treatment. First, while

7The exact expressions for the weights are wbin
1 (d) = |d−E[D]|

E
[

|D−E[D]|
∣∣D>E[D]

] and wbin
0 (d) = |d−E[D]|

E
[

|D−E[D]|
∣∣D≤E[D]

] . See

Appendix SD.2 in the Supplementary Appendix for more details.
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the numerator is (roughly) a weighted level-effect, the denominator shows that βtwfe additionally
depends on a measure of the average distance between the effective treated and comparison group.
Second, the effective comparison group can include treated units. Third, βtwfe uses “distance” weights
wbin’s to aggregate across dosages. In contrast, ATT loc does not suffer from any of these issues. In
applications where the researcher is targeting level-effect parameters, we recommend favoring ATT loc

vis-a-vis βtwfe.
Parts (c) and (d) of Theorem 3.4 provide interpretations of βtwfe taking scaled paths of outcomes

as building blocks. For part (c), ATT (d|d)/d (under parallel trends) and ATT (d)/d (under strong
parallel trends) are “per-dosage” causal parameters. This part shows that the TWFE estimand
includes negative weights under the same conditions as in part (b), though the weights integrate
to one. We note that, in the case of a discrete dose, this result in part (c) corresponds to the
one in Theorem S3 of the Supplementary Appendix of de Chaisemartin and D’Haultfoeuille (2020).
Therefore, using “average slopes” as the underlying parameter of interest eliminates neither TWFE’s
potential for negative weights nor its non-intuitive weighting scheme. For part (d), when βtwfe is
interpreted in terms of all possible 2 × 2 comparisons of changes of outcomes for higher dose groups
relative to lower dose groups, the weights are all positive and integrate to 1, but, under parallel trends,
these comparisons all mix causal effects of the higher treatment with selection bias terms. Although
strong parallel trends removes the selection bias, the weights attached to the causal parameters are
still hard to interpret.

Remark 3.2 (Decomposition with no untreated units). It is straightforward to extend the TWFE
decompositions discussed above to settings with no untreated units. For the causal response decom-
position (part (a)), the exact same result applies, with the exception that the second term involving
wacrt

0 is equal to 0. Similarly, for the scaled 2 × 2 decomposition (part (d)), nothing changes except
that the second term involving w2×2

0 is equal to 0. For the levels decomposition and the scaled levels
decomposition (parts (b) and (c)), with no untreated units, ATT (d|d) (or ATT (d)) is not identified;
instead, along the lines mentioned in Remark 3.1, instead of using the untreated comparison group,
we can instead compare to the path of outcomes of the “least treated”. Thus, the same decompositions
continue to apply except that ATT (l|l) should be replaced by ATT (l|l) − ATT (dL|dL). This immedi-
ately means that these decompositions (in addition to negative weights) become complicated by issues
related to selection bias.

4 DiD estimators that can highlight or summarize heterogeneity

In this section, we discuss how one can bypass the limitations of the TWFE regression specification
in Equation (1.1) by proposing data-driven estimation procedures that target well-defined causal
parameters. For simplicity, in this section, we rely on Assumption SPT so we can get all causal
parameters under the same identification assumptions. If one is interested in ATT (d|d) or their
functionals, one can rely on Assumption PT and use the same estimation procedure for ATT (d) that
we discuss below. In this case, though, we stress that one should not interpret derivatives of estimates
of ATT (d|d) as estimates of ACRT (d|d).
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4.1 Estimating average causal functions among the treated

We start with the estimation of the dose-specific functions, ATT (d) and ACRT (d) under Assump-
tion SPT. First, recall that, from Theorem 3.3, we have that, for a positive dose d,

ATT (d) = E[∆Y |D = d] − E[∆Y |D = 0],

as well as ACRT (d) = ∂E[∆Y |D = d]
/
∂d when the treatment is continuous, and ACRT (dj) =

(E[∆Y |D = dj ] − E[∆Y |D = dj−1])
/

(dj − dj−1) when the treatment is multi-valued discrete. As
E[∆Y |D = 0] can be estimated using its sample analog, En[∆Y |D = 0] = n−1

D=0
∑

i:Di=0 ∆Yi, with
nD=0 =

∑n
i=1 1{Di = 0}, the main challenge in estimating all these functions resides in estimating

E[∆Y |D = d] among treated units (d > 0) and its derivative.
Note that this is a standard regression setup, and, as such, researchers have different options for

how to approach it. Examples include adopting a parametric model for E[∆Y |D = d] (e.g., assuming
a quadratic model in dose among the treated), or pursuing nonparametric estimators using kernels
or sieves/series. We discuss these considerations below.

For simplicity, we start with setups where the treatment is multi-valued discrete, and takes on
a relatively few values. In this case, one can estimate ATT (dj) and ACRT (dj) for any positive
treatment dose dj in the dose support using a simple saturated regression8

∆Yi = β0 +
J∑

j=1
1{Di = dj}βj + εi, (4.1)

where we use the zero treatment dosage as the omitted category. It will then follow that β̂j and(
β̂j − β̂j−1

) /
(dj − dj−1) are consistent estimators for the ATT (dj) and ACRT (dj), respectively,

and inference procedures are standard. Note that, in this setup, all that our regression (4.1) is doing
is to automate the appropriate comparison of means justified under our identification assumptions.

When the dose (among treated units) is continuous, (4.1) becomes infeasible. One straightforward
estimation approach is to impose a parametric functional form restriction on how ∆Y varies with
D among treated. For instance, one can consider a model in which ∆Ỹi = ∆Yi − En[∆Y |D = 0] is
quadratic in D among treated units, and run the following regression for observations with Di > 09

∆Ỹi = β0 + β1Di + β2D
2
i + εi. (4.2)

When this regression specification is correctly specified, ÂTT par(d) = β̂0 + β̂1d + β̂2d
2 and

ÂCRT par(d) = β̂1 + 2β̂2d are consistent estimators for ATT (d) and ACRT (d). Pointwise and
uniform-in-d inference procedures are standard. Of course, other parametric functional forms can
also be adopted.

A limitation of parametric models, such as (4.2), is their reliance on potentially incorrect functional
form restrictions. In fact, Theorem 3.4 exactly highlights the consequences of misspecification in the
linear case. Provided that the sample size is large, however, researchers can use nonparametric
procedures to avoid functional form restrictions. This entails considering a nonparametric regression

8One can also use the more flexible TWFE regression specification Yi,t =
∑J

j=1 P ostt·1{Di = dj}βj+ηi+θt+vi,t, t =
1, 2. We also note that we implicitly take d0 = 0.

9One could also consider the regression ∆Yi = α + 1{D > 0}
(
β0 + β1Di + β2D2

i

)
+ εi for all observations.
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model of ∆Ỹi on Di among treated units,
∆Ỹi = ATT (Di) + εi. (4.3)

One can estimate (4.3) in any number of ways. In our application, we have adopted the data-driven
nonparametric estimators proposed by Chen, Christensen, and Kankanala (2025). An appealing
feature of this procedure is that it resembles (4.2) in the sense that, upon computing the optimal
sieve-dimension K̂, one runs a linear regression of ∆Ỹ on flexible K̂-dimensional transformations of
D (cubic B-splines), ψK̂(D), in the subsample of units with Di > 0,

∆Ỹi = ψK̂(D)′β
K̂

+ εi, (4.4)

and then forming the nonparametric estimators for ATT (d) and ACRT (d) as

ÂTT cck(d) =
(
ψK̂(d)

)′
β̂

K̂
, ÂCRT cck(d) =

(
∂ψK̂(d)

)′
β̂

K̂
, (4.5)

where ∂ψK(s) = (dψK1(s)/ ds, . . . , dψKK(s)/ ds)′, and β̂
K̂

is the K̂-dimension vector of OLS esti-
mators for β

K̂
.10 Chen, Christensen, and Kankanala (2025)’s results imply that the nonparametric

estimators for ATT (d) and ACRT (d) curves converge at the fastest possible (i.e., minimax) rate in
sup-norm, and lead to uniform confidence bands that are asymptotically narrower (more precise) than
those based on undersmoothing, and contract at, or within a log logn factor of, the minimax rate.
See Appendix B for more details on how to compute K̂, as well as how to construct uniform confi-
dence bands based on ÂTT cck(d) and ÂCRT cck(d). Of course, one can adopt other nonparametric
estimation and inference procedures and select tuning parameters using alternative criteria, although
these may lead to different statistical guarantees.

