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This supplemental appendix contains auxiliary lemmas, proofs of the main theorems, and additional
results presented in the main text.

Notation: Hereafter, we use the abbreviations CLT, CMT, LIE, and LLN to represent the central
limit theorem, continuous mapping theorem, law of iterated expectations, and law of large numbers,
respectively. Let fx(z) = fx,|x,(%c|za) - P(Xqg =mq), N,y = {1,2,...,n}, and 1(d,t) = 1{d = 1,t =
0} +2-1{d =0,t =1} +3-1{d = 0,t = 0}. The notation a,, < b, implies that a,, < cb,, for some
positive constant ¢ when n is sufficiently large. The symbol a,, ~ b,, denotes that a, /b, — 1 as n — 0.
We define f € La(U) to indicate that Su f?du is finite, and let the Lo- and sup-norm of f to denote
I fllz, and [|f]|,,, respectively. Denote the ATT by 7, i.e.,

ATT =7 =E[Y;(1)|[D=1,T =1 -E[Y; (0)|D = 1,T = 1].

A Proofs for main results in the text

Let
Tor = ]E[Y|D =1,T = 1] ~E[m1’0(X) +m0,1(X) *moyo(X”D = 1,T = 1],

where mg(z) = E[Y|D =d, T =t,X = x|, and
Tipw = E [(le(D,T) — ’LUL()(D,T,X) — w(),l(D,T,X) + ’LU()Q(D,T,X)) Y] ,

where, for (d,t) e S_,

1D =d,T=t}p(1,1,X) /. [1{D=d,T=t}p(1,1,X)
wae(D: T, X) = (4,7, X) / E[ P(d,7,X) ] ’

and p(d,t,x) =P (D =d,T = t|X = x) is a so-called generalized propensity score.
Lemma A.1 Under Assumptions 1 and 2, it follows that 75, = Tjp = 7.

Proof of Lemma A.1:
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Outcome regression estimand: Using mq(-) = E[Y;(d)|D =d, T =t, X = -], (d,t) € S_, we get

Tor =E[Y3(1 )|D —1,T = 1]—IE[IE[Y(1)|D= 1,T=0,X =2]|D=1,T = 1]

+ (= Y (0)|D=0,T=t,X =2]|D=1,T = 1]

te{0,1}
=E[7 ()ID=1T=1]—E[E[Y(0)!D=1T=0X=x]ypz1,:r:1]
+ Z [Y;(0)]D=0,T=t,X =2]|D=1,T =1]

te{0,1}

ZE[Yl(l) - YI(O)’D =1,T= 1] =T

where the second equality follows from Assumptions 2(ii) and the third holds under Assumptions 2(i).

Propensity score estimand: Let p(1,1) = P(D = 1,7 = 1). Under the overlapping conditions
in Assumption 2(iii), wa(d',t', x) are well defined for (d,t) € S_, (d’,t') € {0,1}?, and z € X almost
everywhere. Additionally,

E[wa,(D, T, X)V] = E [ p(1,1, X)Y Ias /E [1{1) =d,T =t}p(1, 1,X)”

p(d,t, X) p(d,t, X)

-E|E [E[Y|D =d,T=1tX] dIitX ‘X] 1(11771);)]

& |EyiD =d7T=t’X]’m]

—E[E[Y|D =d,T=tX]|D=1,T=1]
= E[ma(X)|D =1,T = 1],

for (d,t) € S_. The second line follows by the LIE, the third equality is by the definition of propensity
scores, and the next to last line is by Bayes’ Law. Next, from E[w;(D,T)Y] = E[Y|D = 1,T = 1]

and the same arguments for the OR estimand, we conclude that 7, = 7. |

Proof of Theorem 1:
We follow the steps in Hahn (1998) for the derivation of the efficient influence function. Let
flyld,t,z) = f(y|D =d, T =t,X = z).

Step 1: characterize the tangent space of the statistical model. The observed likelihood is given as

Fly,d,t,x) =fyl1, 1, 2)" f(y|1,0,2) 070 f(y]0,1,2) 1D £(y]0,0, z) =D
p(1,1,2)%p(1,0, ) Dp(0,1,2) 1= Dp(0,0, 2) LD . f(z).

