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Callaway and Sant’Anna (2020) in a nutshell

• We study average treatment effects in DiD setups with:

1. Multiple time periods;

2. Variation in treatment timing (but with staggered treatment adoption);

3. Parallel trends assumption holds after conditioning on observed covariates;

• We want to better understand treatment effect heterogeneity:

• Group-time average treatment effects:

ATT (g, t) = E
[
Yi,t (g)− Yi,t (0) |Gi,g = 1

]
.

• Discuss how to summarize these causal effects (e.g. event-study analysis).

Clearly separate identification, aggregation and estimation/inference steps!
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Callaway and Sant’Anna (2020) in practice

Proposed tools are suitable for both panel and repeated cross-section data.

Can be implemented via the R package did.
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What is the empirical relevance of
our proposal?
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Currie, Kleven and Zwiers (2020), AEA P&P.
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Difference-in-Differences

• Difference-in-Differences (DiD) is one of the most popular designs for causal
inference.

• Canonical format:

• 2 groups: G = 0 and G = 1;
• 2 times periods: t = 0 and t = 1.

• Parameter of interest:

ATT ≡ E [Yi ,1 (1) |Gi = 1]−E [Yi ,1 (0) |Gi = 1]

• Parallel Trends Assumption:

E [Y1 (0)− Y0 (0) |G = 1] = E [Y1 (0)− Y0 (0) |G = 0]
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Difference-in-Differences as a Regression

• Canonical DiD:

ÂTTn = En [Y1 − Y0|G = 1]−En [Y1 − Y0|G = 0] .

• We can use the regression to estimate β, the ATT:

Yi ,t = α + γGi + λ1 {t = 1}+ β︸︷︷︸
≡ATT

(Gi · 1 {t = 1}) + ε i ,t .

• We can leverage its regression representation to conduct asymptotically valid
inference.
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Difference-in-Differences in Practice

• Many DiD empirical applications, however, deviate
from the canonical DiD setup

• Availability of covariates X

• More than two time periods

• Variation in treatment timing
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Traditional methods: TWFE event-study regression

• It is tempting to “extrapolate” from the canonical DiD setup and use variations
of following TWFE specification to estimate causal effects:

Yi ,t = αi + αt + γ−K
k D<−K

i ,t +
−2

∑
k=−K

γlead
k Dk

i ,t +
L

∑
k=0

γ
lags
k Dk

i ,t + γL+
k D>L

i ,t + ε i ,t

with the event study dummies Dk
i ,t = 1 {t −Gi = k}, where Gi indicates the

period unit i is first treated (Group).

• Dk
i ,t is an indicator for unit i being k periods away from initial treatment at time

t .
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Stylized example using simulated data
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Stylized example using simulated data

• 1000 units (i = 1,2, . . . ,1000) from 40 states (state = 1,2, . . . ,40).

• Data from 1980 to 2010 (31 years).

• 4 different groups based on year that treatment starts:
g = 1986,1992,1998,2004.

• Randomly assign each state to a group.

• Outcome:

Yi,t = (2010− g)︸ ︷︷ ︸
cohort-specific intercept

+ αi︸︷︷︸
N( state

5 ,1)

+ αt︸︷︷︸
(t−g)

10 +N(0,1)

+ τi,t︸︷︷︸
(t−g+1)·1{t≥g}

+ ε i,t︸︷︷︸
N
(

0,( 1
2 )

2)
• ATT at the first treatment period is 1, at the second period since treatment is

2, etc.
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Traditional methods: TWFE event-study regression

• What if we tried to estimate the treatment effects using traditional TWFE
event-study regressions

Yi ,t = αi + αt + γ−K
k D<−K

i ,t +
−2

∑
k=−K

γlead
k Dk

i ,t +
L

∑
k=0

γ
lags
k Dk

i ,t + γL+
k D>L

i ,t + ε i ,t

with K and L to be equal to 5 ?

