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Abstract

In this paper, we derive a new class of doubly robust estimators for treatment effect estimands

that is also robust against weak covariate overlap. Our proposed estimator relies on trimming

observations with extreme propensity scores and uses a bias correction device for trimming

bias. Our framework accommodates many research designs, such as unconfoundedness, local

treatment effects, and difference-in-differences. Simulation exercises illustrate that our proposed

tools indeed have attractive finite sample properties, which are aligned with our theoretical

asymptotic results.
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1 Introduction

Causal inference is critical for policy decision-making in many fields, including economics, political

science, public health, and social sciences. For instance, public health interventions aim to establish

a causal relationship between a particular treatment or intervention and health outcomes. Simi-

larly, policymakers often rely on causal inference methods to evaluate the effectiveness of public

policies, such as minimum wage laws or tax incentives. When researchers do not have access to

experimental data, they routinely rely on research designs that allow for observed and unobserved

confounding variables while identifying treatment effect parameters. This arises when one relies

on unconfoundedness, local treatment effect (instrumental variables), or difference-in-differences

(DiD) methodologies, to name a few of empirical researchers’ most popular techniques.

In such setups, a class of attractive estimators is the so-called doubly robust (DR) estimators.

One of the appealing features of DR estimators is that they remain consistent for the causal

parameter of interest as long as a researcher can correctly specify a working model for the outcome

regression or a working model for the propensity score, but not necessarily both.1 Compared

to regression adjustments and inverse probability weighting (IPW) approaches, DR estimators

are more robust against model misspecifications, tend to be less sensitive to tuning parameter

choices, and often can achieve the semiparametric efficiency bound under less stringent conditions.

However, such nice statistical guarantees may no longer exist in setups with weak covariate overlap

between treatment and comparison groups. Indeed, as illustrated by Kang and Schafer (2007), DR

estimators can be unstable/volatile in setups with weak covariate overlap, raising practical concerns

about their general performance.

The main goal of this paper is to robustify further DR estimators against weak overlap problems

without changing the target parameter of interest. Toward this end, we propose a new class of DR

estimators that are also robust against weak covariate overlap problems. Importantly, this class

of estimators can be used in various research designs, including unconfoundedness, local treatment

effects, and DiD setups. Our proposed class of estimators builds on augmented inverse probability

weighting (AIPW) estimators, but we trim observations with extreme propensity scores. Since

trimming extreme propensity scores leads to biases, we use a bias-correction device to handle this

issue. Our trim-then-bias-correct procedure builds on Sasaki and Ura (2022), whereas we also

leverage several AIPW estimands in the causal inference literature, such as those discussed by

Hahn (1998) and Bang and Robins (2005) under unconfoundedness, Tan (2006), Frolich (2007) and

S loczyński, Uysal, and Wooldridge (2022) under local treatment effects setups, and Sant’Anna and

Zhao (2020) in DiD setups. These AIPW estimands, though, are not robust against weak overlap.

We establish the large sample properties of our proposed class of DR estimators under high-level

assumptions that can be verified for specific research designs. We show that our estimators are

1See, e.g., Robins, Rotnitzky, and Zhao (1994), Bang and Robins (2005), Wooldridge (2007), Belloni, Cher-
nozhukov, and Hansen (2014), Belloni, Chernozhukov, Fernández-Val, and Hansen (2017), S loczyński and Wooldridge
(2018), Seaman and Vansteelandt (2018), Sant’Anna and Zhao (2020), and Callaway and Sant’Anna (2021) for dif-
ferent applications of DR methods in different setups.
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consistent and establish their asymptotic normality regardless of the degree of weak overlap. We

present a lower-level discussion of how one can leverage our general results to construct DR DiD

estimators a la Sant’Anna and Zhao (2020) that are weak against weak-overlap.

Compared with Sasaki and Ura (2022), we face a few new technical challenges in establishing

the large sample properties of our proposed estimators, which perhaps makes our technical results

of independent interest. More precisely, our generic class of estimators is based on potentially non-

linear transformations of multi-dimensional moments of ratios. We allow each of these moments of

ratios to have heterogeneous convergence rates due to different degrees of weak overlap. Thus, the

traditional delta method procedure does not apply. Our theoretical results take care of this point.

Related Literature: Our paper belongs to the extensive literature on causal inference meth-

ods using DR methods. We refer the reader to Section 2 S loczyński and Wooldridge (2018) and

Seaman and Vansteelandt (2018) for overviews, and Sant’Anna and Zhao (2020) and Callaway and

Sant’Anna (2021) for DiD applications. We contribute to this literature by proposing DR methods

with an additional layer of robustness against weak covariate overlap.

Our paper also relates to the literature on irregular inference procedures arising from weak

covariate overlap problems. See, e.g., Crump, Hotz, Imbens, and Mitnik (2009), Khan and Tamer

(2010), Yang (2014), Khan and Nekipelov (2015), Chaudhuri and Hill (2016), Rothe (2017), Yang

and Ding (2018), Hong, Leung, and Li (2020), Ma and Wang (2020), Heiler and Kazak (2021), and

Sasaki and Ura (2022). Within this branch of the literature, the papers closer to ours are Yang and

Ding (2018) and Heiler and Kazak (2021), as they also consider DR methods. Our results differ

from theirs on different fronts. First, they focus exclusively on setups where selection into treatment

is as good as random after accounting for covariates. Our results apply to this unconfoundedness

setup and local treatment effects (IV) and DiD setups.

Second, our methodology also greatly differs from and complements those of Yang and Ding

(2018) and Heiler and Kazak (2021). For instance, Yang and Ding (2018) uses a fixed (smooth)

trimming threshold to exclude observations with extreme propensity score estimates. This fixed

trimming strategy (implicitly) changes the target parameter of interest from the average treatment

effect (or the average treatment effect on the treated) to the average treatment effect for the

subpopulation with “better” covariate overlap. Thus, Yang and Ding (2018)’s methodology is not

DR for the original target parameter unless one imposes additional treatment effect homogeneity

assumptions. Our proposed procedures use a drifting trimming threshold as in Sasaki and Ura

(2022), and we do not lose the DR property or need to change the target parameter. At the same

time, a drifting trimming threshold may lead to asymptotic biases, and we account for these when

making valid rate-adaptive inferences based on asymptotic normality (Chaudhuri and Hill, 2016,

and Sasaki and Ura, 2022). Heiler and Kazak (2021) inference procedures do not rely on trimming

like ours. Furthermore, Heiler and Kazak (2021) procedure may not be asymptotically normal in

some setups, precluding one from constructing confidence intervals using t-tests. Our procedures

retain these practically attractive features.

