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Callaway and Sant’Anna (2020) in a nutshell

» We study average treatment effects in DiD setups with:
1. Multiple time periods;
2. Variation in treatment timing (but with staggered treatment adoption);
3. Parallel trends assumption holds after conditioning on observed covariates;
» We want to better understand treatment effect heterogeneity:
» Group-time average treatment effects:
ATT (g.t) =E[Y;+(9) — Yit (0)[Gig = 1].

» Discuss how to summarize these causal effects (e.g. event-study analysis).

Clearly separate identification, aggregation and estimation/inference steps!



Callaway and Sant’Anna (2020) in practice

Proposed tools are suitable for both panel and repeated cross-section data.

Can be implemented via the R package did.



What is the empirical relevance of
our proposal?



Currie, Kleven and Zwiers (2020), AEA P&P.
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Difference-in-Differences

« Difference-in-Differences (DiD) is one of the most popular designs for causal
inference.

« Canonical format:

e 2groups: G=0and G=1;
» 2times periods: t =0and t = 1.

» Parameter of interest:
ATT =E[Y;1 (1) |Gi = 1] - E[Yj1(0) |G; = 1]
 Parallel Trends Assumption:
E[Y1(0) - Yo (0)[G=1] = E[Y1(0)-Yo(0)[G=0]



Difference-in-Differences as a Regression

+ Canonical DiD:
ATT, = En[Ys — Yo|G=1] — EnlYs — Yo|G=0].
» We can use the regression to estimate g, the ATT:

\/I't:DC‘i")’GI‘FA‘I{t:‘I}‘{‘ IB (G,1{t:1}>+€,’t

» We can leverage its regression representation to conduct asymptotically valid
inference.



Difference-in-Differences in Practice

« Many DiD empirical applications, however, deviate
from the canonical DiD setup

* Availability of covariates X
* More than two time periods

+ Variation in treatment timing




Traditional methods: TWFE event-study regression

* It is tempting to “extrapolate” from the canonical DiD setup and use variations
of following TWFE specification to estimate causal effects:

Y/t—lxl‘i‘lxt‘i")’kK D< K+ Z ,Y/eadet_i_ E’YlagsDk1+’YL+D>L+€i,t
k=0

with the event study dummies fot = 1{t— G; = k}, where G; indicates the
period unit / is first treated (Group).

. D"t is an indicator for unit / being k periods away from initial treatment at time
t.



Stylized example using simulated data
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Stylized example using simulated data

* 1000 units (1 = 1,2, ..., 1000) from 40 states (state = 1,2, ..., 40).
» Data from 1980 to 2010 (31 years).

* 4 different groups based on year that treatment starts:
g = 1986, 1992, 1998, 2004.

» Randomly assign each state to a group.

+ Outcome:
Yie= (2010—-g) + & + & + Ti t + &
\ / ~— N~ N g
cohort-specific intercept N(%j) %‘FN(O,U (t—g+1)-1{t>g} N(O,(%)2)

« ATT at the first treatment period is 1, at the second period since treatment is

2, efc.
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Traditional methods: TWFE event-study regression

+ What if we tried to estimate the treatment effects using traditional TWFE
event-study regressions

-2 L
_ _ I
Yie=ai+ar+7 D75+ Y 7D+ Y v2°Df + vt D + e
k=—K k=0

with K and L to be equalto 5 ?

« Simulate data and repeat 1,000 times to compute bias and simulation
standard deviations.
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Estimate

Relative Time

12



Traditional methods: TWFE event-study regression

» What if we include all possible leads and lags in the TWFE event study
specification, i.e., to set K and L to the maximum allowable in the data making
inclusion of foK and of D,.?tL unnecessary ?

13



Estimate

Relative Time
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Event-study plot using CS proposed estimator
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Recent related literature

* Recent and emerging literature on heterogeneous treatment effects in DiD
with variation in treatment timing.

» The papers closest to ours are Athey and Imbens (2018), Borusyak and
Jaravel (2017), de Chaisemartin and D’Haultfouille (2020), Goodman-Bacon
(2019) and Sun and Abraham (2020)

+ All these papers present “negative” results about using TWFE, which we do
not have.

» Sun and Abraham (2020) has results for the event-study TWFE regressions that
rationalize the bad results shown in the previous simulation slides.
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Recent related literature

» On the other hand, our paper has some unique features on it:

+ We attempt to make minimal parallel trends assumptions to identify the
ATT(g,t);

* We allow for covariates in a flexible form

» We propose different estimation procedures based on outcome regression, IPW
and doubly robust methods;

» We discuss different aggregation schemes to further summarize the effects of
the treatment;

» We cover both panel and (stationary) repeated-cross section cases.