• Simulate data and repeat 1,000 times to compute bias and simulation
standard deviations.
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Traditional methods: TWFE event-study regression

• What if we include all possible leads and lags in the TWFE event study
specification, i.e., to set K and L to the maximum allowable in the data making
inclusion of D<−K

i ,t and of D>L
i ,t unnecessary ?
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Event-study plot using CS proposed estimator
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Recent related literature

• Recent and emerging literature on heterogeneous treatment effects in DiD
with variation in treatment timing.

• The papers closest to ours are Athey and Imbens (2018), Borusyak and
Jaravel (2017), de Chaisemartin and D’Haultfouille (2020), Goodman-Bacon
(2019) and Sun and Abraham (2020)

• All these papers present “negative” results about using TWFE, which we do
not have.

• Sun and Abraham (2020) has results for the event-study TWFE regressions that
rationalize the bad results shown in the previous simulation slides.
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Recent related literature

• On the other hand, our paper has some unique features on it:

• We attempt to make minimal parallel trends assumptions to identify the
ATT (g, t);

• We allow for covariates in a flexible form

• We propose different estimation procedures based on outcome regression, IPW
and doubly robust methods;

• We discuss different aggregation schemes to further summarize the effects of
the treatment;

• We cover both panel and (stationary) repeated-cross section cases.
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Let me explain the building blocks of
CS
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Framework for the panel data case

• Consider a random sample

{(Yi ,1,Yi ,2, . . . ,Yi ,T ,Di ,1,Di ,2, . . . ,Di ,T ,Xi)}n
i=1

where Di ,t = 1 if unit i is treated in period t , and 0 otherwise

• Gi ,g = 1 if unit i is first treated at time g , and zero otherwise (“Treatment
start-time dummies”)

• C = 1 is a “never-treated” comparison group

• Staggered treatment adoption: Di ,t = 1 =⇒ Di ,t+1 = 1, for t = 1,2, . . . , T .

19



Framework for the panel data case (cont.)

• Limited Treatment Anticipation: There is a known δ ≥ 0 s.t.

E[Yt (g)|X ,Gg = 1] = E[Yt (0)|X ,Gg = 1] a.s..

for all g ∈ G, t ∈ 1, . . . , T such that t < g − δ︸ ︷︷ ︸
“before effective starting date”

.

• Generalized propensity score uniformly bounded away from 1:

pg,t (X ) = P (Gg = 1|X ,Gg + (1−Dt )(1−Gg) = 1) ≤ 1− ε a.s..
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Parameter of interest

• Parameter of interest:

ATT (g, t) = E [Yt (g)− Yt (0) |Gg = 1] , for t ≥ g − δ.
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Parallel trend assumption based on a “never treated” group

Assumption (Conditional Parallel Trends based on a “never-treated”)
For each t ∈ {2, . . . , T }, g ∈ G such that t ≥ g − δ,

E[Yt (0)− Yt−1(0)|X ,Gg = 1] = E[Yt (0)− Yt−1(0)|X ,C = 1] a.s..
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Parallel Trends based on not-yet treated groups

Assumption (Conditional Parallel Trends based on “Not-Yet-Treated”
Groups)

For each (s, t) ∈ {2, . . . , T } × {2, . . . , T }, g ∈ G such that t ≥ g − δ, s ≥ t + δ

E[Yt (0)− Yt−1(0)|X ,Gg = 1] = E[Yt (0)− Yt−1(0)|X ,Ds = 0,Gg = 0] a.s..
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Identification results - never treated as comparison group

• Under these assumptions, we prove that, for all g and t such that
g ∈ Gδ ≡ G∩ {2 + δ,3 + δ, . . . , T }, t ∈ {2, . . . T − δ} and t ≥ g − δ,
ATT (g, t) is nonparametrically identified by the DR estimand

ATT nev
dr (g, t ; δ) = E


 Gg

E [Gg ]
−

pg (X )C
1− pg (X )

E

[
pg (X )C

1− pg (X )

]
(Yt − Yg−δ−1 −mnev

g,t ,δ (X )
) .

where mnev
g,t ,δ (X ) = E

[
Yt − Yg−δ−1|X ,C = 1

]
.