Finally, our bias-correction procedure builds on Sasaki and Ura (2022). Their original procedure
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focuses on scalar IPW estimators, while our main interest is in DR estimators. We extend their

analysis by considering estimands that are possibly nonlinear functionals of a vector of moments of

ratios. Furthermore, as we allow for each entry of the vector of moments of ratios to have different

degrees of weak overlap, we face additional challenges related to heterogeneous convergence rates

that are not present in Sasaki and Ura (2022).

Organization of the paper: The rest of the paper is structured as follows. Section 2 gives

an overview of the method and one example. Section 3 contains the main theory. In Sections 4,

we apply our method to DiD setups, extending the DR DiD procedure proposed by Sant’Anna and

Zhao (2020) to account for potential weak covariate overlap problems.

Notations: For a random variable RV , let E[RV ] be the expected value of RV . We denote

the sample mean as En[RV ] = n−1
∑n

i=1RVi. We use 1{·} to denote the indicator function. For a

parameter γ, we let γ0 be the true value and γ̂ be an estimator.

2 Doubly Robust Estimator with Trimming-Bias Correction

This section presents an overview of our proposed method for estimating treatment effect param-

eters without discussing formal theories and assumptions. We formally present the supporting

theory for our proposed method in Section 3.

A researcher often uses a doubly robust estimator for a treatment effect parameter. The dou-

bly robust estimator is consistent as long as a part of the working models is correctly specified,

thus providing robustness against model misspecifications. Most doubly robust estimands can be

expressed as a function of L moments of ratios:

θ0 = Λ

(
E

[
B1(γ0)

A1(γ0)

]
, . . . , E

[
BL(γ0)

AL(γ0)

])
, (1)

where (Al(γ), Bl(γ)) = (Al(W ; γ), Bl(W ; γ)) is a function of an observed variable W , γ0 is the true

value of an estimable parameter vector γ, and Λ is a known real-valued function.2 The form of Λ

varies depending on the estimand of interest. The following two examples illustrate that popular

DR estimands can be expressed in the form of (1). This is also true with DiD designs, as discussed

in greater detail in Section 4.

Example 1 (Unconfoundedness). Let D be a binary treatment indicator, and X be a vector of

observed covariates. Let Y be the observed outcome variable. With the knowledge of the propensity

score P (X) = E[D = 1|X] and outcome regression model ν(d,X) = E[Y |D = d,X], the average

treatment effect (ATE) can be expressed as

E [ν(1, X) − ν(0, X)] + E

[
(Y − ν(1, X))D

P (X)

]
− E

[
(Y − ν(0, X))(1 −D)

1 − P (X)

]
.

2We assume that Bl(γ)/Al(γ) is integrable. Therefore, Al(γ) cannot have a point mass at zero. Also, extending
our analysis to a vector-valued function Λ is possible, but we focus on the scalar-valued Λ.
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We model the unknown functions (P (X), ν(D,X)) by a parametric class (P (X; γ), ν(D,X; γ)) with

a finite-dimensional parameter γ. Therefore, the estimand is written as

θ0 = E [ν(1, X; γ) − ν(0, X; γ)] + E

[
(Y − ν(1, X; γ))D

P (X; γ)

]
− E

[
(Y − ν(0, X; γ))(1 −D)

1 − P (X; γ)

]
.

This estimand is DR (cf. Hahn (1998) and Bang and Robins (2005)) in that it can consistently

estimate the average treatment effect if either the working outcome regression model ν(D,X) or the

working propensity score model P (X) is correctly specified.

Example 2 (Local Average Treatment Effect). We consider the local average treatment effect

(LATE) framework of Imbens and Angrist (1994) and Angrist, Imbens, and Rubin (1996). See

also Tan (2006), Frolich (2007) and S loczyński et al. (2022). We focus on the case with binary

treatment and binary instruments. Consider the random vector W = (Y,D,Z,X), with D and Z

being binary treatment and instrument indicators, respectively, X observed covariates, and Y the

realized outcome. Given the instrument propensity score P (X) = E[Z = 1|X] and the outcome

regression models ν(z,X) = E[Y |Z = z,X] and µ(z,X) = E[D|Z = z,X], the DR estimand for

the local average treatment effect proposed by Tan (2006) is given by:

E[ν(1, X) − ν(0, X)] + E
[
Z(Y−ν(1,X))

P (X)

]
− E

[
(1−Z)(Y−ν(0,X))

1−P (X)

]
E[µ(1, X) − µ(0, X)] + E

[
Z(D−µ(1,X))

P (X)

]
− E

[
(1−Z)(D−µ(0,X))

1−P (X)

] .
We model the functions (P (X), ν(Z,X), µ(Z,X)) by a parametric class (P (X; γ), ν(Z,X; γ), µ(Z,X; γ)).

Thus the DR local average treatment effect estimand is written as

θ0 =
E[ν(1, X; γ) − ν(0, X; γ)] + E

[
Z(Y−ν(1,X;γ))

P (X;γ)

]
− E

[
(1−Z)(Y−ν(0,X;γ))

1−P (X;γ)

]
E[µ(1, X; γ) − µ(0, X; γ)] + E

[
Z(D−µ(1,X;γ))

P (X;γ)

]
− E

[
(1−Z)(D−µ(0,X;γ))

1−P (X;γ)

] .
DR methods may perform poorly in setups with weak covariate overlap, as discussed in Kang

and Schafer (2007) and Robins, Sued, Lei-Gomez, and Rotnitzky (2007). When the denominators in

the above formulas are near zero, θ0 may entail a large variance and be practically unstable. Upon

inspecting if the estimated propensity scores are “close” to the extremes, researchers commonly

trim such observations to avoid these instabilities and to reduce the variance. However, a trimmed

mean can generate a non-negligible bias in the limit distribution. That is, trimming usually changes

the parameter of interest.

