Difference-in-Differences with Multiple Time Periods

Brantly Callaway
University of Georgia

Pedro H. C. Sant’Anna
Vanderbilt University

Forthcoming at the Journal of Econometrics, December 2020
Callaway and Sant’Anna (2020) in a nutshell

- We study average treatment effects in DiD setups with:
 1. Multiple time periods;
 2. Variation in treatment timing (but with staggered treatment adoption);
 3. Parallel trends assumption holds after conditioning on observed covariates;
- We want to better understand treatment effect heterogeneity:
 - Group-time average treatment effects:
 \[
 \text{ATT}(g, t) = \mathbb{E} \left[Y_{i,t}(g) - Y_{i,t}(0) \mid G_{i,g} = 1 \right].
 \]
 - Discuss how to summarize these causal effects (e.g. event-study analysis).

Clearly separate identification, aggregation and estimation/inference steps!
Proposed tools are suitable for both panel and repeated cross-section data.

Can be implemented via the R package `did`.
What is the empirical relevance of our proposal?
Panel A. Difference-in-differences

Panel B. Regression discontinuity

Panel C. Event study

Panel D. Bunching

Figure 4. Quasi-experimental Methods

Notes: This figure shows the fraction of papers referring to each type of quasi-experimental approach. See Table A.I for a list of terms. The series show five-year moving averages.
Difference-in-Differences

• Difference-in-Differences (DiD) is one of the most popular designs for causal inference.

• Canonical format:
 • 2 groups: $G = 0$ and $G = 1$;
 • 2 times periods: $t = 0$ and $t = 1$.

• Parameter of interest:

$$\text{ATT} \equiv \mathbb{E} [Y_{i,1}(1) | G_i = 1] - \mathbb{E} [Y_{i,1}(0) | G_i = 1]$$

• Parallel Trends Assumption:

$$\mathbb{E} [Y_1(0) - Y_0(0) | G = 1] = \mathbb{E} [Y_1(0) - Y_0(0) | G = 0]$$
Difference-in-Differences as a Regression

• Canonical DiD:

\[\hat{\text{ATT}}_n = \mathbb{E}_n [Y_1 - Y_0 | G = 1] - \mathbb{E}_n [Y_1 - Y_0 | G = 0] . \]

• We can use the regression to estimate \(\beta \), the ATT:

\[Y_{i,t} = \alpha + \gamma G_i + \lambda 1 \{ t = 1 \} + \beta (G_i \cdot 1 \{ t = 1 \}) + \varepsilon_{i,t} . \]

• We can leverage its regression representation to conduct asymptotically valid inference.
Difference-in-Differences in Practice

• Many DiD empirical applications, however, deviate from the canonical DiD setup

 • Availability of covariates X

 • More than two time periods

 • Variation in treatment timing
Traditional methods: TWFE event-study regression

- It is tempting to “extrapolate” from the canonical DiD setup and use variations of following TWFE specification to estimate causal effects:

\[
Y_{i,t} = \alpha_i + \alpha_t + \gamma_{-K} D_{i,t}^{<-K} + \sum_{k=-K}^{-2} \gamma_{k} \text{lead } D_{i,t}^{k} + \sum_{k=0}^{L} \gamma_{k} \text{lags } D_{i,t}^{k} + \gamma_{L} D_{i,t}^{>L} + \varepsilon_{i,t}
\]

with the event study dummies \(D_{i,t}^{k} = 1 \{ t - G_i = k \} \), where \(G_i\) indicates the period unit \(i\) is first treated (Group).