17
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Framework for the panel data case

» Consider a random sample

{(Yi1.Yi2.....YiT.Di1. Dig, ..., Dy, X))}y
where D;; = 1 if unit / is treated in period ¢, and 0 otherwise

* Gjg = 1ifunit/is first treated at time g, and zero otherwise (“Treatment
start-time dummies”)

+ C = 1is a“never-treated” comparison group

« Staggered treatment adoption: D;j; =1 = D;1=1,fort=1,2,..., 7.

19



Framework for the panel data case (cont.)

* Limited Treatment Anticipation: There is a known § > 0 s.t.
E[Y:(9)|X, Gg = 1] = E[Y:(0)|X, Gg = 1] as..

forallge G, te,..., T such that t<g-—9

———
“before effective starting date”
* Generalized propensity score uniformly bounded away from 1:

20



Parameter of interest

» Parameter of interest:

ATT (g, t) =E[Y:(9) — Y:(0)|Gg = 1], fort > g—¢.
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Parallel trend assumption based on a “never treated” group

Assumption (Conditional Parallel Trends based on a “never-treated”)
Foreacht e {2,..., T}, g€ Gsuchthatt > g— ¢,

E[Y:(0) — Y-1(0)|X, Gg = 1] = E[Y;(0) — Y;-1(0)|X. C = 1] as..
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Parallel Trends based on not-yet treated groups

Assumption (Conditional Parallel Trends based on “Not-Yet-Treated”
Groups)

Foreach (s, t) € {2,..., T} xA{2,..., T}, geGsuchthatt >g—6,s>t+46

E[Y;(0) — Y;_1(0)|X, Gg = 1] = E[V;(0) — Y;_1(0)|X, Ds = 0, Gg = 0] as..
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Identification results - never treated as comparison group

» Under these assumptions, we prove that, for all g and t such that
gegs=6n{2+4,3+9,..., THte{2 ... T—-¢6}andt>g—9,
ATT (g, t) is nonparametrically identified by the DR estimand

pg (X)C

ATTG (9.1:0) = E ]Efé’g] o E _p(‘c’)(()x c) ] (Yt — Ygs-1— mg3s (X))
1= pg (X)

where m)%'s (X) =E [V; — Yg5-4|X,C=1].

» Extends Heckman, Ichimura and Todd (1997), Abadie (2005), Sant’Anna and
Zhao (2020).
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What if the identifying assumptions hold unconditionally?

* In the case where covariates do not play a major role into the DiD
identification analysis, these formulas simplify to

ATT)6(9,t) = B[Y; — Yg_s_1|Gg = 1] = E[Y; — Yg_s_1|C =1].

This looks very similar to the two periods, two-groups DiD result without
covariates.

The difference is now we take a “long difference”.

« Same intuition carries, though!

25



Identification results - not-yet treated as comparison group

« If one invokes the Conditional PTA based on “not-yet-treated” units, we prove
that, forall gand t suchthatg € G5, t€2,...T —dand t > g — 4,

Pg.t+5 (X) (1 — Dyys)

ny LR Gy B 1= Pg,t1s (X) B oy
AlTar (969 =F 1| [Gol g [Pg,t+5 (X)(1 - DH—&)} (Yt Yo-i-1 = Mgis (X))
1= Pg,t+5 (X)
where mgf;,(s (X) =E[Y;— Yg-5-1|X, D15 =0, Gy = 0]. .

» Extends Heckman, Ichimura and Todd (1997), Abadie (2005), Sant’/Anna and
Zhao (2020).
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What if the identifying assumptions hold unconditionally?

* In this simpler case, the identifying results simplify to
ATT[,],}]/C(Q, t) = IE[Y{ = Yg,(5,~| |Gg = 1] = ]E[Yt = Yg,5,1 ‘Dt+(5 = O, Gg = 0]
+ This looks similar to the two periods, two-groups DiD result without
covariates, too.

» The difference is now we take a “long difference” , and that the comparison
group changes over time.

« Same intuition carries, though!

27



Summarizing the ATT (g, t)’s



Summarizing ATT(g,t)

« ATT(g,t) are very useful parameters that allow us to better understand
treatment effect heterogeneity.

* We can also use these to summarize the treatment effects across groups,
time since treatment, calendar time.

« Empiricist routinely attempt to pursue this avenue:
* Run a TWFE “static” regression and focus on the B associated with the
treatment.

* Run a TWFE event-study regression and focus on  associated with the
treatment leads and lags.