To deal with this issue without changing the target parameter of interest, we proposed a bias-

corrected trimmed method of estimation and inference. Our procedure builds on Sasaki and Ura

(2022), though we stress that their method does not cover vector of moments of ratios and a

(possibly nonlinear) function Λ(·) as in (1).

Motivated by the above framework, we now introduce our proposed estimator. Suppose we have

i.i.d. observations W1, . . . ,Wn and a preliminary estimator γ̂ for γ0. Let h be a positive number,
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and K and k be positive integers with K ≥ k.3 Our proposed estimator for θ0 is

θ̂ = Λ (α̂1(h, γ̂), . . . , α̂L(h, γ̂))

with

α̂l(h, γ) = En

[
Bl(γ)

Al(γ)
1{|Al(γ)| ≥ h}

]
+

k∑
κ=1

En

[
Al(γ)κ−1

1{|Al(γ)| < h}
]

κ!
· m̂(κ)

l (0; γ),

where m̂
(κ)
l (·; γ) is the κ-th derivative of the linear series estimator for ml(·; γ) = E[Bl(γ)|Al(γ) = ·]

with the shifted orthonormal Legendre polynomial basis pK(Al(γ)) of degree K. We explain m̂
(κ)
l

in Appendix A.1.

The estimator α̂l(h, γ̂) consists of two parts: The first part En

[
Bl(γ)
Al(γ)

1{|Al(γ)| ≥ h}
]

is the

denominator-based-trimmed mean estimator, which discards the observations with |Al(γ)| < h and

regularizes the estimator. Because we trim some observations, which may lead to a non-negligible

bias in the asymptotic distribution if we use the denominator-based-trimmed mean estimator.

Therefore, we use the bias correction of Sasaki and Ura (2022) to estimate the bias term by∑k
κ=1

En[Al(γ)
κ−1

1{|Al(γ)|<h}]
κ! · m̂(κ)

l (0; γ), which is the second part of α̂l(h, γ̂). The key insight

of the bias estimation is that the trimming bias is characterized by

E

[
Bl(γ0)

Al(γ0)
1{|Al(γ0)| < h}

]
= E

[
E[Bl(γ0)|Al(γ0)]

Al(γ0)
1{|Al(γ0)| < h}

]
and we can approximate E[Bl(γ0)|Al(γ0)]/Al(γ0) by a (k − 1)-th polynomial of Al(γ0) when

E[Bl(γ0)|Al(γ0) = 0] = 0. In the next section, we formally use this approximation in our main

theorem to establish asymptotic properties of θ̂.

3 Asymptotic Analysis

In this section, we investigate the asymptotic behavior of the proposed estimator θ̂ as an estimator

for θ0. To this goal, we consider the population counterpart of the estimator:

θh = Λ (α1(h, γ0), . . . , αL(h, γ0)) ,

where

αl(h, γ) = E

[
Bl(γ)

Al(γ)
1{|Al(γ)| ≥ h}

]
+

k∑
κ=1

E
[
Al(γ)κ−1

1{|Al(γ)| < h}
]

κ!
·m(κ)

l (0; γ).

3It is possible to extend our analysis with different hl for each l = 1, . . . , L. For the notational simplicity, however,
we use the same trimming threshold h for all l. In the asymptotic analysis, we assume h → 0 and K → ∞ as n → ∞.
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Our asymptotic analysis is based on the decomposition

θ̂ − θ0 = (θ̂ − θh) + (θh − θ0),

in which θ̂ − θh represents the stochastic part and θh − θ0 represents the bias. Our estimator is

biased in finite samples since θh ̸= θ0, but we show the bias is negligible in the asymptotic analysis.

Consider the following set of assumptions. Among them, Assumptions 1 and 2 are more sub-

stantial than the others. One needs to verify them when using the specific estimators in Section 2.

We will verify them in the application of difference-in-difference design in Section 4.

Assumption 1. For each l = 1, . . . , L with 0 ∈ support(Al(γ0)), (i) ml(0; γ0) = 0; and (ii)

ml(·; γ0) is (k + 1)-times continuously differentiable in a neighborhood of 0.

Assumption 1 concerns about the joint distribution of (Al(γ0), Bl(γ0)) and it accommodates the

case where Bl(γ0)/Al(γ0) has a heavy tail due to small Al(γ0). Assumption 1 (i) is a well-known

condition with many treatment effects. Assumption 1 (ii) is our key assumption. As in Sasaki and

Ura (2022), we assume a known degree of smoothness for the conditional expectation. Our bias

estimators can be approximated up to the order k.

Assumption 2. Λ(·) is twice continuously differentiable in a neighborhood of (α1(0, γ0), . . . , αL(0, γ0)).

Assumption 2 requires a smoothness for the function Λ(·). We impose this condition to verify

the asymptotic linear representation for θ̂.

Assumption 3. There are independent random variables ϕ1, . . . , ϕn such that

αl(h, γ̂) − αl(h, γ0) =
∂

∂γ′
αl(h, γ)|γ=γ0(En − E)[ϕ] + op(n

−1/2)

for each l = 1, . . . , L.

Assumption 3 imposes a restriction on the first-stage estimator γ̂ of γ0 and a smoothness on αl.

Roughly speaking, this condition holds for many treatment effect estimands as long as they depend

smoothly on the first-stage parameter γ and the first-stage estimator has the influence function

representation. This assumption does not require the smoothness of α̂l with respect to γ.

Assumption 4. For each l = 1, . . . , L and κ = 1, . . . , k,

m̂
(κ)
l (0; γ0) −m

(κ)
l (0; γ0) − (En − E)[ψl,κ(γ0)] = op(n

−1/2h1−κ),

where

ψl,κ(γ) = p
(κ)
K (0)′E[pK(Al(γ))pK(Al(γ))′]−1pK(Al(γ))(Bl(γ) −ml(Al(γ); γ)).

Assumption 4 is a well-established result in the literature on sieve estimation. We provide a

sufficient condition in Appendix A.1. Using a sample analog, we can estimate the influence function

by

ψ̂l,κ(γ) = p
(κ)
K (0)′En[pK(Al(γ))pK(Al(γ))′]−1pK(Al(γ))(Bl(γ) − m̂l(Al(γ); γ)). (2)
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For each l = 1, . . . , L, we can define

ωl(h, γ) =
Bl(γ)

Al(γ)
1{|Al(γ)| ≥ h} +

k∑
κ=1

Al(γ)κ−1
1{|Al(γ)| < h}
κ!