- \(D_{i,t}^{k}\) is an indicator for unit \(i\) being \(k\) periods away from initial treatment at time \(t\).
Stylized example using simulated data

[Graph showing trends over time]
Stylized example using simulated data

- 1000 units ($i = 1, 2, \ldots, 1000$) from 40 states ($state = 1, 2, \ldots, 40$).
- Data from 1980 to 2010 (31 years).
- Randomly assign each state to a group.
- Outcome:
 \[
 Y_{i,t} = \underbrace{(2010 - g)}_{\text{cohort-specific intercept}} + \underbrace{\alpha_j}_{N\left(\frac{\text{state}}{5}, 1\right)} + \underbrace{\alpha_t}_{N(0,1)} + \underbrace{\tau_{i,t}}_{(t-g+1) \cdot 1 \{t \geq g\}} + \underbrace{\varepsilon_{i,t}}_{N(0, (\frac{1}{2})^2)}
 \]
- ATT at the first treatment period is 1, at the second period since treatment is 2, etc.
Traditional methods: TWFE event-study regression

• What if we tried to estimate the treatment effects using traditional TWFE event-study regressions

\[Y_{i,t} = \alpha_i + \alpha_t + \gamma_{-K} D_{i,t}^{<-K} + \sum_{k=-K}^{-2} \gamma_{k}^{lead} D_{i,t}^{k} + \sum_{k=0}^{L} \gamma_{k}^{lags} D_{i,t}^{k} + \gamma_{k}^{L+} D_{i,t}^{L} + \epsilon_{i,t} \]

with \(K \) and \(L \) to be equal to 5?

• Simulate data and repeat 1,000 times to compute bias and simulation standard deviations.
Traditional methods: TWFE event-study regression

• What if we include all possible leads and lags in the TWFE event study specification, i.e., to set K and L to the maximum allowable in the data making inclusion of $D_{i,t}^{<K}$ and of $D_{i,t}^{L}$ unnecessary?
Event-study plot using CS proposed estimator
Recent related literature

- Recent and emerging literature on heterogeneous treatment effects in DiD with variation in treatment timing.
- The papers closest to ours are Athey and Imbens (2018), Borusyak and Jaravel (2017), de Chaisemartin and D’Haultfouille (2020), Goodman-Bacon (2019) and Sun and Abraham (2020).
- All these papers present “negative” results about using TWFE, which we do not have.
 - Sun and Abraham (2020) has results for the event-study TWFE regressions that rationalize the bad results shown in the previous simulation slides.
Recent related literature

• On the other hand, our paper has some unique features on it:
 • We attempt to make minimal parallel trends assumptions to identify the $ATT(g, t)$;
 • We allow for covariates in a flexible form
 • We propose different estimation procedures based on outcome regression, IPW and doubly robust methods;
 • We discuss different aggregation schemes to further summarize the effects of the treatment;
 • We cover both panel and (stationary) repeated-cross section cases.
Let me explain the building blocks of CS
Framework for the panel data case

• Consider a random sample

\[\{(Y_{i,1}, Y_{i,2}, \ldots, Y_{i,T}, D_{i,1}, D_{i,2}, \ldots, D_{i,T}, X_i)\}_{i=1}^n \]

where \(D_{i,t} = 1 \) if unit \(i \) is treated in period \(t \), and 0 otherwise

• \(G_{i,g} = 1 \) if unit \(i \) is first treated at time \(g \), and zero otherwise (“Treatment start-time dummies”)

• \(C = 1 \) is a “never-treated” comparison group

• Staggered treatment adoption: \(D_{i,t} = 1 \implies D_{i,t+1} = 1 \), for \(t = 1, 2, \ldots, T \).
• Limited Treatment Anticipation: There is a known $\delta \geq 0$ s.t.

\[
\mathbb{E}[Y_t(g)|X, G_g = 1] = \mathbb{E}[Y_t(0)|X, G_g = 1] \text{ a.s.}
\]

for all $g \in G, t \in 1, \ldots, T$ such that $t < g - \delta$.

“before effective starting date”

• Generalized propensity score uniformly bounded away from 1:

\[
p_{g,t}(X) = P(G_g = 1|X, G_g + (1 - D_t)(1 - G_g) = 1) \leq 1 - \epsilon \text{ a.s.}
\]
Parameter of interest

Parameter of interest:

$$ATT(g, t) = \mathbb{E} [Y_t(g) - Y_t(0) | G_g = 1], \text{ for } t \geq g - \delta.$$
Parallel trend assumption based on a “never treated” group