4.2 Estimating summary measures of treatment effects

Researchers frequently want to report summary estimates to enhance interpretability and/or statisti-
cal precision, or because a lower-dimensional parameter is an input into some model or post-estimation
calculation. As we showed in Section 3, however, a linear TWFE regression generally fails to deliver an
interpretable summary parameter. In this section, we discuss estimation of ATT glob and ACRT glob,
which are summary causal effect parameters that have a clear interpretation.

When there are untreated units, part (a) of Corollary 3.1 suggests an extremely simple and
familiar estimator of ATT glob: the difference between the average change in outcomes among treated
units minus the average outcome change for untreated units. This “binarized” DiD estimator can be
obtained from the following simple linear regression specification:

∆Yi = βbin
0 +D>0

i βbin + ϵi, (4.6)

where D>0
i = 1{Di > 0}. It is straightforward to show that under the identification assumptions in

Corollary 3.1, βbin = ATT glob. Note that this estimator applies equally to continuous and multi-
valued discrete treatments.

10As these nonparametric procedures have slower-than-
√

n rates of convergence, there is no estimation effect from
estimating E[∆Y |D = 0].
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Aggregated average causal response parameters can be constructed easily by weighting the esti-
mated average causal functions across doses using the dose distribution itself. For discrete treatments,
it is straightforward to aggregate these ACRT (d)’s based on the coefficients from (4.1) to form a plug-
in estimator for the ACRT glob, using the identification formula in Corollary 3.1(c), i.e.,

ÂCRT
glob

=
J∑

j=1

β̂j − β̂j−1
dj − dj−1

P̂(D = dj |D > 0), (4.7)

where P̂(D = dj |D > 0) =
∑n

i=1 1{Di = dj}/
∑n

i=1 1{Di > 0}. Inference procedures follow from the
Delta Method. One can follow a similar strategy when using the scaled ATT (d) as the “building
block” of the aggregation. A similar approach applies to estimating ACRT glob with a continuous
dose. Our proposed estimator is simple to compute as it is based on the plug-in principle, i.e.,

ÂCRT
glob

= En

[
ÂCRT (D)

∣∣∣D > 0
]

= 1
nD>0

∑
i:Di>0

ÂCRT (Di),

with nD>0 =
∑n

i=1 1{Di > 0} denoting the sample size with a positive dose, and ÂCRT (D) being
a parametric or nonparametric estimator. Under some regularity conditions, one can show that
ÂCRT

glob
is √

nD>0 consistent and asymptotically normal; see, e.g., Section 4.1 of Ai and Chen
(2007).

We close this section by noticing that it is also possible to consider alternative estimators for
ACRT glob using a so-called Neyman-Orthogonal moment representation. More precisely, by exploring
the efficient influence function for ACRT glob implied by Theorem 3.1 of Newey and Stoker (1993), it
is straightforward to show that

ACRT glob = E
[
ACRT (D) − (∆Y − E[∆Y |D,D > 0])

f ′
D|D>0(D)
fD|D>0(D)

∣∣∣∣D > 0
]
. (4.8)

Based on this representation, one can then use flexible nonparametric or machine-learning-based
estimators for the nuisance functions and still conduct asymptotically valid inference procedures.
This opens the door for leveraging double machine learning procedures to estimate ACRT glob in DiD
contexts. We leave this topic for future research.

5 Extensions

In this section, we briefly summarize several extensions of our main results that are further discussed
in the Appendix and Supplementary Appendix.

5.1 Relaxing Strong Parallel Trends

Under traditional DiD assumptions, Assumption PT led to the identification of local ATT (d|d) pa-
rameters that are difficult to compare across dosages. On the other hand, the strong parallel trends
assumption led to ATT (d) parameters. These can be seen as extreme cases, and it is possible to trade
off the strength of assumptions with the type of parameters that can be identified in different ways.
The number of these intermediate possibilities is large, however. Here, we sketch what we consider
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to be three main ideas to relax strong parallel trends. Appendix SE of the Supplementary Appendix
provides substantially more detail.

First, in many cases, researchers may be willing to assume that they know the direction of the
selection bias. For example, suppose that a researcher is willing to assume that, for all d and any
dose groups l < h, ATT (d|l) ≤ ATT (d|h), i.e., that higher dose groups would experience larger
treatment effects at any value of the dose. In the Supplementary Appendix, we show that this type
of assumption leads to bounds on causal effect parameters without requiring strong parallel trends.
For example, it implies that, for all d

ACRT (d|d) ≤ ∂E[∆Y |D = d]
∂d

,

which provides a bound on ACRT (d|d). See Proposition S7 in the Supplementary Appendix for more
details.

A second possibility for relaxing strong parallel trends is to define a sub-region Ds ⊆ D+ for which
strong parallel trends holds, i.e., to assume that

E[Yt=2(d) − Yt=1(0)|D ∈ Ds] = E[Yt=2(d) − Yt=1(0)|D = d] (5.1)

holds for all d ∈ Ds. Under this assumption, we show in Proposition S8 in the Supplementary
Appendix that, for h, l ∈ Ds,

E[∆Y |D = h] − E[∆Y |D = l] = E[Yt=2(h) − Yt=2(l)|D ∈ Ds].

In other words, comparing the trends in outcomes over time for dose group h to dose group l delivers
the average causal effect of dose h relative to dose l among those dose groups in Ds. Under PT, the
same comparison would include selection bias terms.

While the assumption in Equation (5.1) is weaker than SPT, the tradeoff is that now only compar-
isons within the set Ds have a causal interpretation. In some applications, this assumption could be
notably weaker than Assumption SPT—in fact, this assumption should, at least arguably, no longer
be called “strong parallel trends” because it is non-trivially non-nested with Assumption PT. For
example, suppose that Ds contains large doses. The assumption in (5.1) says that we can learn about
the trend in outcomes for a higher-dose group at a counterfactual lower dose by looking at the trend
in outcomes for that lower-dose group, but only for doses in Ds. This could be much more plausible
than Assumption PT, which assumes that even very high dose groups would have experienced the
same trend in untreated potential outcomes as the untreated group, even though these units might be
very different from each other. This local version of the SPT assumption is appealing in applications
where there is substantial variation in the dose and the researcher is willing to assume that there is
no selection bias among units that select similar doses, but the researcher is unwilling to assume that
there is no selection bias among units that select substantially different doses.

Finally, in some applications, strong parallel trends may be more plausible after conditioning on
some observed covariates X. Under a version of strong parallel trends conditional on covariates, one
can show that the conditional average treatment effect, ATTx(d) = E[Yt=2(d)−Yt=2(0)|X = x,D > 0],
is identified. Since this parameter is not local to dose group d, conditional on X = x, one can
compare ATTx(d) across different values of the dose without inducing selection bias terms. This
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is an intermediate case, however, in that these are more local parameters than ATT (d) because
they are local to the particular value of the covariates x. See the discussion in Appendix SE in the
Supplementary Appendix for more details.

5.2 Multiple time periods and variation in treatment timing

Although our results so far focus on two-period cases, we can extend them to setups with multiple time
periods and variation in treatment timing across units by combining the ideas discussed in Section 3.2
with those in Callaway and Sant’Anna (2021). We consider this setting in detail in Appendix C.

In a setting with staggered treatment adoption (i.e., where once a unit becomes treated with dose
d, that unit remains treated with dose d in subsequent periods), knowing the time period that a
unit becomes treated with a positive dose (which we denote by Gi and refer to as a unit’s timing
group) and dose Di (i.e., dose group) fully characterizes a unit’s sequence of treatments across all
periods. In this context, we need to augment our potential outcomes terminology and write Yi,t(g, d)
as the potential outcome of unit i at time t if it were first treated in period g, with dose d; we write
Yi,t(0) = Yi,t(∞, 0) to denote a unit’s untreated potential outcome—the potential outcome in time
period t if that unit did not participate in the treatment in any available period. With this notation
at hand, we can define a multi-period analog of ATT (d|d) as

ATT (g, t, d|g, d) = E[Yt(g, d) − Yt(0)|G = g,D = d] and ACRT (g, t, d|g, d) = ∂ATT (g, t, l|g, d)
∂l

∣∣∣∣∣
l=d

which are the average treatment effect and average causal response in period t of (i) becoming treated
in period g and (ii) experiencing dose d among those in timing group g and dose group d.