• Extends Heckman, Ichimura and Todd (1997), Abadie (2005), Sant’Anna and
Zhao (2020).
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What if the identifying assumptions hold unconditionally?

• In the case where covariates do not play a major role into the DiD
identification analysis, these formulas simplify to

ATT nev
unc (g, t) = E[Yt − Yg−δ−1|Gg = 1]−E[Yt − Yg−δ−1|C = 1].

• This looks very similar to the two periods, two-groups DiD result without
covariates.

• The difference is now we take a “long difference”.

• Same intuition carries, though!
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Identification results - not-yet treated as comparison group

• If one invokes the Conditional PTA based on “not-yet-treated” units, we prove
that, for all g and t such that g ∈ Gδ, t ∈ 2, . . . T − δ and t ≥ g − δ,

ATT ny
dr (g, t ; δ) = E


 Gg

E [Gg ]
−

pg,t+δ (X ) (1−Dt+δ)

1− pg,t+δ (X )

E

[
pg,t+δ (X ) (1−Dt+δ)

1− pg,t+δ (X )

]
(Yt − Yg−δ−1 −mny

g,t,δ (X )
) .

where mny
g,t ,δ (X ) = E

[
Yt − Yg−δ−1|X ,Dt+δ = 0,Gg = 0

]
. .

• Extends Heckman, Ichimura and Todd (1997), Abadie (2005), Sant’Anna and
Zhao (2020).
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What if the identifying assumptions hold unconditionally?

• In this simpler case, the identifying results simplify to

ATT ny
unc(g, t) = E[Yt − Yg−δ−1|Gg = 1]−E[Yt − Yg−δ−1|Dt+δ = 0,Gg = 0].

• This looks similar to the two periods, two-groups DiD result without
covariates, too.

• The difference is now we take a “long difference” , and that the comparison
group changes over time.

• Same intuition carries, though!
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Summarizing the ATT (g, t)’s
28



Summarizing ATT(g,t)

• ATT (g, t) are very useful parameters that allow us to better understand
treatment effect heterogeneity.

• We can also use these to summarize the treatment effects across groups,
time since treatment, calendar time.

• Empiricist routinely attempt to pursue this avenue:
• Run a TWFE “static” regression and focus on the β associated with the

treatment.

• Run a TWFE event-study regression and focus on β associated with the
treatment leads and lags.

• Collapse data into a 2 x 2 Design (average pre and post treatment periods).
29



Summarizing ATT(g,t)

• We propose taking weighted averages of the ATT (g, t) of the form:
T
∑

g=2

T
∑
t=2

1{g ≤ t}wgtATT (g, t)

• The two simplest ways of combining ATT (g, t) across g and t are, assuming
no-anticipation,

θO
M :=

2
T (T − 1)

T
∑

g=2

T
∑
t=2

1{g ≤ t}ATT (g, t) (1)

and

θO
W :=

1
κ

T
∑

g=2

T
∑
t=2

1{g ≤ t}ATT (g, t)P(G = g|C 6= 1) (2)

• Problem: They “overweight” units that have been treated earlier 30



Summarizing ATT(g,t): Cohort-heterogeneity

• More empirically motivated aggregations do exist!

• Average effect of participating in the treatment that units in group g
experienced:

θS(g) =
1

T − g + 1

T
∑
t=2

1{g ≤ t}ATT (g, t)
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Summarizing ATT(g,t): Calendar time heterogeneity

• Average effect of participating in the treatment in time period t for groups that
have participated in the treatment by time period t

θC(t) =
T
∑

g=2
1{g ≤ t}ATT (g, t)P(G = g|G ≤ t ,C 6= 1)

• Very informally, this is akin to asking:
“How many lives have we saved until time t by adopting the shelter-at-home
policy?”
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Summarizing ATT(g,t): Event-study / dynamic treatment effects

• The effect of a policy intervention may depend on the length of exposure to it.