Assumption (Conditional Parallel Trends based on a “never-treated”)
For each $t \in \{2, \ldots, T\}$, $g \in G$ such that $t \geq g - \delta$,

$$
\mathbb{E}[Y_t(0) - Y_{t-1}(0)|X, G_g = 1] = \mathbb{E}[Y_t(0) - Y_{t-1}(0)|X, C = 1] \text{ a.s.}
$$
Parallel Trends based on not-yet treated groups

Assumption (Conditional Parallel Trends based on “Not-Yet-Treated” Groups)

For each \((s, t) \in \{2, \ldots, T\} \times \{2, \ldots, T\}\), \(g \in G\) such that \(t \geq g - \delta, s \geq t + \delta\)

\[
\mathbb{E}[Y_t(0) - Y_{t-1}(0)|X, G_g = 1] = \mathbb{E}[Y_t(0) - Y_{t-1}(0)|X, D_s = 0, G_g = 0] \text{ a.s.}
\]
Identification results - never treated as comparison group

- Under these assumptions, we prove that, for all g and t such that $g \in G_\delta \equiv G \cap \{2 + \delta, 3 + \delta, \ldots, T\}$, $t \in \{2, \ldots T - \delta\}$ and $t \geq g - \delta$, $ATT(g, t)$ is nonparametrically identified by the DR estimand

\[
ATT_{\text{nev}}(g, t; \delta) = \mathbb{E} \left[\left(\frac{G_g}{\mathbb{E}[G_g]} - \frac{p_g(X)C}{1 - p_g(X)} \right) \left(Y_t - Y_{g-\delta-1} - m_{g,t,\delta}^{\text{nev}}(X) \right) \right].
\]

where $m_{g,t,\delta}^{\text{nev}}(X) = \mathbb{E} \left[Y_t - Y_{g-\delta-1} \mid X, C = 1 \right]$.

- Extends Heckman, Ichimura and Todd (1997), Abadie (2005), Sant’Anna and Zhao (2020).
Under these assumptions, we prove that, for all g and t such that $g \in G_\delta \equiv G \cap \{2 + \delta, 3 + \delta, \ldots, T\}$, $t \in \{2, \ldots, T - \delta\}$ and $t \geq g - \delta$, $\text{ATT}(g, t)$ is nonparametrically identified by the DR estimand

$$\text{ATT}_\text{dr}^{\text{nev}}(g, t; \delta) = \mathbb{E} \left[\left(\frac{G_g}{\mathbb{E}[G_g]} - \frac{p_g(X) C}{1 - p_g(X)} \right) \left(Y_t - Y_{g - \delta - 1} - m_{g, t, \delta}^{\text{nev}}(X) \right) \right].$$

where $m_{g, t, \delta}^{\text{nev}}(X) = \mathbb{E} \left[Y_t - Y_{g - \delta - 1} | X, C = 1 \right].$

Extends Heckman, Ichimura and Todd (1997), Abadie (2005), Sant’Anna and Zhao (2020).
• Under these assumptions, we prove that, for all g and t such that $g \in G_\delta \equiv G \cap \{2 + \delta, 3 + \delta, \ldots, T\}$, $t \in \{2, \ldots T - \delta\}$ and $t \geq g - \delta$, $\text{ATT}(g, t)$ is nonparametrically identified by the DR estimand

$$\text{ATT}_\text{nev}(g, t; \delta) = \mathbb{E} \left[\left(\frac{G_g}{\mathbb{E}[G_g]} - \frac{p_g(X) C}{1 - p_g(X)} \right) \left(Y_t - Y_{g-\delta-1} - m_{g,t,\delta}^{\text{nev}}(X) \right) \right].$$

where $m_{g,t,\delta}^{\text{nev}}(X) = \mathbb{E} \left[Y_t - Y_{g-\delta-1} | X, C = 1 \right].$

• Extends Heckman, Ichimura and Todd (1997), Abadie (2005), Sant’Anna and Zhao (2020).
Identification results - never treated as comparison group