Under no anticipation and a multiple-period version of the parallel trends assumption, we show
in Appendix C that, in post-treatment periods (i.e., periods where t ≥ g)

ATT (g, t, d|g, d) = E[Yt − Yg−1|G = g,D = d] − E[Yt − Yg−1|G = ∞, D = 0]. (5.2)

The argument is similar to the two-period case discussed earlier. The main difference is that the
expression above involves the “long difference” in changes in outcomes over time, i.e., from period
g−1 to t. The reason for this difference is that g−1 is the most recent period for which units in group
g were untreated. The expression above uses the never-treated group (G = ∞) as the comparison
group, but, like the case with a binary treatment, one can use alternative comparison groups such
as the not-yet-treated. Under a multiple-period version of the strong parallel trends assumption,
one can take the derivative of the right-hand side of Equation (5.2) with respect to d to identify
ACRT (g, t, d|g, d).

One complication that arises in the staggered case is that ATT (g, t, d|g, d) and ACRT (g, t, d|g, d)
are often relatively high-dimensional objects that can be hard to report (and perhaps hard to estimate
precisely). In Appendix C, we discuss two main strategies for aggregating these parameters into
lower-dimensional objects. First, we average across timing groups and time periods to target causal
effect parameters that are a function of only the dose: ATT dose(d|d), and ACRT dose(d|d)—these
parameters highlight heterogeneous effects across different doses and are analogous to ATT (d|d) and
ACRT (d|d) in the two-period case that we have emphasized above. They can be averaged across the
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dose to deliver scalar summary parameters. Second, we consider event-study parameters: ATT es
loc(e),

and ACRT es
loc(e) that average across the dose and highlight how treatment effects and/or causal

responses vary with the length of exposure to the treatment—these parameters are the event study
analog of ATT loc and ACRT loc in the two period case above. See Callaway, Goodman-Bacon, and
Sant’Anna (2024) for alternative, intermediate aggregations. The discussion here focuses on causal
effect parameters that are local to a specific dose group and timing group, but, like the two-period
case discussed above, it is also possible to recover causal effect parameters across all treated units
under strong parallel trends; see Appendix SB in the Supplementary Appendix for more details.

5.3 Interpreting TWFE Regressions with Multiple Periods/Groups

In Appendix SB.2 of the Supplementary Appendix, we also extend our TWFE decomposition re-
sults from Theorem 3.4 to cover setups beyond the two-period case, including setups with staggered
treatment adoptions with continuous or multi-valued discrete treatments. These results generalize
the decompositions in de Chaisemartin and D’Haultfoeuille (2020) and Goodman-Bacon (2021) to
the case of a continuous treatment. Those results demonstrate that TWFE regressions with multiple
periods and variation in treatment timing (i) continue to suffer from the weighting and selection bias
issues that we highlighted in Theorem 3.4, (ii) inherit weighting issues (including possible negative
weights) that are prevalent in TWFE regressions with binary, staggered treatment adoption, and (iii)
are affected by violations of parallel trends in pre-treatment periods.

5.4 Event-Study and Pre-Treatment Differences

When there are multiple periods of data available, DiD applications typically assess the plausibility
of the parallel trends assumption by checking whether or not parallel trends holds in pre-treatment
periods. In a setting with a continuous treatment, one can check whether E[∆Yt|D = d] = E[∆Yt|D =
0] is approximately correct for all pre-treatment time periods t and all d; one can also check E[Yt −
Yg−1|D = d] = E[Yt − Yg−1|D = 0], with g being the time of treatment adoption (where we simplify
and consider a single treatment date setup). Implementing these tests, however, can be complicated
because it involves multiple dose-response nonparametric estimates. A convenient alternative is to
report aggregated event study parameters such as ATT es

loc(e) or ACRT es
loc(e) in pre-treatment periods

(i.e., e < 0). Plotting estimates of ATT es
loc(e) and ACRT es

loc(e) for pre-treatment periods (e < 0) can
be used to assess the plausibility of parallel trends. We report these for our empirical application in
Figures 8 and 10. Having said that, we note that one possible drawback of this test is that it may
overlook violations of the parallel trends assumption that these event-study versions of the test would
not detect.

An interesting (though subtle) caveat is that in cases where an aggregate level effect such as
ATT loc or its event study version ATT es

loc(e) is the target parameter of the analysis, it is possible
to recover it under “weaker” parallel trends assumptions that allow for violations of parallel trends
where the average violation of parallel trends across dose groups is equal to zero (rather than the
violation of parallel trends being equal to zero for all dose groups)—we refer to the corresponding
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averaged version of parallel trends as aggregate parallel trends. If one maintains aggregate parallel
trends, then only ATT es

loc(e) (and not, e.g., ACRT es
glob(e)) is relevant for assessing its plausibility

using pre-treatment periods. That being said, it is debatable whether or not the violations of parallel
trends that can be allowed for under aggregate parallel trends should be counted as evidence against
the design.

6 Continuous DiD in Practice: Causal Effects of Medicare PPS

We have so far shown that the causal question of interest shapes identification in a continuous DiD
design and argued that it should guide the estimation approach, too. We now apply our preferred
average level treatment effect and average causal response estimators to Acemoglu and Finkelstein
(2008)’s study of Medicare PPS. To map their setting to our theoretical analysis, we consider the
balanced panel data component of Acemoglu and Finkelstein (2008), which comprises 5881 hospitals,
and also average all pre-treatment outcomes and post-treatment outcomes over time. Thus, we use
t = 1 to denote the average of pre-treatment periods (1980-1983), and t = 2 to denote the average of
post-treatment periods (1984-1986). We also denote treatment dose here by M instead of D, as M
is a short-hand notation for the 1983 Medicare inpatient share that determines treatment exposure
in the AF application.

To begin, consider the profit maximization problem for a hospital with Medicare inpatient share
M . We follow AF and assume a production function, Ft(L,K), that is homothetic in labor (L)
and capital (K). Market wages and rental rates are normalized by the output price, and Medicare
subsidies mean that net input prices are (1−sL,tM)w and (1−sK,tM)r. Firms consider the following
profit maximization problem:

max
L,K

Ft(L,K) − (1 − sL,tM)wL− (1 − sK,tM)rK.

The solution to this problem generates factor demands and a capital-labor ratio that is only a function

of the input price ratio, k∗
t

(
(1−sL,tM)w
(1−sK,tM)r

)
. We write the subsidy ratio, (1−sL,tM)

(1−sK,tM) as 1 + St(M) =

1 + (sK,t−sL,t)M
1−sK,tM . This reflects the fact that hospitals with no Medicare patients (M = 0), and all

hospitals before PPS (when sK,t=1 = sL,t=1 = s) face no relative price distortion. PPS set sL,t = 0
in 1983, making St=2(M) = sK,t=2M

1−sK,t=2M .
This structure allows us to define the capital-labor ratio potential outcomes in terms of Medicare

inpatient share M :
Yt=1 = Yt=1(0) = k∗

t=1

(
w

r

)
and Yt=2 = Yt=2(M) = k∗

t=2

((
1 + St=2(M)

)w
r

)
.

Three details of the theoretical setup are worth noting. First, homotheticity allows us to connect
potential outcomes as a function of M to a firm’s optimal capital-labor ratio as a function of relative
prices (as a function of M). Without this assumption, a hospital’s scale affects its input mix, and
capital-labor ratios are a function of net labor and capital prices separately, complicating the theo-
retical interpretation of causal parameters. Second, we define our parameters of interest in terms of
causal effects of M on Y . A structural interpretation of those parameters in terms of k∗ necessar-
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ily involves the non-linear way in which M changes the subsidy ratio, St(M) (as well as a kind of
exclusion restriction that rules out direct effects of M on outcomes). Third, we use time subscripts
to match the fact that PPS changed over time, but this is not a dynamic model. The assumed lack
of forward-looking behavior implies the no anticipation assumption (Assumption 3) and allows us to
write Yt=1 = Yt=1(0). All these details are in line with AF’s theoretical model.