» Collapse data into a 2 x 2 Design (average pre and post treatment periods).
29



Summarizing ATT(g,t)

« We propose taking weighted averages of the ATT (g, t) of the form:
T T

Yo Y 1{g < t}wgATT (g, 1)

g=21=2

+ The two simplest ways of combining ATT (g, t) across g and t are, assuming
no-anticipation,

0 2 T T
Oy == mg;zgﬂg < t}ATT (g, 1) (1)
and
%;;wg«mmg DP(G=g|C # 1) @

» Problem: They “overweight” units that have been treated earlier 30



Summarizing ATT(g,t): Cohort-heterogeneity

* More empirically motivated aggregations do exist!

» Average effect of participating in the treatment that units in group g
experienced:

1

0s(9) = T_g+1

i 1{g < t}ATT(g, 1)
t=2

31



Summarizing ATT(g,t): Calendar time heterogeneity

 Average effect of participating in the treatment in time period ¢ for groups that
have participated in the treatment by time period t

Oc(t) = i 1{g < t}ATT(g. t)P(G=9g|G <t C #1)
g=2

» Very informally, this is akin to asking:
“How many lives have we saved until time t by adopting the shelter-at-home
policy?”

32



Summarizing ATT(g,t): Event-study / dynamic treatment effects

» The effect of a policy intervention may depend on the length of exposure to it.

» Average effect of participating in the treatment for the group of units that have
been exposed to the treatment for exactly e time periods

-
0p(e) =) 1{g+e<T}ATT(9.9+e)P(G=g|G+e<T,C#1)
g=2

 This is perhaps the most popular summary measure currently adopted by
empiricists.

33



Summarizing ATT(g,t): Event-study

« When we compare 6p(e) across two relative times e and e,, we have that
Op(e2) —Op(er)

-
=Y 1{g+e < T} (ATT(g,g+e)—ATT(g.g+e€1))P(G=g|G+e; <T)
g=2

dynamic effect for group g

-
+ Y 1{g+e < T}IATT(g.g+6)(P(G=9g|G+e<T)-P(G=g|G+e <T))
g=2

differences in weights

-
— )Y T -e<g<T-e}ATT(g.9+e)P(G=g|G+e<T)
g9=2

different composition of groups

+ Balance sample in “event time” to avoid compositional changes that complicate
comparisons across e.

34



Estimation and Inference

35



+ Identification results suggest a simple two-step estimation procedure.
+ Estimate the generalized propensity score pg (X) by pg (X).

+ Estimate outcome regression models for the comparison group, mg_1 (X) and
mg (X), by mS 4 (X), and mf (X), respectively.

+ With these estimators on hands, estimate the ATT (g, t) using the plug-in
principle (you can use IPW, OR or DR estimands!).

* In the paper, we provide high-level conditions that these first-step estimators
have to satisfy.
+ Similar to Chen, Linton and Van Keilegom (2003) and Chen, Hong and Tarozzi

(2008)
36



* Under relatively weak regularity conditions,
Vi (ATT(g.t) — ATT(g.1)) = f Z%t W) + 0p(1)
» From the above asymptotic linear representation and a CLT, we have
Vn (ATT(g.t) — ATT(g.1)) % N(0,Zg,)

where Zgt = E[¢pg:(WV) gt (W)'].

» Above result ignores the dependence across g and t, and “multiple-testing”
problems.

37



Simultaneous Inference

* Let’s simplify and ignore anticipation issues for the moment.

* Let ATT4<t and /TT\TgSt denote the vector of ATT (g, t) and /ﬁ'(g, t),
respectively, forallg =2, ..., Tandt=2,..., T with g < t.

* Analogously, let ¥ 4< denote the collection of ¢4 across all periods t and
groups g such that g < t.

* Hence, we have
VN(ATT g<t — ATTy<) & N(O, X)
where
% = E[¥g<t(W)¥g<:(W)'].

38



Simultaneous confidence intervals

» How to construct simultaneous confidence intervals?
» We propose the use of a simple multiplier bootstrap procedure.
- Let ¥4<¢(W) denote the sample-analogue of ¥ g<;(W).