- Under these assumptions, we prove that, for all \(g \) and \(t \) such that \(g \in G_\delta \equiv G \cap \{2 + \delta, 3 + \delta, \ldots, T\} \), \(t \in \{2, \ldots, T - \delta\} \) and \(t \geq g - \delta \), \(ATT(g, t) \) is nonparametrically identified by the DR estimand

\[
ATT_{dr}^{nev}(g, t; \delta) = \mathbb{E} \left[\left(\frac{G_g}{\mathbb{E}[G_g]} - \frac{p_g(X)C}{1 - p_g(X)} \right) \left(Y_t - Y_{g-\delta-1} - m_{g,t,\delta}^{nev}(X) \right) \right].
\]

where \(m_{g,t,\delta}^{nev}(X) = \mathbb{E} \left[Y_t - Y_{g-\delta-1} \middle| X, C = 1 \right]. \)

- Extends Heckman, Ichimura and Todd (1997), Abadie (2005), Sant’Anna and Zhao (2020).
What if the identifying assumptions hold unconditionally?

- In the case where covariates do not play a major role into the DiD identification analysis, these formulas simplify to

\[ATT_{unc}^{nev}(g, t) = \mathbb{E}[Y_t - Y_{g-\delta-1} | G_g = 1] - \mathbb{E}[Y_t - Y_{g-\delta-1} | C = 1]. \]

- This looks very similar to the two periods, two-groups DiD result without covariates.

- The difference is now we take a “long difference”.

- Same intuition carries, though!
Identification results - not-yet treated as comparison group

• If one invokes the Conditional PTA based on “not-yet-treated” units, we prove that, for all \(g \) and \(t \) such that \(g \in G_\delta, \ t \in 2, \ldots \ T − \delta \) and \(t \geq g − \delta \),

\[
ATT^{ny}_{dr} (g, t; \delta) = \mathbb{E} \left[\left(\frac{G_g}{\mathbb{E}[G_g]} - \frac{p_{g,t+\delta}(X) (1 - D_{t+\delta})}{1 - p_{g,t+\delta}(X)} \right) \left(Y_t - Y_{g-\delta-1} - m^{ny}_{g,t,\delta}(X) \right) \right].
\]

where \(m^{ny}_{g,t,\delta}(X) = \mathbb{E} \left[Y_t - Y_{g-\delta-1} \mid X, D_{t+\delta} = 0, G_g = 0 \right] \).

• Extends Heckman, Ichimura and Todd (1997), Abadie (2005), Sant’Anna and Zhao (2020).
Identification results - not-yet treated as comparison group

• If one invokes the Conditional PTA based on “not-yet-treated” units, we prove that, for all g and t such that $g \in G_\delta$, $t \in 2, \ldots T - \delta$ and $t \geq g - \delta$,

$$\text{ATT}_{\text{dr}}^{\text{ny}} (g, t; \delta) = \mathbb{E} \left[\left(\frac{G_g}{\mathbb{E}[G_g]} - \frac{p_{g,t+\delta}(X) (1 - D_{t+\delta})}{\mathbb{E} \left[\frac{p_{g,t+\delta}(X) (1 - D_{t+\delta})}{1 - p_{g,t+\delta}(X)} \right]} \right) \left(Y_t - Y_{g-\delta-1} - m_{g,t,\delta}^{\text{ny}}(X) \right) \right].$$

where $m_{g,t,\delta}^{\text{ny}}(X) = \mathbb{E} \left[Y_t - Y_{g-\delta-1} | X, D_{t+\delta} = 0, G_g = 0 \right] \ldots$

• Extends Heckman, Ichimura and Todd (1997), Abadie (2005), Sant’Anna and Zhao (2020).
If one invokes the Conditional PTA based on “not-yet-treated” units, we prove that, for all \(g \) and \(t \) such that \(g \in G_\delta, t \in 2, \ldots T - \delta \) and \(t \geq g - \delta \),

\[
\text{ATT}^{ny}_{dr}(g, t; \delta) = \mathbb{E}
\begin{pmatrix}
G_g \\
\mathbb{E}[G_g]
\end{pmatrix}
- \frac{p_{g, t+\delta}(X) (1 - D_{t+\delta})}{\mathbb{E}\left[p_{g, t+\delta}(X) (1 - D_{t+\delta})\right]}
\left(Y_t - Y_{g-\delta-1} - m_{g, t, \delta}^{ny}(X)\right).
\]

where \(m_{g, t, \delta}^{ny}(X) = \mathbb{E}\left[Y_t - Y_{g-\delta-1} | X, D_{t+\delta} = 0, G_g = 0\right]. \)