• Average effect of participating in the treatment for the group of units that have
been exposed to the treatment for exactly e time periods

θD(e) =
T
∑

g=2
1{g + e ≤ T }ATT (g,g + e)P(G = g|G + e ≤ T ,C 6= 1)

• This is perhaps the most popular summary measure currently adopted by
empiricists.
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Summarizing ATT(g,t): Event-study

• When we compare θD(e) across two relative times e1 and e2, we have that

θD(e2)− θD(e1)

=
T
∑

g=2
1{g + e1 ≤ T } (ATT (g,g + e2)− ATT (g,g + e1))︸ ︷︷ ︸

dynamic effect for group g

P(G = g|G + e1 ≤ T )

+
T
∑

g=2
1{g + e2 ≤ T }ATT (g,g + e2) (P(G = g|G + e2 ≤ T )− P(G = g|G + e1 ≤ T ))︸ ︷︷ ︸

differences in weights

−
T
∑

g=2
1{T − e2 ≤ g ≤ T − e1}︸ ︷︷ ︸

different composition of groups

ATT (g,g + e2)P(G = g|G + e2 ≤ T )

• Balance sample in “event time” to avoid compositional changes that complicate
comparisons across e.
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Estimation and Inference
35



Estimation

• Identification results suggest a simple two-step estimation procedure.

• Estimate the generalized propensity score pg (X ) by p̂g (X ).

• Estimate outcome regression models for the comparison group, mC
g−1(X ) and

mC
t (X ), by m̂C

g−1 (X ), and m̂C
t (X ), respectively.

• With these estimators on hands, estimate the ATT (g, t) using the plug-in
principle (you can use IPW, OR or DR estimands!).

• In the paper, we provide high-level conditions that these first-step estimators
have to satisfy.

• Similar to Chen, Linton and Van Keilegom (2003) and Chen, Hong and Tarozzi
(2008)
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Inference

• Under relatively weak regularity conditions,

√
n
(

ÂTT (g, t)− ATT (g, t)
)
=

1√
n

n

∑
i=1

ψgt (Wi) + op(1)

• From the above asymptotic linear representation and a CLT, we have
√

n
(

ÂTT (g, t)− ATT (g, t)
)

d→ N(0,Σg,t )

where Σgt = E[ψgt (W)ψgt (W)′].

• Above result ignores the dependence across g and t , and “multiple-testing”
problems.
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Simultaneous Inference

• Let’s simplify and ignore anticipation issues for the moment.

• Let ATTg≤t and ÂTT g≤t denote the vector of ATT (g, t) and ÂTT (g, t),
respectively, for all g = 2, . . . , T and t = 2, . . . , T with g ≤ t .

• Analogously, let Ψg≤t denote the collection of ψgt across all periods t and
groups g such that g ≤ t .

• Hence, we have √
n(ÂTT g≤t − ATTg≤t )

d−→ N(0,Σ)

where
Σ = E[Ψg≤t (W)Ψg≤t (W)′].
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Simultaneous confidence intervals

• How to construct simultaneous confidence intervals?

• We propose the use of a simple multiplier bootstrap procedure.

• Let Ψ̂g≤t (W) denote the sample-analogue of Ψg≤t (W).

• Let {Vi}n
i=1 be a sequence of iid random variables with zero mean, unit

variance and bounded third moment, independent of the original sample
{Wi}n

i=1

• ÂTT
∗
g≤t , a bootstrap draw of ÂTT g≤t , via

ÂTT
∗
g≤t = ÂTT g≤t + En

[
V · Ψ̂g≤t (W)

]
. (3)

39



Multiplier Bootstrap procedure

1. Draw a realization of {Vi}n
i=1.

2. Compute ÂTT
∗
g≤t as in (3), denote its (g, t)-element as ÂTT

∗
(g, t) , and form a bootstrap

draw of its limiting distribution as

R̂∗ (g, t) =
√

n
(

ÂTT
∗
(g, t)− ÂTT (g, t)

)
3. Repeat steps 1-2 B times.