6.1 Causal Questions Around Medicare PPS

AF are primarily interested in the question: did PPS raise capital-labor ratios? PPS sought to help
hospitals invest in new medical technologies with the aim of improving patient outcomes (Office of
Technology Assessment, 1984). But regulators also worried about the “incentive for hospitals to adopt
expensive capital equipment that reduces operating costs but raises total costs per case” (Office of
Technology Assessment, 1984, p. 14). Thus, Medicare’s role in technology investments has important
policy implications. Moreover, the theoretical model predicts that PPS would raise capital-labor
ratios for all treated hospitals, so the sign of its effects is a test of a simple neoclassical production
theory. The building block parameters that answer these questions are the average treatment effect
of PPS on hospitals with M = m:

ATT (m|m) = E[Yt=2(m) − Yt=2(0)|M = m] = E
[
k∗

t=2

(
(1 + St=2(m))w

r

)
− k∗

t=2

(
w

r

)∣∣∣∣M = m

]
.

Estimating and plotting the entire ATT (m|m) function shows which hospitals responded most to PPS
and tests the prediction that all treated hospitals increase their capital intensity. Under parallel trends
alone, one cannot compare across ATT (m|m)’s, as it is not possible to discern whether variation from
ATT (m|m) comes directly from subsidy differences or from treatment effect heterogeneity. Averaging
this function across treated hospitals yields ATT loc = E[ATT (M |M)|M > 0], a summary parameter
that directly answers the question “did PPS raise capital-labor ratios on average?”

One may also be interested in which subsidy levels have larger causal effects. For example,
if technologies are “lumpy”, then hospitals may not respond to subsidies too small to cover the
minimum investment costs. Improving the design of input subsidies thus requires causal estimates of
the responsiveness to different subsidy levels. The causal effects of marginal changes in the subsidy
ratio also represent another test of the theoretical model because they are proportional to a hospital’s
elasticity of substitution, σi,t(m) = k∗′

i,t

k∗
i,t

× (1 + St(m)) × w
r , which, with two inputs, must be positive.

The building block parameters that answer these questions are the average causal responses of PPS:

ACRT (m) = E
[
Y ′

t=2
(
m
)∣∣M > 0

]
= E

[
k∗′

t=2

(
(1 + St=2(m))w

r

)
S′

t=2(m)w
r

∣∣∣∣M > 0
]

= E
[
σt=2(m)k∗

t=2

(
(1 + St=2(m))w

r

)
sk

1 − skm

∣∣∣∣M > 0
]

(6.1)

Again, reporting estimates of the entire ACRT (m) function highlights heterogeneity in how hospitals
respond to subsidies, and the summary parameter ACRT glob provides a single measure of how much
hospitals respond on average to small subsidy differences.

Before turning to our formal estimates, Figure 4 presents a binned scatter plot of the change in
mean capital-labor ratios before (1980-1983) and after (1984-1986) PPS against the Medicare share

26



of inpatient days in 1983, m. Following AF, we measure the capital-labor ratio using the depreciation
share of total costs.

Figure 4: Changes in Capital-Labor Ratios before and after 1983 versus the Medicare Inpatient Share
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Notes: The figure presents a binned scatter plot of the change in the average depreciation share (capital-labor ratio) between the
periods 1980-1983 and 1984-1986 for hospitals in 2-percentage-point bins of the 1983 Medicare inpatient share, M . In the lowest
bin, hospitals with M = 0 are plotted separately from hospitals with M ∈ (0, 0.02]. We also consider a single bin for all hospitals
with M > 0.84.

The horizontal line equals the mean change in capital-labor ratio for untreated hospitals (0.37).
Each circle is the mean outcome change for a given bin of the Medicare inpatient share, with its size
proportional to the number of hospitals in that bin. Almost all groups of treated hospitals had stronger
growth in capital intensity than untreated hospitals, consistent with the theoretical prediction. The
relationship is nonlinear, however, which indicates heterogeneity in average treatment effects, at least,
and perhaps heterogeneity in the sign of average causal responses.

6.2 Average Treatment Effects of PPS

Figure 5 presents our proposed data-adaptive nonparametric estimates of ATT (m|m) based on (4.5).
For inference, we cluster at the hospital level. Our data-driven procedure to optimally choose the
sieve dimension selected K̂ = 4. These estimates formalize what the scatter plot suggests: that
ATT (m|m) is positive. We plot pointwise 95% confidence intervals in the dark-shaded region and the
wider (honest) 95% uniform confidence bands in the light-shaded region. We do not detect an effect
for values of m below 5 percent, but we reject zero for doses between 0.05 and 0.78, which contains
96 percent of treated hospitals. Significant values of ÂTT (m|m) range from about 0.44 percentage
points at m = 0.1 to 0.88 percentage points at m = 0.41. The average across all doses (ÂTT

loc
)

is 0.80 (s.e. = 0.05), or about 18 percent of the 1983 mean outcome (measured by the depreciation
share) of 4.5. This evidence suggests that PPS substantially raised capital-labor ratios.

For comparison, we report in Figure 6 parametric estimates for ATT (m|m) that use the quadratic
regression specification in Equation 4.2. Different from Figure 5, the interpretability of ÂTT par(m|m)
in Figure 6 depends on the quadratic specification being correctly specified. When we know that is
the case, it is clear from Figure 6 that this results in substantially more precise estimates, as they
now fully leverage the functional form. Importantly, these gains in precision are more substantial
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Figure 5: Nonparametric Estimates of ATT (m|m) for Medicare PPS
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Notes: The figure plots nonparametric estimate of AT T (m|m) that adapts the Chen, Christensen, and Kankanala (2025) data-
driven estimator to our context, as discussed in Section 4.1 and Appendix B. The dark-shaded region is the 95-percent point-wise
confidence interval, and the lighter-shaded region is the 95-percent honest and sup-norm rate-adaptive uniform confidence band.
We display the histogram of the treatment dose among the treated in yellow.

in the regions where data for particular treatment doses are scarce, e.g., for treatment doses above
0.75. Overall, we have 4987 observations with a positive treatment dose. Among these, only 57 have
a treatment dose above 0.75, 20 above 0.80, and 3 above 0.90. The rationale for this is very simple:
parametric models are good at extrapolating, whereas nonparametric procedures are more cautious
about it. The reliability of the extrapolation, once again, crucially depends on the parametric model
for ATT (m|m) being correctly specified.

Figure 6: Parametric Estimates of ATT (m|m) for Medicare PPS using quadratic specification
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Notes: The figure plots parametric estimate of AT T (m|m) that use the quadratic regression specification in Equation 4.2. The
dark-shaded region is the 95-percent point-wise confidence interval, and the lighter-shaded region is the 95-percent uniform-in-
treatment-dose confidence band. We display the histogram of the treatment dose among the treated in yellow. We use the same
y-scale as in Figure 5.

Although gains in precision are desirable, we caution against using nonparametric results to pick
a parametric specification. This, to some extent, resembles a pre-testing problem, and inference
based on the parametric model could be misleading. In fact, the appeal of the uniform confidence
bands from Chen, Christensen, and Kankanala (2025) that we report in light-shaded blue in Figure 5
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is that they account for this type of pre-testing issue and are honest, i.e., they are guaranteed to
have asymptotically correct coverage over a large (and generic) class of data-generating processes.
The uniform confidence bands in Figure 6 are uniform only in treatment dosage, highlighting that it
reflects a narrower type of uncertainty than those in Figure 5. Henceforth, as we find it challenging to
ex ante motivate a parametric functional form for ATT (m|m) using arguments grounded in economic
theory, we focus our attention on our nonparametric estimators.

In Section 3.3, we argued that βtwfe should not be relied upon to summarize level effects. However,
the TWFE coefficient is 1.14—roughly similar to our estimate of ATT loc. What accounts for their
similarity? One explanation comes from Equation (3.1). The numerator compares weighted averages
of the paths of outcomes for the “effective” treated group (those with above-average doses) to the
“effective” comparison group (those with below-average doses). However, in our example, slightly
more than half of the weight on paths of outcomes in the effective comparison group falls on hospitals
with a positive dose. This biases βtwfe downward relative to ATT loc—our estimate of the numerator
in Equation (3.1) is 0.60. In contrast, the “weighted distance” between the effective treated and
comparison groups in the denominator of Equation (3.1) is estimated to be 0.53, and dividing by
0.53 results in βtwfe being upward biased relative to ATT loc. That these two biases work in opposite
directions and have similar magnitudes in our particular application happens to result in β̂twfe being
fairly close to ÂTT

loc
. Interestingly, though, if we instead were to code a hospital’s dose on a scale

of 0 to 100, our estimate of βtwfe shrinks to 0.0114 = 1.14/100 while our estimate of ATT loc remains
unchanged.