- Extends Heckman, Ichimura and Todd (1997), Abadie (2005), Sant’Anna and Zhao (2020).
If one invokes the Conditional PTA based on “not-yet-treated” units, we prove that, for all g and t such that $g \in G_\delta$, $t \in 2, \ldots, T - \delta$ and $t \geq g - \delta$,

$$ATT_{dr}^{ny} (g, t; \delta) = \mathbb{E} \left[\left(\frac{G_g}{\mathbb{E}[G_g]} - \frac{p_{g,t+\delta} (X)(1 - D_{t+\delta})}{\mathbb{E} \left[\frac{p_{g,t+\delta} (X)(1 - D_{t+\delta})}{1 - p_{g,t+\delta} (X)} \right]} \right) \left(Y_t - Y_{g-\delta-1} - m_{g,t,\delta}^{ny} (X) \right) \right].$$

where $m_{g,t,\delta}^{ny} (X) = \mathbb{E} \left[Y_t - Y_{g-\delta-1} | X, D_{t+\delta} = 0, G_g = 0 \right].$

- Extends Heckman, Ichimura and Todd (1997), Abadie (2005), Sant’Anna and Zhao (2020).
What if the identifying assumptions hold unconditionally?

• In this simpler case, the identifying results simplify to

\[ATT_{unc}^{ny}(g, t) = \mathbb{E}[Y_t - Y_{g-\delta-1}|G_g = 1] - \mathbb{E}[Y_t - Y_{g-\delta-1}|D_{t+\delta} = 0, G_g = 0]. \]

• This looks similar to the two periods, two-groups DiD result without covariates, too.

• The difference is now we take a “long difference”, and that the comparison group changes over time.

• Same intuition carries, though!
Summarizing the $ATT(g, t)$’s
Summarizing $\text{ATT}(g,t)$

- $\text{ATT}(g, t)$ are very useful parameters that allow us to better understand treatment effect heterogeneity.

- We can also use these to summarize the treatment effects across groups, time since treatment, calendar time.

- Empiricist routinely attempt to pursue this avenue:
 - Run a TWFE “static” regression and focus on the β associated with the treatment.
 - Run a TWFE event-study regression and focus on β associated with the treatment leads and lags.
 - Collapse data into a 2 x 2 Design (average pre and post treatment periods).
Summarizing $\text{ATT}(g,t)$

- We propose taking weighted averages of the $\text{ATT}(g, t)$ of the form:
 \[
 \sum_{g=2}^{T} \sum_{t=2}^{T} \mathbf{1}\{g \leq t\} w_{gt} \text{ATT}(g, t)
 \]

- The two simplest ways of combining $\text{ATT}(g, t)$ across g and t are, assuming no-anticipation,
 \[
 \theta_{M}^{O} := \frac{2}{\mathcal{T}(\mathcal{T} - 1)} \sum_{g=2}^{T} \sum_{t=2}^{T} \mathbf{1}\{g \leq t\} \text{ATT}(g, t)
 \]
 \begin{equation}
 (1)
 \end{equation}

 and

 \[
 \theta_{W}^{O} := \frac{1}{\kappa} \sum_{g=2}^{T} \sum_{t=2}^{T} \mathbf{1}\{g \leq t\} \text{ATT}(g, t) P(G = g| C \neq 1)
 \]
 \begin{equation}
 (2)
 \end{equation}

- Problem: They “overweight” units that have been treated earlier
Summarizing ATT\((g,t)\): Cohort-heterogeneity

- More empirically motivated aggregations do exist!