·m(κ)
l (0; γ)

+
k∑

κ=1

E
[
Al(γ)κ−1

1{|Al(γ)| < h}
]

κ!
· ψl,κ(γ) +

∂

∂γ′
αl(h, γ)ϕ.

Assumption 5. For each l = 1, . . . , L, E[ωl(h, γ0)
2] = o(n1/2).

Assumption 5 is about the (uncentered) influence function ωl(h, γ0) for α̂l(h, γ̂). This condition

allows the second moment of ωl(h, γ0) to diverge. We provide a sufficient condition in Appendix

A.2.

Assumption 6. For each l = 1, . . . , L, α̂l(h, γ̂) − αl(h, γ̂) − α̂l(h, γ0) + αl(h, γ0) = op(n
−1/2).

Assumption 6 is the stochastic equicontinuity condition (e.g., Andrews, 1994). This condi-

tion holds for many treatment effect estimands since the process α̂l(h, ·) − αl(h, ·) usually satisfies

Pollard’s entropy condition.

Assumption 7. nh2k = O(1) as n→ ∞.

We impose Assumption 7 to ensure that the asymptotic bias from θh − θ0 is negligible. A

researcher can choose the tuning parameter h so as to satisfy this condition.

Let Λl(·) denote the derivative of the function Λ with respect to the l-th element. Define

φ =
∑L

l=1 Λl(α1(0, γ0), . . . , αL(0, γ0)))ωl(h, γ0). We now state our main theorem.

Theorem 1. Suppose that Assumptions 1–7 are satisfied. (i) The estimator θ̂ has the asymptotically

linear representation

θ̂ − θ0 = (En − E)[φ] + op(n
−1/2).

(ii) If in addition, E[φ2] is bounded away from zero and E[(φ−E[φ])2+δ]

nδ/2E[(φ−E[φ])2](2+δ)/2 = o(1) for some

δ > 0, then
θ̂ − θ0√

E[(φ− E[φ])2]/n

d→ N (0, 1)

as n→ ∞.

A proof is in the appendix. Compared with Sasaki and Ura (2022), a new technical difficulty in

the proof of this theorem is that θ0 is a (potentially non-linear) transformation of multi-dimensional

moments of ratios. The textbook delta method does not work because of potentially heterogeneous

convergence rates across the moments, and our proof rigorously takes care of this point.

4 Application: Difference-in-Differences Design

This section presents a more detailed analysis of our DR estimator for the average treatment effect

on the treated (ATT) in DiD setups with potentially weak covariate overlap. Our emphasis on DiD
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setups is motivated by their widespread empirical usage. Indeed, as indicated by Currie, Kleven,

and Zwiers (2020), DiD is arguably the most popular method in the social sciences for estimating

causal effects in non-experimental settings. Furthermore, the DiD econometrics literature has been

expanding fast, though no attention has yet been devoted to issues associated with weak covariate

overlap; see Roth, Sant’Anna, Bilinski, and Poe (2023) for an overview of recent DiD advances. We

attempt to fill this gap.

We focus on the case with two treatment periods and two treatment groups, though our results

extend to the more general setup of Callaway and Sant’Anna (2021). Let Yt be the outcome of

interest at time t with t = {0, 1}. Let D be a dummy variable equal to 1 if an observation is treated

at time t = 1 and equal to zero otherwise. We assume everyone is untreated at t = 0. X is a

vector of covariates. In this case, the observed random variable is W = (Y0, Y1, D,X), that is, we

are considering a DiD setup where one has access to panel data (instead of a repeated cross-section

case).4

In what follows, we show that we can apply the general results in Section 3 to get a DR DiD

estimator for the ATT that is also robust against weak covariate overlap. To see this, note that

Sant’Anna and Zhao (2020) proposes a doubly robust estimand for the ATT:

E

[(
D

E[D]
− P (X)(1 −D)

E [D] (1 − P (X))

)
((Y1 − Y0) − ν(X)))

]
, (3)

where P (X) = E[D|X] and ν(X) = E[Y1 − Y0|D = 0, X]. We model the unknown functions

(P (X), ν(X)) by a parametric class (P (X; γ), ν(X; γ)) with a finite-dimensional parameter γ. De-

note by γ0 its true parameter value. Later we will consider model misspecification, in which γ0 is

the pseudo-true parameter value. In the notation of Section 3, we can express the above doubly

robust estimand in (3) as

θ0 =
E [B1(γ0)] − E [B2(γ0)/A2(γ0)]

E[B3(γ0)]

where

B1(γ) = D((Y1 − Y0) − ν(X; γ)),

B2(γ) = P (X; γ)(1 −D)((Y1 − Y0) − ν(X; γ)),

A2(γ) = 1 − P (X; γ),

B3(γ) = D.

Note that E [B1(γ)] and E [B3(γ)] can be seen as the moments of trivial ratios, E
[
B1(γ)

1

]
and

E
[
B3(γ)

1

]
, respectively.

We can verify Assumptions 1 and 2 for DiD design as follows.

Proposition 1. Suppose that (i) 0 < E[D] < 1, (ii) E[(1 − E[D|X])(E[Y1 − Y0|D = 0, X] −
ν(X; γ0))|P (X; γ0) = 1] = 0, and (iii) the function t 7→ E[(1 − E[D|X])(E[Y1 − Y0|D = 0, X] −

4It is easy to show that our results also apply to the case where one has access to repeated cross-section data.
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ν(X; γ0))|P (X; γ0) = t] is (k + 1)-times continuously differentiable in a neighborhood of 1. Then,

Assumptions 1 and 2 hold for doubly robust estimand for the ATT in equation (3).

The second condition in Proposition 1 deserves some remarks. This condition holds when

either the propensity score or the outcome equation is correctly specified. Even if both of them

are misspecified, this condition holds as long as the limiting behavior between the true propensity

score and the propensity score model (such that P (X; γ0) = 1 implies E[D|X] = 1).