Figure 7: Weighting Schemes for TWFE and Dose Distribution Among Treated
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Notes: The dashed lines are the weights that TWFE puts on AT T (m|m) and ACRT (m) parameters, as in Theorem 3.4. The
solid line is a smoothed estimate of the density of the Medicare inpatient share, M .

Figure 5 abstracts from dynamics since it is based on average outcomes in the pre- and post-
treatment periods. As an alternative, Figure 8 plots estimates of event-study summary parameters,
ATT es

loc(e) = E[Yt=e − Yt=1983|D > 0] − E[Yt=e − Yt=1983|D = 0], using 1983 as the baseline year.
The patterns are similar to the TWFE event-study in Figure 1, but their magnitudes reflect proper
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averages of year-specific ATT (m|m) parameters.11

Figure 8: Event-Study Estimates of ATT
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Notes: The figure plots the event-study estimates of AT T es
loc(e), with their 95% pointwise confidence intervals reported in black,

and the 95% uniform confidence bands reported in red.

6.3 Average Causal Responses to PPS

Figure 9 plots our proposed data-adaptive nonparametric estimate of the slope of the function esti-
mated in Figure 5. Under Assumption SPT, the function in Figure 5 is the ATT (m) and its slope in
Figure 9 equals the ACRT (m). The hump shape in Figure 5 is reflected in an ACRT (m) function
that starts positive, and declines through most of its support. We estimate negative ACRT (m) pa-
rameters for doses above m = 0.41, a range that includes 71 percent of treated hospitals. The 95%
uniform confidence band covers zero everywhere, although we are able to detect positive ACRT (m)
values for doses below the mean as well as negative ACRT (m) values for doses between about 0.5
and 0.7 using pointwise confidence intervals.

PPS’ average causal response parameter weighted by the actual dose distribution of treated
hospitals is ÂCRT

glob
= −0.08 (s.e. = 0.19) and is not significantly different from zero.12 This

differs substantially from the TWFE coefficient, β̂twfe = 1.14. From Theorem 3.4(a), the differ-
ence between these estimates is fully driven by differences in the weighting scheme. Our estimate
of ACRT glob comes from mapping the estimates of ACRT (m) in Figure 9 to the dose distribu-
tion weights, f̂M |M>0(m), in Figure 7; our estimate of βtwfe comes from mapping the estimates of
ACRT (m) to the TWFE causal response weights, ŵacrt

1 (m), in Figure 7. As discussed in Theo-
rem 3.4(a), the TWFE causal response weights are positive for all values of the dose and integrate to
one, providing a reason to hope that estimates of ACRT glob and βtwfe would be similar. However,
the TWFE weighting scheme turns out to be much different from the dose distribution weighting

11The negative pre-PPS coefficient may reflect the fact that PPS was passed in April 1983 and partially took effect
in that calendar year, and also that hospitals report labor and capital costs for different fiscal years. Therefore, some
1983 outcomes may include post-treatment months. The results also show that the AT T es

loc(e) grows each year following
PPS, which matches the fact that PPS’ subsidy reforms actually phased in over three years. We also note, however,
that these can represent other types of violations of parallel trends.

12We treat the sieve dimension used to compute ÂCRT
glob

as a non-random sequence, which is in line with the
theoretical justification in Ai and Chen (2007). A formal theoretical treatment that accounts for the stochastic nature
of our Lepski-type selection is interesting but left for future research.
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scheme. Combining these differences with the high degree of heterogeneity in ACRT (m) across m is
what leads to the sharp differences in the estimates. Another reason to emphasize the large difference
between these estimates is that the literature has often viewed negative weights as a dividing line be-
tween an “unreasonable” or “reasonable” weighting scheme (see, e.g., Angrist (1998), de Chaisemartin
and D’Haultfoeuille (2020), and Blandhol, Bonney, Mogstad, and Torgovitsky (2025) for related dis-
cussions of this point in different contexts). The results here suggest that, at least in our context,
articulating a well-defined causal effect parameter and targeting that parameter directly is likely to
be more important than checking that weights are all positive and integrate to one.

Figure 9: Nonparametric Estimates of ACRT (m) for Medicare PPS
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Notes: The figure plots nonparametric estimate of ACRT (m) that adapts the Chen, Christensen, and Kankanala (2025) data-
driven estimator to our context, as discussed in Section 4.1 and Appendix B. The dark-shaded region is the 95-percent point-wise
confidence interval, and the lighter-shaded region is the 95-percent honest and sup-norm rate-adaptive uniform confidence band.
We display the histogram of the treatment dose among the treated in yellow.

Under Assumption SPT, one policy implication of these estimates is that Medicare could have
achieved similar, if not greater, capital investments while providing lower capital subsidies. Figure 9
shows that marginal increments in the subsidy ratio increase capital intensity only for those with
low subsidy levels. Hospitals that received large capital subsidies under PPS responded with smaller
increases in capital intensity than hospitals with slightly smaller subsidies, a fact easily seen in the
binned scatter plot in Figure 4. The strong parallel trends assumption means that these estimated
responses are “externally valid” for all treated hospitals, which means that only low subsidies matter
for hospitals’ input choices. Because higher subsidy ratios do not create further investments in capital,
capping capital subsidies may not affect input choices very much.

An important economic implication, however, is that negative ACRT (m) estimates contradict
AF’s two-factor economic model. ACRT (m) is proportional to the average derivative of the optimal
capital-labor ratio for hospitals with Medicare share equal to m, and Equation (6.1) shows specifically
how it relates to the elasticity of substitution, σi,t(m). To approximate E[σi,t=2(m)|M > 0], we
separate out the two terms in (6.1) and construct ACRT (m)

E[Yi,t=2|M=m]
1−skm

sk
assuming that sk = 0.75. With

only two inputs, a rise in the relative price of one must lead to a reduction in its relative use: the
elasticity of substitution must be positive. The point estimates of E[σi,t=2(m)|M > 0] do not fit that
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prediction, although our uniform confidence bands do not reject an average elasticity of substitution
of zero. Alternative models, such as a three-factor production function (which AF consider in their
working paper) or non-homothetic production, could potentially rationalize this finding.

Finally, both the policy and structural interpretations of Figure 9 depend on the strong parallel
trends assumption. Without SPT, the slope of ATT (m|m) may be negative for higher-Medicare-
share hospitals simply because their treatment effect functions are systematically lower. Medicare
might not have been able to achieve similar capital increases with lower subsidy rates if high-subsidy
hospitals just responded differently to low subsidy levels than low-subsidy hospitals did. A negative
slope also does not necessarily reject a two-factor production model; just a constant-coefficient model
with homogeneous firms, as considered by AF.

Figure 10: Event-Study Estimates of ACRT
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Notes: The figure plots the event-study estimates of ACRT es
glob(e), with their 95% pointwise confidence intervals reported in black,

and the 95% uniform confidence bands reported in red

Another indirect way to assess the plausibility of SPT that justifies a causal interpretation of
ACRT glob is to compute ACRT es

glob(e), the event-study version of ACRT glob. These parameters can
be estimated using the same procedure discussed in Section 4, and we plot these in Figure 10. The
no-anticipation assumption means that prior to treatment, when all observed outcomes are untreated
potential outcomes, both Assumptions PT and SPT have the same implication: that the average
relationship between outcome changes for adjacent dose groups should be zero. Our estimates of these
pre-trends reject this in 1981, which is a pre-treatment period. Figure 10 corroborates our conclusions
about the implausibility of SPT based on implausibly high implied elasticities of substitution.

In summary, our empirical results align with AF’s conclusion that the 1983 Medicare reform led
hospitals to favor capital over labor. We find evidence against parallel trends in pre-treatment periods,
though the magnitudes of these violations are small relative to estimated effects in post-treatment
periods. Finally, our negative estimates of ACRT (m) at high values of m cut against the theoretical
predictions of the model discussed above; this provides a piece of evidence that casts doubt on the
plausibility of strong parallel trends in this application, indicating that one should be cautious when
interpreting ACRT parameters.
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A Proofs of Main Results

A.1 Proofs of Results in Section 3.2

This section contains the proofs of the results in Section 3.2 on identifying causal effect parameters
such as ATT (d|d) and ATT (d) under parallel trends assumptions and with a continuous treatment
or multi-valued discrete treatment.