- Average effect of participating in the treatment that units in group \(g\) experienced:

\[
\theta_S(g) = \frac{1}{T - g + 1} \sum_{t=2}^{T} 1\{g \leq t\} ATT(g, t)
\]
Summarizing $\text{ATT}(g,t)$: Calendar time heterogeneity

- Average effect of participating in the treatment in time period t for groups that have participated in the treatment by time period t

$$\theta_C(t) = \sum_{g=2}^{T} 1\{g \leq t\} \text{ATT}(g, t) P(G = g| G \leq t, C \neq 1)$$

- Very informally, this is akin to asking:
 “How many lives have we saved until time t by adopting the shelter-at-home policy?”
Summarizing $\text{ATT}(g,t)$: Event-study / dynamic treatment effects

- The effect of a policy intervention may depend on the length of exposure to it.

- Average effect of participating in the treatment for the group of units that have been exposed to the treatment for exactly e time periods

\[
\theta_D(e) = \sum_{g=2}^{T} \mathbb{1}\{g + e \leq T\} \text{ATT}(g, g + e) P(G = g | G + e \leq T, C \neq 1)
\]

- This is perhaps the most popular summary measure currently adopted by empiricists.
Summarizing $\text{ATT}(g,t)$: Event-study

• When we compare $\theta_D(e)$ across two relative times e_1 and e_2, we have that

$$
\theta_D(e_2) - \theta_D(e_1) = \sum_{g=2}^{T} \mathbf{1}\{g + e_1 \leq T\} \left(\text{ATT}(g, g + e_2) - \text{ATT}(g, g + e_1)\right) P(G = g | G + e_1 \leq T)
$$

dynamic effect for group g

$$
+ \sum_{g=2}^{T} \mathbf{1}\{g + e_2 \leq T\} \text{ATT}(g, g + e_2) \left(P(G = g | G + e_2 \leq T) - P(G = g | G + e_1 \leq T)\right)
$$

differences in weights

$$
- \sum_{g=2}^{T} \mathbf{1}\{T - e_2 \leq g \leq T - e_1\} \text{ATT}(g, g + e_2) P(G = g | G + e_2 \leq T)
$$

different composition of groups

• Balance sample in “event time” to avoid compositional changes that complicate comparisons across e.

Estimation and Inference
Estimation

• Identification results suggest a simple two-step estimation procedure.
• Estimate the generalized propensity score $p_g(X)$ by $\hat{p}_g(X)$.
• Estimate outcome regression models for the comparison group, $m_{g-1}^C(X)$ and $m_t^C(X)$, by $\hat{m}_{g-1}^C(X)$, and $\hat{m}_t^C(X)$, respectively.
• With these estimators on hands, estimate the $ATT(g, t)$ using the plug-in principle (you can use IPW, OR or DR estimands!).
• In the paper, we provide high-level conditions that these first-step estimators have to satisfy.
 • Similar to Chen, Linton and Van Keilegom (2003) and Chen, Hong and Tarozzi (2008)
• Under relatively weak regularity conditions,
\[
\sqrt{n} \left(\hat{\text{ATT}}(g, t) - \text{ATT}(g, t) \right) = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \psi_{gt}(W_i) + o_p(1)
\]

• From the above asymptotic linear representation and a CLT, we have
\[
\sqrt{n} \left(\hat{\text{ATT}}(g, t) - \text{ATT}(g, t) \right) \xrightarrow{d} N(0, \Sigma_{g,t})
\]
where \(\Sigma_{gt} = \mathbb{E}[\psi_{gt}(W)\psi_{gt}(W)'] \).

• Above result ignores the dependence across \(g \) and \(t \), and “multiple-testing” problems.
Simultaneous Inference

• Let’s simplify and ignore anticipation issues for the moment.

• Let \(\text{ATT}_{g \leq t} \) and \(\hat{\text{ATT}}_{g \leq t} \) denote the vector of \(\text{ATT}(g, t) \) and \(\hat{\text{ATT}}(g, t) \), respectively, for all \(g = 2, \ldots, T \) and \(t = 2, \ldots, T \) with \(g \leq t \).

• Analogously, let \(\Psi_{g \leq t} \) denote the collection of \(\psi_{gt} \) across all periods \(t \) and groups \(g \) such that \(g \leq t \).