Consider the regular sub-model parameterized by 8 > 0, with the true model indexed by 8y = 0,

foly, d,t,x) =foly|1, 1,2)% fa(y[1,0,2)7078 fo(y]0, 1, 2) =Dt £y (y]0, 0, 2) 1 =DI=
po(1,1,2)%py(1,0,2) 23D pg(0, 1, 2) =Dty (0, 0, ) 1-DAY)
- fo(x).

The score function of this sub-model is given by

Se(y,d»t@) :dt‘g@(y’]-v 1’1:) + d(]' - t)Sg(y|1,0,$) + (]‘ - d)tse(ywa ]-a .TE) + (]- - d)(]- - t)Sg(y‘0,0,I‘)

p@(la 1775) d(l . t)pe(lvovx) ( . d) ]59(0, 1>$) (1 . d)(l . t)pe(ovovx)

+ dt B
pe(l,l,l‘) pg(l,o,l‘) p9(071>$) pg(0,0,SE)
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+ t9($),

where sg(yld, t,) = dlogfo(yld,t,)/29, pold,t,x) — po(d,,)/29, and to(x) = dlogfo(x)/d9 for
(d,t) € S. For notational simplicity, we suppress subscripts when 6 = 6.
Now, the tangent space of this model is characterized by
T :{dtSll(y,l') + d(l - t>810(y7 $) + (1 - d)ts()l(yvx) + (1 - d)<1 - t)S()()(y,.%')
+ dtp11(x) + d(1 — t)pro(x) + (1 — d)tpor(z) + (1 — d)(1 — t)poo(z) + s(z)},

for any functions {sq(-,-), pat(-)}(a1)es, and s(-) such that, for (d,t) € S

Sat(+, ) € Lo(Y ® X), with fsdt(y,x)f(md, t,x)dy =0, Yz e X, (A1)
par() € Lo(X), with ) f pat(x =0, (A.2)
(d,t)eS
and
s(-) € La(X), with f s(@)f(z)dz — 0. (A3)

In Step 2, we show that the target parameter associated with the parametric sub-model is path-wise
differentiable, as defined in Newey (1990).

From Lemma A, we know the ATT can be identified by
Dapes DE[E[Y|D =d, T =t,X]|D =1,T = 1] under Assumptions 1 and 2. For the pa-
rameterized sub-model, we define

() = 832 L 2)yfoIL, 1, 2) fow)dydz = § {po(1, 1, 2)yfo(I1, 0, 2) fo ) dydz)
§po(L,1,2) fo(x)da
~ (§8pe(1, 1, 2)yfo(y|0, 1, 2) fo(x)dydx — § §pa(L, 1, 2)y fo(y|0, 0, ) fo(z)dydz)
Sp9(1,1,$)f9(:6)d$ .

Note that the derivative of 7(6) with respect to 6, evaluated at 6 = 0, is given by

(A4)

dr(0)] e Sup(L 1 @)s(yld, t, @) f(yld, ¢, ) f (2) dyda
df 920_(d§3( Y p(L,1)
+ S(T(x) B )]5(1, 1,1‘)f(£6)d1‘
p(1,1)
N §(r(x) = 7)p(1, 1, 2)t(x) f (x)dx
p(1,1)

For any w = (y,d,t,x) € W, define

di(y —mua(2)  p(Llx) | d(l—t)(y —mup(x))
Frlw) === 1) ‘*MLU{‘ p(L,0, )
_G—W@—mm@ﬂ+ﬂ—®ﬂ—my7mdﬁ}
p(O,l,x) 0 0 CL‘)

i 2 0 () = [ maatserae).

(d,t)eS

It can be readily verified that dT(e)

‘9 .= E[F;(W)so(Y,D, T, X)], thereby showing 7(0) is path-wise



differentiable.
In Step 3, we show that F.(W) is the efficient influence function for 7, which we will accomplish

by invoking Theorem 3.1 in Newey (1990). To apply this theorem, we need to verify that F(-) € T.