* Let {V;}7_, be a sequence of iid random variables with zero mean, unit
variance and bounded third moment, independent of the original sample
{Wi 7:1

° %TT\T;St , @ bootstrap draw of /TT\Tg<,, via
ATTger = ATT gt +En | V- Tt (W) (3)

39



Multiplier Bootstrap procedure

1. Draw a realization of { V;}7 ;.

2. Compute A/T\T;g as in (3), denote its (g, t)-element as ATT (g, 1), and form a bootstrap
draw of its limiting distribution as

R (g.t) = Vn (ATT (g.t) — ATT (g.1))
3. Repeat steps 1-2 B times.
4. Estimate X'/2(g,t) by
22(9.t) = (qo.75 (9. 1) — Q025 (9. 1)) / (20.75 — Z0.25)
5. For each bootstrap draw, compute ¢ — test;_; = maxg, ) ‘ﬁ?* (9, t)‘ S(g.t) V2.
6. Construct ¢;_, as the empirical (1 — a)-quantile of the B bootstrap draws of t — testy ;.
7. Construct the bootstrapped simultaneous confidence intervals for ATT (g, t), g < t, as

C(g.t)=[ATT (g, ) £ o -Z(g.t) "2 /V/n]. 40



Simultaneous cluster-robust confidence intervals

Sometimes one wishes to account for clustering.

* This is straightforward to implement with the multiplier bootstrap described
above.
» Example: allow for clustering at the state level

e draw a scalar Us S times — where S is the number of states

» set V; = Ug for all observations j in state s

This procedure is justified provided that the number of clusters is “large”.

41



Empirical lllustration
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Effect of minimum wage on teen employment

+ Standard economic theory suggests that wage floor should result in lower
employment

* However, many studies find that increases in the minimal wage do not lead to
disemployment effects

* e.g. Card and Krueger (1994), Dube, Lester and Reich (2010)

* Not everyone agrees with those empirical results

* Neumark and Wascher (1992, 2000, 2007, 2008), Neumark, Sala and Wascher
(2014)

* Let’s apply our proposed tools to revisit this debate.

» Treatment: MW above federal MW (we ignore how much higher it is, though),s



» County level data on youth employment and other county characteristics from
2001 - 2007

+ Federal minimum wage from 1999 until July 2007: $5.15
* In July 2007: increase to $5.85

* We will exploit raises in state minimum wage before July 2007.
» 29 states whose minimum wage was equal to the federal minimum wage
* Y, : log teen first-quarter employment in county / at year t.

» X; : Region, population, population squared, median income, median income
squared, fraction of white, fraction with a high school education, poverty rate.

* No evidence of pscore misspecification: Sant’Anna and Song (2019) 44



Figure 1: Minimum Wage Results using “never-treated” as a comparison group

(a) Unconditional Parallel Trends
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Figure 2: Minimum Wage Results using “not-yet-treated” as comparison groups

(a) Unconditional Parallel Trends

—— Pre—Treatment

—— Post—Treatment

(b) Conditional Parallel Trends
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Summary measures based on “never treated”

(b) Conditional Parallel Trends

Partially Aggregated Single Parameters
TWFE -0.008
(0.006)
Simple Weighted Average -0.033
(0.007)
Group-Specific Effects g=2004  g=2006 g=2007
-0.044 -0.029 -0.029 -0.031
(0.020)  (0.008)  (0.008) (0.007)
Event Study e=0 e=1 e=2 e=3
-0.024 -0.041 -0.050 -0.071 -0.046
(0.006)  (0.009)  (0.022)  (0.026) (0.013)
Calendar Time Effects t=2004  t=2005 t=2006 t=2007
-0.030 -0.025 -0.030 -0.049 -0.033
(0.022) (0.021) (0.009)  (0.007) (0.012)
Event Study e=0 e=1
w/ Balanced Groups -0.016 -0.041 -0.028
(0.010) (0.009) (0.008)
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Can we relax the common trend assumption?

* Parallel Trends Assumption: forallt =2, ..., T,9=2,..., T, such that
g <1

E[Y;(0) = Y11 (0)[X,Gg =1] =E[Y;(0) — Yt-1 (0) [ X, C=1] as.
+ Can we relax it to a inequality to get bounds?
e Forallt=2,..., T,9=2,..., T, such that g < t,
E[Y; (0) — Y1 (0) |X, Gy = 1] > E[Y;(0) — Y;_1 (0) |X,C = 1] as.
* This identifying assumption then implies that
E[Y:(0)|X,Gg =1] > E[Y;—1(0) [X,Gg = 1] + E[Y;(0) — Y;—1 (0) |[X,C =1] as.
. Then ATT (g, t) could be then interpret as an upper bound.
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Conclusion

» We proposed a semi-parametric DiD estimators when there are multiple
time-periods and variation in treatment timing.

» We provided valid inference procedures to assess the effectiveness of the
policy.

» Applied these tools to revisit the debate about the effect of minimum wage on
teen employment

50
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