• Hence, we have

\[
\sqrt{n}(\hat{\text{ATT}}_{g \leq t} - \text{ATT}_{g \leq t}) \xrightarrow{d} N(0, \Sigma)
\]

where

\[
\Sigma = \mathbb{E}[\Psi_{g \leq t}(\mathcal{W})\Psi_{g \leq t}(\mathcal{W})^\prime].
\]
Simultaneous confidence intervals

• How to construct simultaneous confidence intervals?

• We propose the use of a simple multiplier bootstrap procedure.

• Let \(\hat{\Psi}_{g \leq t}(W) \) denote the sample-analogue of \(\Psi_{g \leq t}(W) \).

• Let \(\{V_i\}_{i=1}^n \) be a sequence of \(iid \) random variables with zero mean, unit variance and bounded third moment, independent of the original sample \(\{W_i\}_{i=1}^n \).

• \(\hat{ATT}^*_{g \leq t} \) , a bootstrap draw of \(\hat{ATT}_{g \leq t} \), via

\[
\hat{ATT}^*_{g \leq t} = \hat{ATT}_{g \leq t} + \mathbb{E}_n \left[V \cdot \hat{\Psi}_{g \leq t}(W) \right].
\]

(3)
Multiplier Bootstrap procedure

1. Draw a realization of \(\{ V_i \}_{i=1}^n \).
2. Compute \(\hat{ATT}_{g \leq t}^* \) as in (3), denote its \((g, t)\)-element as \(\hat{ATT}^* (g, t) \), and form a bootstrap draw of its limiting distribution as
 \[
 \hat{R}^* (g, t) = \sqrt{n} \left(\hat{ATT}^* (g, t) - \hat{ATT} (g, t) \right)
 \]
3. Repeat steps 1-2 \(B \) times.
4. Estimate \(\Sigma^{1/2} (g, t) \) by
 \[
 \hat{\Sigma}^{1/2} (g, t) = \frac{(q_{0.75} (g, t) - q_{0.25} (g, t))}{(z_{0.75} - z_{0.25})}
 \]
5. For each bootstrap draw, compute \(t - \text{test}_{g \leq t}^* = \max_{(g, t)} \left| \hat{R}^* (g, t) \right| \hat{\Sigma} (g, t)^{-1/2} \).
6. Construct \(\hat{c}_{1-\alpha} \) as the empirical \((1 - \alpha)\)-quantile of the \(B \) bootstrap draws of \(t - \text{test}_{g \leq t}^* \).
7. Construct the bootstrapped simultaneous confidence intervals for \(ATT (g, t) \), \(g \leq t \), as
 \[
 \hat{C} (g, t) = [\hat{ATT} (g, t) \pm \hat{c}_{1-\alpha} \cdot \hat{\Sigma} (g, t)^{-1/2} / \sqrt{n}].
 \]
Simultaneous cluster-robust confidence intervals

• Sometimes one wishes to account for clustering.

• This is straightforward to implement with the multiplier bootstrap described above.

• Example: allow for clustering at the state level
 • draw a scalar U_s S times – where S is the number of states
 • set $V_i = U_s$ for all observations i in state s

• This procedure is justified provided that the number of clusters is “large”.
Empirical Illustration
Effect of minimum wage on teen employment

- Standard economic theory suggests that wage floor should result in lower employment
- However, many studies find that increases in the minimal wage do not lead to disemployment effects
 - e.g. Card and Krueger (1994), Dube, Lester and Reich (2010)
- Not everyone agrees with those empirical results
- Let’s apply our proposed tools to revisit this debate.
- Treatment: MW above federal MW (we ignore how much higher it is, though)
Data

- County level data on youth employment and other county characteristics from 2001 - 2007
 - Federal minimum wage from 1999 until July 2007: $5.15
 - In July 2007: increase to $5.85
- We will exploit raises in state minimum wage before July 2007.
- 29 states whose minimum wage was equal to the federal minimum wage
- $Y_{i,t}$: log teen first-quarter employment in county i at year t.
- X_i: Region, population, population squared, median income, median income squared, fraction of white, fraction with a high school education, poverty rate.
- No evidence of pscore misspecification: Sant’Anna and Song (2019)
Figure 1: Minimum Wage Results using “never-treated” as a comparison group