Proof of Theorem 3.1

Proof. To show the result, notice that

ATT (d|d) = E[Yt=2(d) − Yt=2(0)|D = d]

= E[Yt=2(d) − Yt=1(0)|D = d] − E[Yt=2(0) − Yt=1(0)|D = d]

= E[Yt=2(d) − Yt=1(0)|D = d] − E[Yt=2(0) − Yt=1(0)|D = 0]

= E[∆Y |D = d] − E[∆Y |D = 0] (A.1)

where the second equality holds by adding and subtracting E[Yt=1(0)|D = d], the third equality holds
by Assumption PT, and the last equality holds because Yt=2(d) and Yt=1(0) are observed potential
outcomes when D = d and Yt=2(0) and Yt=1(0) are observed potential outcomes when D = 0. That
ATT loc is identified holds immediately given its definition and that ATT (d|d) is identified. To derive
the particular expression for ATT loc, notice that

ATT loc = E
[
ATT (D|D)

∣∣∣D > 0
]
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= E
[(
E[∆Y |D] − E[∆Y |D = 0]

)∣∣∣D > 0
]

= E[∆Y |D > 0] − E[∆Y |D = 0]

where the first equality is the definition of ATT loc, the second equality holds from Equation (A.1),
the first part of the third equality holds by an implication of the law of iterated expectations, and
the second part of the third equality holds because E[∆Y |D = 0] is non-random.

Proof of Theorem 3.2

Proof. To prove part (a), notice that

E[∆Y |D = h] − E[∆Y |D = l] =
(
E[∆Y |D = h] − E[∆Y |D = 0]

)
−
(
E[∆Y |D = l] − E[∆Y |D = 0]

)
= ATT (h|h) −ATT (l|l) (A.2)

where the first equality holds by adding and subtracting E[∆Y |D = 0], and the second equality holds
by Theorem 3.1. Next,

ATT (h|h) −ATT (l|l) = E[Yt=2(h) − Yt=2(0)|D = h] − E[Yt=2(l) − Yt=2(0)|D = l]

= E[Yt=2(h) − Yt=2(l)|D = h]

+ E[Yt=2(l) − Yt=2(0)|D = h] − E[Yt=2(l) − Yt=2(0)|D = l]

= E[Yt=2(h) − Yt=2(l)|D = h] +
(
ATT (l|h) −ATT (l|l)

)
(A.3)

where the first equality holds by the definition of ATT (d|d), the second equality holds by adding
and subtracting E[Yt=2(l)|D = h], and the third equality holds by the definition of ATT (l|h) and
ATT (l|l). Notice that E[Yt=2(h) − Yt=2(l)|D = h] is a causal response of going from dose l to dose h
for dose group h. An alternative expression for this term is

E[Yt=2(h) − Yt=2(l)|D = h] = ATT (h|h) −ATT (l|h) (A.4)

Next, we prove part (b). Using a similar argument as above, notice that, for d ∈ Dc
+ and (d+h) ∈ Dc

+,

E[∆Y |D = d] − E[∆Y |D = d+ h]
h

= ATT (d|d) −ATT (d+ h|d+ h)
h

= ATT (d|d) −ATT (d+ h|d)
h

+ ATT (d+ h|d) −ATT (d+ h|d+ h)
h

where the first equality holds using the same argument as for Equation (A.2), and the second equality
holds by using the arguments in Equations (A.3) and (A.4). The result holds by taking the limit as
h → 0 and the definition of ACRT (d|d).

Finally, the second result in part (c) involving a discrete treatment holds by taking h = dj and
l = dj−1 in Equations (A.2) and (A.3) and by the definition of ACRT (dj |dj).

Proof of Theorem 3.3

Proof. For part (a), notice that

ATT (d) = E[Yt=2(d) − Yt=2(0)|D > 0]
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= E[Yt=2(d) − Yt=1(0)|D > 0] − E[Yt=2(0) − Yt=1(0)|D > 0]

= E[Yt=2(d) − Yt=1(0)|D = d] − E[Yt=2(0) − Yt=1(0)|D = 0]

= E[∆Y |D = d] − E[∆Y |D = 0]

where the second equality holds by adding and subtracting E[Yt=1(0)|D > 0], the third equality
holds by Assumption SPT, and the fourth equality holds because Yt=2(d) and Yt=1(0) are observed
outcomes when D = d.

Next, we prove the first part of part (b). First, notice that

ATT (h) −ATT (l) = E[Yt=2(h) − Yt=2(0)|D > 0] − E[Yt=2(l) − Yt=2(0)|D > 0]

= E[Yt=2(h) − Yt=2(l)|D > 0]

where the first equality holds by the definition of ATT (d), and the second equality holds by cancelling
the terms involving Yt=2(0). For the second part, notice that, from part (a), we have that

ATT (h) −ATT (l) =
(
E[∆Y |D = h] − E[∆Y |D = 0]

)
−
(
E[∆Y |D = l] − E[∆Y |D = 0]

)
= E[∆Y |D = h] − E[∆Y |D = l]

Now, for part (c), notice that for d ∈ Dc
+ and (d+ h) ∈ Dc

+,

ATT (d) −ATT (d+ h)
h

= E[∆Y |D = d] − E[∆Y |D = d+ h]
h

which follows from part (b). The result holds by taking the limit as h → 0 and from the definition
of ACRT (d). Finally, the result in part (d) involving a discrete treatment holds from part (b) by
taking h = dj and l = dj−1 and by the definition of ACRT (dj).

Proof of Corollary 3.1

Proof. The result holds immediately by averaging the results in Theorem 3.3 over the distribution of
the dose among dose groups that experienced any positive amount of the treatment.

B Adapting CCK to DiD Contexts

In this Appendix, we provide more details on how to adapt the Chen, Christensen, and Kankanala
(2025) (henceforth, CCK) data-driven nonparametric estimation and inference procedures in our DiD
context. As discussed in Section 4.1, the CCK estimator for ATT (d) and ACRT (d) are given by

ÂTT cck(d) =
(
ψK̂(d)

)′
β̂

K̂
, ÂCRT cck(d) =

(
∂ψK̂(d)

)′
β̂

K̂
,

where ψK(d) is a K-dimensional vector of cubic B-splines basis functions, ∂ψK(s) =
(dψK1(s)/ ds, . . . , dψKK(s)/ ds)′, β̂

K̂
is the K̂-dimension vector of OLS estimators for β

K̂
, and K̂ is

the CCK data-driven estimator for the optimal sieve dimension. Henceforth, let nD>0 =
∑n

i=1 1{Di >

0} be the sample size with positive treatment dose.
To discuss the optimal choice of the sieve dimension K derived in CCK, we need to add more

36



notation. Let K =
{(

2k + 3
)

: k ∈ N+ ∪ 0
}

be the set of possible sieve dimensions for the cubic
B-splines. Let K+ = min{k ∈ K : k > K} be the smallest sieve dimension in K exceeding K,
and vn = max

{
1, (0.1 logn)4}. Let {ωi}n

i=1 be iid standard normal draws independent of the data
{Wi}n

i=1 = {Yi,t=2, Yi,t=1, Di}n
i=1. In addition, let

φ̂K(Wi, d) =
(
ψK(d)

)′
ϕ̂K(Wi),

with
ϕ̂K(Wi) = En

[
1{D > 0} · ψK(D)ψK(D)′

]−
1{Di > 0}ψK(Di)ûi,K ,

and ûi,K = ∆Yi − En[∆Y |D = 0] −
(
ψK(Di)

)′
β̂K . Finally, for a given K and K2, let

σ̂2
K,K2(d) = 1

n

n∑
i=1

(φ̂K(Wi, d) − φ̂K2(Wi, d))2

be an estimator of the (asymptotic) variance of the contrast
√
n
(
ÂTTK(d) − ÂTTK2(d)

)
, and con-

sider the bootstrap process

Z∗
n(d,K,K2) = 1

σ̂K,K2(d)

(
1√
n

n∑
i=1

(φ̂K(Wi, d) − φ̂K2(Wi, d)) · ωi

)
.