Using the result in Section 3, we can write the bias-corrected estimator for ATT in DiD research

design as

θ̂ =
En[D(Y1 − Y0 − ν(X; γ̂))] − α̂2(h, γ̂)

En[D]
,

where γ̂ is an estimator for γ0, m̂
(κ)
2 is defined in Appendix A.1, and

α̂2(h, γ) = En

[
P (X; γ)(1 −D) (Y1 − Y0 − ν(X; γ))

1 − P (X; γ)
1{|1 − P (X; γ)| ≥ h}

]
+

k∑
κ=1

En

[
(1 − P (X; γ))κ−1

1{|1 − P (X; γ)| < h}
]

κ!
· m̂(κ)

2 (0; γ).

To discuss our method concretely, we consider the parametric models, P (X; γ) = π(X ′γ1) and

ν(X; γ) = X ′γ2, with the logistic function π(v) = exp(v)/(1 + exp(v)) and γ = (γ′1, γ
′
2)

′. We use

the maximum likelihood estimator γ̂1 for γ1 and the OLS estimator γ̂2 for γ2 by regressing Y1 − Y0

on X only using the observations with D = 0. The influence function for γ̂ = (γ̂′1, γ̂
′
2)

′ is given by

ϕ = (ϕ′1, ϕ
′
2)

′ where

ϕ1 = E[XX ′π(X ′γ1)(1 − π(X ′γ1))]
−1X(D − π(X ′γ1)) and

ϕ2 = E[(1 −D)XX ′]−1(1 −D)X(Y1 − Y0 −X ′γ2).

The corresponding (uncentered) influence function for θ̂ is

φ =
1

E[D]
·
(
D (Y1 − Y0 − ν(X; γ0)) − E[D

∂

∂γ′
ν(X; γ)|γ=γ0 ]ϕ

)
− 1

E[D]
· ω2(h, γ0)

− E[D(Y1 − Y0 − ν(X; γ0))] − α2(0, γ0)

E[D]2
·D,

where

α2(h, γ) =

∫ 1−h

0

p

1 − p
E [(1 −D) ((Y1 − Y0) − ν(X; γ)) | P (X; γ) = p] fP (X;γ)(p)dp

+
k∑

κ=1

∫ 1
1−h(1 − p)κ−1fP (X;γ)(p)dp

κ!
·m(κ)

2 (0; γ)
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and

ω2(h, γ) =
B2(γ)

A2(γ)
1{|A2(γ)| ≥ h} +

k∑
κ=1

A2(γ)κ−1
1{|A2(γ)| < h}
κ!

·m(κ)
2 (0; γ)

+
k∑

κ=1

E
[
A2(γ)κ−1

1{|A2(γ)| < h}
]

κ!
· ψ2,κ(γ) +

∂

∂γ′
α2(h, γ)ϕ.

We can estimate the influence function φ as follows. We can estimate fP (X;γ)(p) and E[(1 −
D)((Y1 − Y0) − ν(X; γ)) | P (X; γ) = p]fP (X;γ)(p) by

τ̂1(p; γ) = En

[
1

b
K

(
P (X; γ) − p

b

)]
and

τ̂2(p; γ) = En

[
(1 −D) ((Y1 − Y0) − ν(X; γ))

1

b
K

(
P (X; γ) − p

b

)]
respectively, where K(·) is a kernel function and b is a bandwidth. Using these kernel estimators,

we estimate ∂
∂γ′α2(h, γ) by

∂̂

∂γ′
α2(h, γ) =

∂

∂γ′

(∫ 1−h

0

p

1 − p
τ̂2(p; γ)dp+

k∑
κ=1

∫ 1
1−h(1 − p)κ−1τ̂1(p; γ)dp

κ!
· m̂(κ)

2 (0; γ)

)
.

The influence function estimator for γ̂ = (γ̂′1, γ̂
′
2)

′ is given by ϕ̂ = (ϕ̂′1, ϕ̂
′
2)

′ where

ϕ̂1 = En[XX ′π(X ′γ̂1)(1 − π(X ′γ̂1))]
−1X(D − π(X ′γ̂1)) and

ϕ̂2 = En[(1 −D)XX ′]−1(1 −D)X(Y1 − Y0 −X ′γ̂2).

Now we can construct an estimator for φ:

φ̂ =
1

En[D]
·
(
D (Y1 − Y0 − ν(X; γ̂)) − En[D

∂

∂γ′
ν(X; γ)|γ=γ̂ ]ϕ̂

)
− 1

En[D]
· ω̂2(h, γ̂)

− En[D(Y1 − Y0 − ν(X; γ̂))] − α̂2(0, γ̂)

En[D]2
·D,

where ψ̂l,κ(γ) is defined in (2) and

ω̂2(h, γ) =
B2(γ)

A2(γ)
1{|A2(γ)| ≥ h} +

k∑
κ=1

A2(γ)κ−1
1{|A2(γ)| < h}
κ!

· m̂(κ)
2 (0; γ)

+

k∑
κ=1

En

[
A2(γ)κ−1

1{|A2(γ)| < h}
]

κ!
· ψ̂2,κ(γ) +

∂̂

∂γ′
α2(h, γ)ϕ̂.

11



Then we construct the standard error for the bias-corrected ATT estimator in DiD design as

n−1/2(En[(φ̂− En[φ̂])2])1/2.

4.1 Robustness Property

We use Yt(0) to denote the outcome without treatment at time t and Yt(1) the outcome if it receives

treatment. In this case, the observed outcomes are Y0 = Y0(0) and Y1 = DY1(1) + (1 −D)Y1(0).

The average treatment effect on the treated at t = 1 is

E[Y1(1) − Y1(0) | D = 1].

We discuss the robustness property of our proposed estimator for the two cases. For the discussion,

we impose the parallel trend assumption.

Assumption 8. E[Y1(0) − Y0(0)|D = 1, X] = E[Y1(0) − Y0(0)|D = 0, X] almost surely.

We consider the population counterpart of the estimator:

θh =
E[D(Y1 − Y0 − ν(X; γ0))] − α2(h, γ0)

E[D]
,

where m2(t; γ0) = E[P (X; γ0)(1 −D) (Y1 − Y0 − ν(X; γ0)) |P (X; γ0) = 1 − t] and

α2(h, γ0) = E

[
P (X; γ0)(1 −D) (Y1 − Y0 − ν(X; γ0))

1 − P (X; γ0)
1{|1 − P (X; γ0)| ≥ h}

]
+

k∑
κ=1

E
[
(1 − P (X; γ0))

κ−1
1{|1 − P (X; γ0)| < h}

]
κ!

·m(κ)
2 (0; γ0).