(a) Unconditional Parallel Trends

(b) Conditional Parallel Trends
Figure 2: Minimum Wage Results using “not-yet-treated” as comparison groups
Summary measures based on “never treated”

(b) Conditional Parallel Trends

<table>
<thead>
<tr>
<th></th>
<th>Partially Aggregated</th>
<th>Single Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>TWFE</td>
<td></td>
<td>-0.008 (0.006)</td>
</tr>
<tr>
<td>Simple Weighted Average</td>
<td></td>
<td>-0.033 (0.007)</td>
</tr>
<tr>
<td>Group-Specific Effects</td>
<td></td>
<td></td>
</tr>
<tr>
<td>g=2004</td>
<td>-0.044 (0.020)</td>
<td>-0.031 (0.007)</td>
</tr>
<tr>
<td>g=2006</td>
<td>-0.029 (0.008)</td>
<td></td>
</tr>
<tr>
<td>g=2007</td>
<td>-0.029 (0.008)</td>
<td></td>
</tr>
<tr>
<td>Event Study</td>
<td></td>
<td></td>
</tr>
<tr>
<td>e=0</td>
<td>-0.024 (0.006)</td>
<td>-0.046 (0.013)</td>
</tr>
<tr>
<td>e=1</td>
<td>-0.041 (0.009)</td>
<td></td>
</tr>
<tr>
<td>e=2</td>
<td>-0.050 (0.022)</td>
<td></td>
</tr>
<tr>
<td>e=3</td>
<td>-0.071 (0.026)</td>
<td></td>
</tr>
<tr>
<td>Calendar Time Effects</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t=2004</td>
<td>-0.030 (0.022)</td>
<td>-0.033 (0.012)</td>
</tr>
<tr>
<td>t=2005</td>
<td>-0.025 (0.021)</td>
<td></td>
</tr>
<tr>
<td>t=2006</td>
<td>-0.030 (0.009)</td>
<td></td>
</tr>
<tr>
<td>t=2007</td>
<td>-0.049 (0.007)</td>
<td></td>
</tr>
<tr>
<td>Event Study</td>
<td></td>
<td></td>
</tr>
<tr>
<td>w/ Balanced Groups</td>
<td></td>
<td></td>
</tr>
<tr>
<td>e=0</td>
<td>-0.016 (0.010)</td>
<td>-0.028 (0.008)</td>
</tr>
<tr>
<td>e=1</td>
<td>-0.041 (0.009)</td>
<td></td>
</tr>
</tbody>
</table>
Can we relax the common trend assumption?

• **Parallel Trends Assumption:** for all \(t = 2, \ldots, T, g = 2, \ldots, T \), such that \(g \leq t \),

\[
\mathbb{E} [Y_t (0) - Y_{t-1} (0) | X, G_g = 1] = \mathbb{E} [Y_t (0) - Y_{t-1} (0) | X, C = 1] \text{ a.s.}
\]

• Can we relax it to an inequality to get bounds?

 • For all \(t = 2, \ldots, T, g = 2, \ldots, T \), such that \(g \leq t \),

\[
\mathbb{E} [Y_t (0) - Y_{t-1} (0) | X, G_g = 1] \geq \mathbb{E} [Y_t (0) - Y_{t-1} (0) | X, C = 1] \text{ a.s.}
\]

 • This identifying assumption then implies that

\[
\mathbb{E} [Y_t (0) | X, G_g = 1] \geq \mathbb{E} [Y_{t-1} (0) | X, G_g = 1] + \mathbb{E} [Y_t (0) - Y_{t-1} (0) | X, C = 1] \text{ a.s.}
\]

 • Then \(\hat{\text{ATT}} (g, t) \) could be then interpret as an upper bound.
Conclusion
Conclusion

• We proposed a semi-parametric DiD estimators when there are multiple time-periods and variation in treatment timing.

• We provided valid inference procedures to assess the effectiveness of the policy.

• Applied these tools to revisit the debate about the effect of minimum wage on teen employment.