For a given sieve dimension K ∈ K, let

ÂTTK(d) =
(
ψK(d)

)′
β̂K , ÂCRTK(d) =

(
∂ψK(d)

)′
β̂K , (B.1)

where ∂ψK(s) = (dψK1(s)/ ds, . . . , dψKK(s)/ ds)′,

β̂K = arg min
bK∈ΘK

En

[(
∆Y − En [∆Y |D = 0] − ψK(D)′bK

)2
∣∣∣∣D > 0

]
= En

[
1{D > 0}ψK(D)ψK(D)′

]−
En

[
1{D > 0}ψK(D) (∆Y − En [∆Y |D = 0])

]
, (B.2)

and A− denote the Moore-Penrose inverse of a generic matrix A, and for a generic variable B,

En[B|D > 0] =
∑n

i=1 1{Di > 0}Bi∑n
i=1 1{Di > 0}

.

The next algorithm adapts Procedure 1 of CCK to our DiD context and provides the Lepski-type
data-driven selection K̂ of the sieve dimension K.

Algorithm 1 (Computation of data-driven choice of sieve-dimension K based on CCK.).
1. Compute the data-driven index set of sieve dimensions

K̂ =
{
K ∈ K : 0.1

(
log K̂max

)2
≤ K ≤ K̂max

}
(B.3)

where
K̂max = min

{
K ∈ K : K

√
logKvn ≤ 10

√
n < K+

√
logK+vn

}
(B.4)

2. Let α̂ = min
{

0.5,
√

log K̂max

/
K̂max

}
. For each independent draw of {ωi}n

i=1, compute

sup
(d,K,K2)∈Dc

+×K̂×K̂:K2>K

|Z∗
n(d,K,K2)| . (B.5)

Let γ∗
1−α̂

denote the (1 − α̂) quantile of the sup-t statistic (B.5) across a large number of independent
draws of {ωi}n

i=1, say, 1,000.
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3. The data-driven choice of the sieve dimension is

K̂ = inf

K ∈ K̂ : sup
(d,K2)∈Dc

+×K̂:K2>K

√
n
∣∣∣ÂTTK(d) − ÂTTK2(d)

∣∣∣
σ̂K,K2(d) ≤ 1.1γ∗

1−α̂

. (B.6)

Next, we show how one can form data-driven uniform confidence bands (UCBs) for both ATT (d)
and ACRT (d) by adapting Procedure 2 of CCK to our DiD context. Toward this end, let Â =
log log K̂ and set K̂− = {K ∈ K̂ : K < K̂}. Define the bootstrap processes

Z∗
n(d,K) = 1

σ̂K(d)
1√
n

n∑
i=1
φ̂K(Wi, d) · ωi, and Z∗,acr

n (d,K) = 1
σ̂acrt

K (d)
1√
n

n∑
i=1
φ̂acrt

K (Wi, d) · ωi.

where φ̂acrt
K (Wi, d) =

(
∂ψK(d)

)′
ϕ̂K(Wi),

σ̂2
K(d) = 1

n

n∑
i=1

φ̂K(Wi, d)2, and σ̂acrt,2
K (d) = 1

n

n∑
i=1

φ̂acrt
K (Wi, d)2.

Algorithm 2 (Computation of UCBs for ATT (·) and ACRT (d) based on CCK.).

4. For each independent draw of {ωi}n
i=1, compute

t∗ = sup
(d,K)∈Dc

+×K̂−

|Z∗
n(d,K)| , and t∗,acr = sup

(d,K)∈Dc
+×K̂−

|Z∗,acr
n (d,K)| . (B.7)

Let z∗
1−α and z∗,acr

1−α denote the (1 − α) quantile of the sup-t statistic t∗ and t∗,acr, respectively, across a
large number of independent draws of {ωi}n

i=1, say, 1,000.

5. The data-driven 100(1 − α)% UCB for ATT (d) and ACRT (d), d ∈ Dc
+, are respectively given by

Cn(d) =
[
ÂTT

K̂
(d) −

(
z∗

1−α + Â γ∗
1−α̂

) σ̂
K̂

(d)
√
n

, ÂTT
K̂

(d) +
(
z∗

1−α + Â γ∗
1−α̂

) σ̂
K̂

(d)
√
n

]
(B.8)

Cacrt
n (d) =

[
ÂCRT

K̂
(d) −

(
z∗,acr

1−α + Â γ∗
1−α̂

) σ̂acrt

K̂
(d)

√
n

, ÂCRT
K̂

(d) +
(
z∗,acr

1−α + Â γ∗
1−α̂

) σ̂acrt

K̂
(d)

√
n

]
(B.9)

C Multiple Periods and Variation in Treatment Timing and Dose

DiD applications often use more than two time periods, wherein treatments, whether binary or not,
can turn on at different times for different units. This section extends the results from the main
text to allow for multiple time periods (t = 1, ..., T ) with variation in the time when units become
treated. We refer to the time period when a unit becomes treated as a unit’s timing group, which we
denote by Gi, which takes values in the set G. By convention, we set G = ∞ for units that remain
untreated across all time periods, and we exclude units that are treated in the first period so that
G ⊆ {2, . . . , T,∞}; we also set Ḡ = G \ {∞} to be the set of all timing groups that ever participate in
the treatment. Treated units receive dose D = d ∈ D+. As in the two-period case, the dose actually
experienced, D, also defines a unit’s dose group.

We extend the potential outcomes notation from the previous section to allow for variation in
treatment timing. Therefore, potential outcomes Yi,t(g, d) denote the outcome for unit i at time period
t when such a unit is first treated in period g with dosage d. Note that treated potential outcomes
at time t depend on when a unit first becomes treated—i.e., Yi,t(g, d) may not equal Yi,t(g′, d) for
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g ̸= g′—which allows for general treatment effect dynamics. Yi,t(∞, 0) is the outcome that unit i would
experience if it did not participate in the treatment in any period. We write Yi,t(0) = Yi,t(∞, 0) and
refer to this as a unit’s untreated potential outcome. We also define the variable Wi,t = Di1{t ≥ Gi}.
which is the amount of dose that unit i experiences in time period t; Wi,t = 0 for all units that are
not yet treated by time period t.

Throughout this section, we make the following assumptions.

Assumption 1-MP (Random Sampling). The observed data consists of {Yi1, . . . , YiT , Di, Gi}n
i=1

which is independent and identically distributed.

Assumption 2-MP (Support).
(a) The support of D, D = {0} ∪ D+ where D+ ⊆ (0,∞). In addition, P(D = 0) > 0 and

dFD|G(d|g) > 0 for all (g, d) ∈ Ḡ × D+.
(b) Dc

+ = (dL, dU ) ⊂ D+. In addition, for all g ∈ Ḡ and t = 2, . . . , T , E[∆Yt|G = g,D = d] is
continuously differentiable in d on Dc

+.

Assumption 3-MP (No Anticipation / Staggered Adoption).
(a) For all g ∈ G and t = 1, . . . , T with t < g (i.e., in pre-treatment periods), Yi,t(g, d) = Yi,t(0).
(b) Wi,1 = 0 almost surely, and, for t = 2, . . . , T and d ∈ D+, Wi,t−1 = d implies that Wi,t = d.

We next introduce versions of Assumption PT and SPT that are suitable for the setting with
multiple periods and variation in treatment timing. 13

Assumption PT-MP (Parallel Trends with Multiple Periods and Variation in Treatment Timing).
For all g ∈ Ḡ, t = 2, . . . , T , d ∈ D+, E[∆Yt(0)|G = g,D = d] = E[∆Yt(0)|G = ∞, D = 0].

Assumption SPT-MP (Strong Parallel Trends with Multiple Periods and Variation in Treatment
Timing). For all g ∈ Ḡ, t = 2, . . . , T , and l, d ∈ D+, E[Yt(g, d) − Yt−1(g, d)|G = g,D = l] =
E[Yt(g, d) − Yt−1(g, d)|G = g,D = d] and E[∆Yt(0)|G = g,D = d] = E[∆Yt(0)|G = ∞, D = 0].

For each unit, we observe their outcome in period t, Yi,t, which is given by

Yi,t = Yi,t(0)1{t < Gi} + Yi,t(Gi, Di)1{t ≥ Gi}.