Proposition 2. Under Assumption 8 and the assumptions in Proposition 1,

θh = E[Y1(1) − Y1(0) | D = 1]

+ E

[
1

E[D](1 − P (X; γ0))
(E[D | X] − P (X; γ0))(E[Y1 − Y0|D = 0, X] − ν(X; γ0))

]
+

1

E[D]k!
E

[
1{|1 − P (X; γ0)| < h}(1 − P (X; γ0))

k

∫ 1

0
(1 − t)km

(k+1)
2 (t(1 − P (X; γ0)); γ0)dt

]
,

where m2(t; γ0) = (1 − t)E[(1 − E[D|X])(E[Y1 − Y0|D = 0, X] − ν(X; γ0))|P (X; γ0) = 1 − t].

Case 1: Misspecified P

Suppose ν is correctly specified, that is, E[Y1 − Y0|D = 0, X] = ν(X; γ0). We have

θh = E[Y1(1) − Y1(0) | D = 1]

+
1

E[D]k!
E

[
1{|1 − P (X; γ0)| < h}(1 − P (X; γ0))

k

∫ 1

0
(1 − t)km

(k+1)
2 (t(1 − P (X; γ0)); γ0)dt

]
.
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and

m2(t; γ0) = 0.

Therefore,

θh = E[Y1(1) − Y1(0) | D = 1].

Case 2: Misspecified ν

Suppose P is correctly specified, that is, E[D | X] = P (X; γ0). We have

θh = E[Y1(1) − Y1(0) | D = 1]

+
1

E[D]k!
E

[
1{|1 − P (X; γ0)| < h}(1 − P (X; γ0))

k

∫ 1

0
(1 − t)km

(k+1)
2 (t(1 − P (X; γ0)); γ0)dt

]
.

When the (k + 1)th derivative of m2 is bounded near 0, we have

θh = E[Y1(1) − Y1(0)|D = 1] +O(hkE[1{P (X; γ0) > 1 − h}]).

Even if the parametric model ν(·; γ) is misspecified, the reminder term vanishes at the rate of o(hk).

This property holds even under weak overlap.

5 Simulation Studies

This section presents the finite sample performance of our proposed method using simulations. Our

simulation design is built on that of Sant’Anna and Zhao (2020).

For generic W = (W1,W2,W3,W4)
′, define the two functions

freg(W ) =1 +W1 +W2 +W3 +W4 and

fps(W ) =W1 +W2 +W3 +W4.

Let X = (X1, X2, X3, X4)
′ be independent student-t random variables with df degrees of freedom.

Let Zj =
(
Z̃j − E

[
Z̃j

])/√
Var(Z̃j) for each j ∈ {1, 2, 3, 4}, where Z̃1 = X1, Z̃2 = X2

1 − X2
2 ,

Z̃3 = X3
3 , and Z̃4 = X3

4 .

Consider the following data generating processes (DGPs):

DGP1: Y0(0) = freg(Z) + υ(Z,D) + ε0 Y1(d) = 2freg(Z) + υ(Z,D) + ε1(d)

p(Z) =
exp(fps(Z))

1 + exp(fps(Z))
D = 1{p(Z) ≥ U}

DGP2: Y0(0) = freg(Z) + υ(Z,D) + ε0 Y1(d) = 2freg(Z) + υ(Z,D) + ε1(d)

13



p(X) =
exp(fps(X))

1 + exp(fps(X))
D = 1{p(X) ≥ U}

DGP3: Y0(0) = freg(X) + υ(X,D) + ε0 Y1(d) = 2freg(X) + υ(X,D) + ε1(d)

p(Z) =
exp(fps(Z))

1 + exp(fps(Z))
D = 1{p(Z) ≥ U}

for d ∈ {0, 1}, where ε0, ε1(0), and ε1(1) are standard normal random variables, U is a standard

uniform random variable, and υ(w, d) is a normal random variable with mean d · freg(w) and unit

variance. The random variables, X, ε0, ε1(0), ε1(1), U , and υ(w, d) are independent.

We use n = 500 independent copies of (Y1, Y0, D, Z
′)′ to estimate the ATT. In this setting, the

selection equation is misspecified under DGP2, whereas the outcome equation is misspecified under

DGP3.

We compare the performance of the conventional (CON) estimation method based on Sant’Anna

and Zhao (2020), which effectively sets h = 0.00 in our framework and our proposed new (NEW)

estimation method with h = 0.01 and K = k = 3. For each set of simulations, we run 10,000

Monte Carlo iterations and present basic simulation statistics, including the bias (BIAS), standard

deviation (SD), root mean square error (RMSE), and 95 percent coverage frequency (95%) for each

estimator. Table 1 summarizes the results.

First, focus on DGP1 in which both the selection and outcome equations are correctly specified.

In this DGP, the NEW method improves upon the CON method regarding all four statistics, BIAS,

SD, RMSE, and 95%, though the improvements in BIAS and 95% are modest, perhaps because

of the extrapolations from the outcome equation model are valid and ameliorate the weak overlap

issues. Second, focus on DGP2 in which the selection equation is misspecified. In this DGP, the

NEW method improves upon the CON method regarding BIAS, SD, and RMSE. In particular,

there are three-digit improvements in terms of SD, and, thus RMSE. Both of the two methods

deliver similar performance in terms of 95%. Third, focus on DGP3 in which the outcome equation

is misspecified. In this DGP, the NEW method exacerbates BIAS, but improves upon the CON

method in terms of SD, and RMSE.

Based on these observations, we recommend using the NEW method over the CON method,

especially in terms of estimation accuracy (RMSE), but also for improvements in coverage proba-

bility (95%). We also tried other sets of simulations with other values of h, K, and k to reach the

same conclusion.