4. Estimate Σ1/2 (g, t) by

Σ̂1/2 (g, t) = (q0.75 (g, t)− q0.25 (g, t)) / (z0.75 − z0.25)

5. For each bootstrap draw, compute t − test∗g≤t = max(g,t)

∣∣∣R̂∗ (g, t)∣∣∣ Σ̂ (g, t)−1/2 .

6. Construct ĉ1−α as the empirical (1− a)-quantile of the B bootstrap draws of t − test∗g≤t .

7. Construct the bootstrapped simultaneous confidence intervals for ATT (g, t), g ≤ t , as

Ĉ (g, t) = [ÂTT (g, t)± ĉ1−α · Σ̂ (g, t)−1/2 /
√

n]. 40



Simultaneous cluster-robust confidence intervals

• Sometimes one wishes to account for clustering.

• This is straightforward to implement with the multiplier bootstrap described
above.

• Example: allow for clustering at the state level

• draw a scalar Us S times – where S is the number of states

• set Vi = Us for all observations i in state s

• This procedure is justified provided that the number of clusters is “large”.

41



Empirical Illustration
42



Effect of minimum wage on teen employment

• Standard economic theory suggests that wage floor should result in lower
employment

• However, many studies find that increases in the minimal wage do not lead to
disemployment effects

• e.g. Card and Krueger (1994), Dube, Lester and Reich (2010)

• Not everyone agrees with those empirical results

• Neumark and Wascher (1992, 2000, 2007, 2008), Neumark, Sala and Wascher
(2014)

• Let’s apply our proposed tools to revisit this debate.

• Treatment: MW above federal MW (we ignore how much higher it is, though).43



Data

• County level data on youth employment and other county characteristics from
2001 - 2007

• Federal minimum wage from 1999 until July 2007: $5.15

• In July 2007: increase to $5.85

• We will exploit raises in state minimum wage before July 2007.

• 29 states whose minimum wage was equal to the federal minimum wage

• Yi ,t : log teen first-quarter employment in county i at year t .

• Xi : Region, population, population squared, median income, median income
squared, fraction of white, fraction with a high school education, poverty rate.

• No evidence of pscore misspecification: Sant’Anna and Song (2019) 44



Figure 1: Minimum Wage Results using “never-treated” as a comparison group
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Figure 2: Minimum Wage Results using “not-yet-treated” as comparison groups
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Summary measures based on “never treated”
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Can we relax the common trend assumption?

• Parallel Trends Assumption: for all t = 2, . . . , T , g = 2, . . . , T , such that
g ≤ t ,

E [Yt (0)− Yt−1 (0) |X ,Gg = 1] = E [Yt (0)− Yt−1 (0) |X ,C = 1] a.s.

• Can we relax it to a inequality to get bounds?

• For all t = 2, . . . , T , g = 2, . . . , T , such that g ≤ t ,

E [Yt (0)− Yt−1 (0) |X ,Gg = 1] ≥ E [Yt (0)− Yt−1 (0) |X ,C = 1] a.s.

• This identifying assumption then implies that

E [Yt (0) |X ,Gg = 1] ≥ E [Yt−1 (0) |X ,Gg = 1] + E [Yt (0)− Yt−1 (0) |X ,C = 1] a.s.

• Then ÂTT (g, t) could be then interpret as an upper bound.
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Conclusion
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Conclusion

• We proposed a semi-parametric DiD estimators when there are multiple
time-periods and variation in treatment timing.

• We provided valid inference procedures to assess the effectiveness of the
policy.

• Applied these tools to revisit the debate about the effect of minimum wage on
teen employment

50
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