C.1 Identification with a Staggered Continuous Treatment

The causal parameters of interest are the same as in our baseline case, except that they are separately
defined for each timing group and in each post-treatment time period:

ATT (g, t, d|g, d) = E[Yt(g, d) − Yt(0)|G = g,D = d], and ATT (g, t, d) = E[Yt(g, d) − Yt(0)|G = g,D > 0].
13Besides differences related to multiple periods and variation in treatment timing, the version of strong parallel

trends made here is slightly different from Assumption SPT in the main text. Part of the difference comes from there
being no untreated units in group g ∈ Ḡ, which is why there is a separate part of the assumption for untreated potential
outcomes. The other difference is that both parts of the assumption hold for all dose groups rather than on average (i.e.,
we condition on dose group l in the first part and on dose group d in the second part for untreated potential outcomes).
The version here is stronger and is made for clarity and because we target ACRT (g, t, d|g, d) rather than ACRT (g, t, d)
in this part of the paper.
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Causal response parameters are similarly defined as the effect of a marginal change in the dose
on the outcomes of timing group g in period t. For continuous treatments, these are defined as

ACRT (g, t, d|g, d) = ∂ATT (g, t, l|g, d)
∂l

∣∣∣∣∣
l=d

= ∂E [Yt(g, l)|G = g,D = d]
∂l

∣∣∣∣∣
l=d

,

ACRT (g, t, d) = ∂ATT (g, t, d)
∂d

= ∂E [Yt(g, d)|G = g]
∂d

.

For discrete treatments, these are defined as

ACRT (g, t, dj |g, dj) = E[Yt(g, dj) − Yt(g, dj−1)|D = dj , G = g]
/

(dj − dj−1),

ACRT (g, t, dj) = E[Yt(g, dj) − Yt(g, dj−1)|D > 0, G = g]
/

(dj − dj−1),

For brevity, henceforth we focus on the “local” causal effect parameters ATT (g, t, d|g, d)
and ACRT (g, t, d|g, d), which are analogous to the local causal effect parameters ATT (d|d) and
ACRT (d|d) in the two-period case that we emphasized in the main text.

Theorem C.1. Under Assumptions 1-MP, 2-MP(a), 3-MP, and PT-MP, and for all g ∈ Ḡ, t =
2, . . . , T such that t ≥ g, and for all d ∈ D+,

ATT (g, t, d|g, d) = E[Yt − Yg−1|G = g,D = d] − E[Yt − Yg−1|Wt = 0].

If, in addition, Assumptions 2-MP(b) and SPT-MP hold, then, for all d ∈ Dc
+,

ACRT (g, t, d|g, d) = ∂E[Yt − Yg−1|G = g,D = d]
∂d

.

The proof of Theorem C.1 is provided in Appendix SC in the Supplementary Appendix. The
result is broadly similar to the one in the case with two periods. The first part says that, under
Assumption PT-MP, ATT (g, t, d|g, d) can be recovered by a DiD comparison between the path of
outcomes from period g − 1 to period t for units in group g treated with dose d and the path of
outcomes among units that have not participated in the treatment yet (the setup in this section also
rationalizes using the never-treated group, G = ∞, as the comparison group as was mentioned in
Section 5). Relative to the case with two time periods, the main difference is that the “base period”
is g − 1. The reason for using the base period g − 1 is that it is the most recent time period when
the researcher observes untreated potential outcomes for units in group g. Thus, the result is very
much like the case with two time periods: take the most recent untreated potential outcomes for
units in a particular group, impute the path of outcomes that they would have experienced in the
absence of participating in the treatment from the group of not-yet-treated units (these steps yield
mean untreated potential outcomes that units in group g would have experienced in time period t)
and compare this to the outcomes that are actually observed for units in group g that experienced
dose d. The second part says that, under Assumption SPT-MP, ACRT (g, t, d|g, d) can be recovered
by taking the derivative of the average path of outcomes from period g− 1 to period t among timing
group g that experienced dose d. Similarly to the arguments in the main text, if Assumption PT-MP
held rather than SPT-MP, then the same derivative term would additionally include selection bias
terms.
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Given the results in Theorem C.1, it follows that causal summary parameters that are aggre-
gations of these dose-and-timing-group-specific parameters are also identified. Of course, one can
consider many different types of aggregation, as discussed in Callaway and Sant’Anna (2021) and
Callaway, Goodman-Bacon, and Sant’Anna (2024), for example. Here, given that the treatment is
continuous, we discuss some aggregations that can remain dose-specific and help highlight hetero-
geneity in treatment dosages. We provide these estimands as being explicitly about them if useful for
estimation and inference, and provide more transparency when comparing across procedures (Baker
et al., 2025).

We start discussing natural aggregated parameters, including the average treatment effect of dose
d across post-treatment periods for dose group d,

ATT dose(d|d) = E
[
TE(d)

∣∣∣D = d,G ≤ T
]

=
∑
g∈Ḡ

T∑
t=2

ωdose(g, t, d)ATT (g, t, d|g, d),

where ωdose(g, t, d) = 1{t≥g}
T −g+1P(G = g|D = d,G ≤ T ), and

TEi(d) = 1
T −Gi + 1

T∑
t=Gi

(
Yi,t(Gi, d) − Yi,t(0)

)
.

We can likewise define a causal response parameter

ACRT dose(d|d) = ∂ATT dose(l|d)
∂l

∣∣∣∣∣
l=d

=
∑
g∈Ḡ

T∑
t=2

ωdose(g, t, d)ACRT (g, t, d|g, d),

and even further aggregate these parameters into scalar summary parameters:

ATT loc = E
[
ATT dose(D|D)

∣∣∣G ≤ T
]

and ACRT loc = E
[
ACRT dose(D|D)

∣∣∣G ≤ T
]
.

Empirical researchers are also often interested in analyzing how average treatment effects vary with
elapsed treatment timing and consider event-study-type parameters. In our context, with continuous
and staggered treatments, one can consider the following dose-specific event study parameters,

ÃTT
dose,es

(d|d, e) = E
[
TE(d|e)

∣∣∣D = d,G+ e ∈ [2, T ], G ≤ T
]

=
∑
g∈Ḡ

T∑
t=2

ωdose,es(g, t, d|e)ATT (g, t, d|g, d),

ÃCRT
dose,es

(d|d, e) = ∂ÃTT
dose,es

(l|d, e)
∂l

∣∣∣∣∣
l=d

=
∑
g∈Ḡ

T∑
t=2

ωdose,es(g, t, d|e)ACRT (g, t, d|g, d)

where ÃTT
dose,es

(d|d, e) and ÃCRT
dose,es

(d|d, e) are the average treatment effect of dose d and
average causal response of dose d among those in dose group d for those that have been exposed
to the treatment for e periods, TEi(d|e) = Yi,Gi+e(Gi, d) − Yi,Gi+e(0), ωdose,es(g, t, d|e) = 1{g + e ∈
[2, T ]}1{g + e = t}πg(e, d) and πg(e, d) = P(G = g|D = d,G+ e ∈ [2, T ], G ≤ T ),

When one also wants to aggregate over treatment dosages to get an easier-to-estimate causal
parameter of interest,

ATT es
loc(e) = E

[
ÃTT

dose,es
(D|D, e)

∣∣∣G+ e ∈ [2, T ], G ≤ T
]

ACRT es
loc(e) = E

[
ÃCRT

dose,es
(D|D, e)

∣∣∣G+ e ∈ [2, T ], G ≤ T

]
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which provide event study versions of average treatment effects and average causal responses across
different lengths of exposure to the treatment. For values of e ≥ 0, ATT es

loc(e) and ACRT es
loc(e) are

related to treatment effect dynamics. It is also interesting to consider cases where e < 0, which can
be interpreted as a pre-test of the parallel trends assumption. See also Callaway, Goodman-Bacon,
and Sant’Anna (2024) for a discussion.

Remark C.1. We do not provide formal estimation results for the setting with multiple periods
and variation in treatment timing. However, we note that, if one bases estimation on the sample
analog of the results in Theorem C.1, then the results in the main text for the case with two periods
apply directly to the disaggregated parameters ATT (g, t, d|g, d) and ACRT (g, t, d|g, d). Then, one
can estimate any of the aggregated parameters discussed above as the appropriate weighted average of
ATT (g, t, d|g, d) or ACRT (g, t, d|g, d). Interestingly, given the results in Corollary 3.1 and Callaway
and Sant’Anna (2021), when ATT es

loc(e) is the target parameter, one can binarize the treatment (i.e.,
classify units as being treated if they experience any positive amount of the treatment) and simply rely
on the event-study procedures proposed by Callaway and Sant’Anna (2021).
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