6 Conclusion

In this paper, we propose doubly robust estimators that are also robust against weak covariate

overlap. Our estimators rely on trimming observations with extreme propensity scores and then

bias-correcting the trimmed estimator, so the target parameter of interest does not change with the

trimming exercise. We derive the large sample properties of our proposed estimator under generic

14



(A) df = 30 Degrees of Freedom

DGP1 DGP2 DGP3
CON NEW CON NEW CON NEW

BIAS 0.001 -0.000 0.555 0.006 -0.052 -0.099
SD 0.605 0.249 101.525 0.253 0.505 0.319
RMSE 0.605 0.249 101.527 0.253 0.507 0.334
95% 0.916 0.924 0.952 0.943 0.922 0.925

(B) df = 20 Degrees of Freedom

DGP1 DGP2 DGP3
CON NEW CON NEW CON NEW

BIAS -0.006 0.001 -0.087 0.000 -0.055 -0.101
SD 0.397 0.241 58.239 0.257 0.661 0.330
RMSE 0.397 0.241 58.239 0.257 0.664 0.345
95% 0.916 0.926 0.954 0.942 0.918 0.920

(C) df = 10 Degrees of Freedom

DGP1 DGP2 DGP3
CON NEW CON NEW CON NEW

BIAS -0.002 0.001 -3.317 -0.000 -0.070 -0.115
SD 0.556 0.234 268.827 0.257 0.973 0.330
RMSE 0.556 0.234 268.848 0.257 0.975 0.350
95% 0.910 0.922 0.958 0.947 0.915 0.923

Table 1: Simulation results for the conventional (CON) estimation method based on Sant’Anna
and Zhao (2020) which effectively sets h = 0.00 in our framework, and our proposed new (NEW)
estimation method with h = 0.01 and K = k = 3. Reported are the bias (BIAS), standard deviation
(SD), root mean square error (RMSE), and 95 percent coverage frequency (95%) for each of the
two estimators for each DGP based on 10,000 Monte Carlo iterations. The sample size is set to
n = 500. The df parameter is set to 30, 20, and 10 for Panels (A), (B), and (C), respectively.

assumptions. In particular, our results apply to various average treatment effect parameters under

different research designs, such as unconfoundedness, local treatment effects, and difference-in-

differences. We provide a “template” of how one can adapt our high-level conditions to specific

scenarios by studying in greater detail doubly robust difference-in-differences estimators that are

robust against weak overlap and presented Monte Carlo simulations that highlight the attractive

finite sample properties of our proposed estimators.
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A Discussions on the assumptions

A.1 Sieve Regression

The shifted orthonormal Legendre polynomial basis of degree K is given by

pK(a) =



1√
3(2a− 1)√

5(6a2 − 6a+ 1)√
7(20a3 − 30a2 + 12a− 1)√

9(70a4 − 140a3 + 90a2 − 20a+ 1)√
11(252a5 − 630a4 + 560a3 − 210a2 + 30a− 1)

...


.

Then m̂(κ)(·; γ) is given by

m̂(κ)(0; γ) = p
(κ)
K (0)′En[pK(A(γ))pK(A(γ))′]−1En[pK(A(γ))B(γ)].

For the case of the shifted orthonormal Legendre polynomial basis pK , Belloni, Chernozhukov,

Chetverikov, and Kato (2015) shows Assumption 4 holds as follows.

Lemma 1. Suppose for each l = 1, · · · , L and κ = 1, · · · , k, (i) the eigenvalues of E[pK(Al(γ0))pK(Al(γ0))
′]

are bounded above and away from zero, (ii)
√

logK(K + K5/2−s)∥p(κ)K (0)∥ = o(h1−κn1/2), (iii)

K1−s∥p(κ)K (0)∥ = o(h1−κ), and (iv) |r(κ)K,l(0)| = o(h1−κn−1/2), with s being the smoothness order of

function m, and r
(κ)
K,l(0) being the sieve approximation given by

r
(κ)
K,l(0) = m

(κ)
l (0; γ0) − p

(κ)
K (0)′E[pK(Al(γ0))pK(Al(γ0))

′]−1E[pK(Al(γ0)ml(Al(γ0); γ0))].

Then Assumption 4 holds.

A.2 Bound on the Influence Function ωl(h, γ0)

Lemma 2. Let l be any integer with 1 ≤ l ≤ L. Suppose E[Bl(γ0)
2], m

(κ)
l (0; γ0), and E[∥ϕ∥2] are

bounded. If nh4 → ∞, ∥ ∂
∂γ′αl(h, γ0)∥ = o(n1/4) and E[ψl,κ(γ0)

2] = o(n1/2), then Assumption 5

holds.

Proof. By the definition of ωl, we have

E[ωl(h, γ0)
2]1/2 ≤ h−1E[Bl(γ0)

2]1/2 +
k∑

κ=1

hκ−1

κ!
· |m(κ)

l (0; γ0)|

+

k∑
κ=1

hκ−1

κ!
· E[ψl,κ(γ0)

2]1/2 + ∥ ∂
∂γ
αl(h, γ0)∥E[∥ϕ∥2]1/2.
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By the assumption of this lemma, we have E[ωl(h, γ0)
2]1/2 = o(n1/4).

B Proofs

Proof of Theorem 1. Below, we are going to show that

αl(h, γ0) − αl(0, γ0) = o(n−1/2), (4)

α̂l(h, γ̂) − αl(h, γ0) = (En − E)[ωl(h)] + op(n
−1/2), (5)

α̂l(h, γ̂) − αl(0, γ0) = op(n
−1/4), and (6)

θ̂ − θ0 = (En − E)[φ] + op(n
−1/2). (7)

Equation (7) is the first statement (i) of the theorem.

Now, consider the second statement (ii) of the theorem. By Lyapunov’s central limit theorem

and the condition in the statement of the theorem that E[(φ−E[φ])2+δ]

nδ/2E[(φ−E[φ])2](2+δ)/2 = o(1), we have

(En − E)[φ]√
E[(φ− E[φ])2]/n

d→ N (0, 1).

Since E[φ2] is bounded away from zero, combining the above equation and Equation (7) yields

θ̂ − θ0√
E[(φ− E[φ])2]/n

=
(En − E)[φ]√
E[(φ− E[φ])2]/n

+ op(1)
d→ N (0, 1),

which completes the proof of this theorem.

First, we are going to show Equation (4). We can write αl(h, γ0) − αl(0, γ0) as

αl(h, γ0) − αl(0, γ0)

= − E

[
Bl(γ0)

Al(γ0)
1{|Al(γ0)| < h}

]
+

k∑
κ=1

E
[
Al(γ0)

κ−1
1{|Al(γ0)| < h}

]
κ!

m
(κ)
l (0; γ0)

= − E

[
ml(Al(γ0); γ0)

Al(γ0)
1{|Al(γ0)| < h}

]
+

k∑
κ=1

E
[
Al(γ0)

κ−1
1{|Al(γ0)| < h}

]
κ!

m
(κ)
l (0; γ0)

= −
E
[
Al(γ0)

k
∫ 1
0 (1 − t)km

(k+1)
l (tAl(γ0); γ0)dt1{|Al(γ0)| < h}

]
k!

, (8)

where the second equality follows from the law of iterated expectations of E[E[ · | Al(γ0)]], and

the last equality follows under Assumption 1 from the kth-order Taylor expansion of ml(Al(γ0); γ0)

around 0:

ml(Al(γ0); γ0) = ml(0; γ0) +

k∑
κ=1

Al(γ0)
κ

κ!
·m(κ)

l (0; γ0) +
Al(γ0)

k+1

k!

∫ 1

0
(1 − t)km

(k+1)
l (tAl(γ0); γ0)dt,
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when Al(γ0) is in a neighborhood of 0. By Assumptions 1 and 7, Equation (8) yields

αl(h, γ0) − αl(0, γ0) = O(hkE[1{0 < Al(γ0) < h}]) = o(n−1/2).

This completes a proof of Equation (4).

Second, we are going to show Equation (5). By Assumption 6, we have

α̂l(h, γ̂) − αl(h, γ0) = α̂l(h, γ0) − αl(h, γ0) + αl(h, γ̂) − αl(h, γ0) + op(n
−1/2).

By Assumptions 3, 4, and 7, we in turn have

α̂l(h, γ̂) − αl(h, γ0) = α̂l(h, γ0) − αl(h, γ0) +
∂

∂γ′
αl(h, γ)|γ=γ0(En − E)[ϕ] + op(n

−1/2).

= (En − E)[ωl(h)] + op(n
−1/2),

which is Equation (5).

Third, we are going to show Equation (6). By Equations (4) and (5), we have

α̂l(h, γ̂) − αl(0, γ0) = (En − E)[ωl(h)] + op(n
−1/2).

Since (En − E)[ωl(h)] = op(n
−1/4) holds under Assumption 5, we have α̂l(h, γ̂) − αl(0, γ0) =

op(n
−1/4).

Last, we are going to show Equation (7). By the first-order Taylor expansion of Λ around

(α1(0, γ0), . . . , αL(0, γ0)) under Assumption 2 , we can write

θ̂ − θ0 = Λ (α̂1(0, γ̂), . . . , α̂L(0, γ̂)) − Λ (α1(0, γ0), . . . , αL(0, γ0))

=

L∑
l=1

Λl(α1(0, γ0), . . . , αL(0, γ0)) (α̂l(h, γ̂) − αl(0, γ0)) +Op

(
L∑
l=1

|α̂l(0, γ̂) − αl(0, γ0)|2
)
.

By (6), we have |α̂l(0, γ̂) − αl(0, γ0)|2 = op(n
−1/2). Therefore, Equation (7) holds.

This completes a proof of the theorem.

Proof of Proposition 1. First, we are going to show Assumption 1. Note that

E[(1 −D)((Y1 − Y0) − ν(X; γ0))|X] = (1 − E[D|X])(E[Y1 − Y0|D = 0, X] − ν(X; γ0)). (9)

By the law of iterated expectations of E[E[ · | X] | P (X; γ0)], therefore, we can write

m2(t; γ0) = (1 − t)E[(1 − E[D|X])(E[Y1 − Y0|D = 0, X] − ν(X; γ0))|P (X; γ0) = 1 − t],

which is (k + 1)-times continuously differentiable by condition (iii), showing Assumption 1 (iii).

Condition (i) implies m2(0; γ0) = 0, showing Assumption 1 (i).
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Next, we are going to show Assumption 2. Note that

Λ(a1, a2, a3) =
a1 − a2
a3

.

This function Λ is infinitely differentiable provided a3 ̸= 0. Condition (i) implies α3(0, γ0) = E[D] ̸=
0. Thus, Assumption 2 is satisfied.

Proof of Proposition 2. The expression

m2(t; γ0) = (1 − t)E[(1 − E[D|X])(E[Y1 − Y0|D = 0, X] − ν(X; γ0))|P (X; γ0) = 1 − t],

for m2(t; γ0), is derived in the proof of Proposition 1.

Since everyone is untreated at the first time period, Assumption 8 implies

E[Y1(0)|D = 1, X] = E[Y0|D = 1, X] + E[Y1 − Y0|D = 0, X].

Therefore, we have

E[Y1(1) − Y1(0) | D = 1] = E[E[Y1(1) − Y1(0) | X,D = 1] | D = 1]

= E[E[Y1 | X,D = 1] − E[Y0|D = 1, X] − E[Y1 − Y0|D = 0, X] | D = 1]

= E

[
E[D | X]

E[D]
(E[Y1 − Y0|D = 1, X] − E[Y1 − Y0|D = 0, X])

]
=
E[D(Y1 − Y0 − E[Y1 − Y0|D = 0, X])]

E[D]
, (10)

where the last equality uses the law of iterated expectations of E[E[ · | X]]. By (8), we have

α2(h, γ0) − α2(0, γ0)

= −
E
[
1{|1 − P (X; γ0)| < h}(1 − P (X; γ0))

k
∫ 1
0 (1 − t)km

(k+1)
2 (t(1 − P (X; γ0)); γ0)dt

]
k!

. (11)

By the law of iterated expectations of E[E[ · | X]] and rearranging the terms, we have

θh =
E[D(Y1 − Y0 − E[Y1 − Y0|D = 0, X])]

E[D]

+
E[D(E[Y1 − Y0|D = 0, X] − ν(X; γ0))] − α2(0, γ0)

E[D]

− α2(h, γ0) − α2(0, γ0)

E[D]

= E[Y1(1) − Y1(0) | D = 1]

+ E

[
1

E[D](1 − P (X; γ0))
(E[D | X] − P (X; γ0))(E[Y1 − Y0|D = 0, X] − ν(X; γ0))

]
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+
1

E[D]k!
E

[
1{|1 − P (X; γ0)| < h}(1 − P (X; γ0))

k

∫ 1

0
(1 − t)km

(k+1)
2 (t(1 − P (X; γ0)); γ0)dt

]
,

where the last equality follows by (10) for the first term, (9) for the second term, and (11) for the

third term.
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