By setting
y —mi(x)
sll(ya IE) = p(l’lll) )
(z) =p(1,1)7" (=DM (mag(z) — | mae(2)f(x)de ),
p11 p (d%]es ( d L{ d )

d+tp(1v 1? :L')(y - md,t(x))

sat(y,x) = (—1) p(d,t,z)p(1,1)

pat(x),s(z) =0,

for (d,t) € S_, it is straightforward to show that (A.1)-(A.3) hold, which leads to the desired result.
Finally, since p(1,1) = E [Idytp(l, 1,X)p(d,t,X)*1], for (d,t) € S, direct manipulation yields that
F.(W) = neg(W). Now, we take the expectation of n%;(W) and the semi-parametric efficiency bound

follows by standard manipulation. This completes the proof. |
Proof of Proposition 1: The proof follows directly from the LIE as displayed in the main text. ]

Proof of Proposition 2:
It follows by Theorem 1 that

o 1 o Lyep(L, 1, X)?
(d,t)eS—
_ 1 2
- E[DT]2 E[DT(T(X) - 7—) ]
+E [ wi (D, DY —mia(X)>+ ) wae(D, T, X,p)*(Y — mg(X))?
(d,t)eS—
= Vl,dr + ‘/Q,dm

where the second equality follows from direct manipulations and the fact that

E[DT - (Y —m11(X)) - (mae(X) — E[mg(X)|D =1,T = 1])]
= E[E[p(1,1,X) - (m1,1(X) —m11(X)) - (mat(X) — E[mg(X)|D = 1,T = 1])|X]] = 0,

for (d,t) € S.
Meanwhile, from Part (b) of Proposition 1 in Sant’Anna and Zhao (2020), we have the following
decomposition,

E[nSZ(W)2] = Vl,sz + VQ,SZ7
where Vi 5. = E[D(7(X) — 7)?] /p*, and

1 _[DT ,
VQ,sz Eﬁ E |:>\2(Y - m171<X)) +
(1-D)T'p(X)?

(1 —p(X))2A?

A =m0

(1-D)(1 —T)p(X)*
(1=p(X))?(1 = A)?

(Y — m(),l(X))Q + (Y — m070(X))2} . (A5)
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Under Assumption 3, we have that E[I{T = t}g(X)| = P (T =1t)E[g(X)], E[l4:Yg(X)] =
P(T =t)E[1{D = d}Y;9(X)], and p(d,t,x) = (1{t = 1}X + 1{t = 0}(1 — N\))p(d,z). It then fol-
lows that

1
Viar = )\TJQ E[D(7(X) — 7)2]7 (A.6)
and therefore,
1-—A
Vvl,dr - ‘/1782 = pgi)\ E[D(T(X) - 7_)2]‘ (A7)

We now focus on V3 g,. Observe that

1 D(1—T)\p(X)?
A2p2 (1—=X)2p(X)?

1 —D)TXp(X 1—D)(1—T)\2p(X)?
e[ 0~ moa (00 + & [ U G DR 3 - moot?)}
(

‘/er

{E[DT(Yl (X)) E [ (¥ - ml,o<X>>2]

L ba-1)
1- 2
(1 - D)(1 - T)p(X)?
(1= p(X)2(1 - )2

(Y —myo(X))>?

:E{?\Z(Y min X))

(1— D)Tp(X)*

A= pye T mealX)

(Y — mO,O(X))Q] =Vos, (A8)

where the first equality follows because p(d,t,z) = P(D = d, X = z) - P(T = t) under Assumption 3.
The desired result then follows from (A.7) and (A.8). [ |

Proof of Lemma 3.1:
Let ¢4t (W3 w,m) = 1{dt = 1}w11(D, T)Y +1{dt # 1} {wa (D, T, X)(Y —mat(X)) + w1,1(D, T)ma:(X)},
and 74, = Z(d,t)eS(_l)dthwd,t(W; w, m). Using 74, we decompose Ty, as

?dr - T = (?dr - 7:dr) + (%dr - 7—) . (A9)

Note first that the second term, 74 — 7, has 4.i.d. centered summands with bounded variance;
thus, it is Op(nfl/ 2). Now we investigate the behavior of 7. — 74, for which we make the following
decomposition

¢d,t(W§ w,m) — 1/)d,t(W; w,m) =(Y — md,t(X)) (Wg — wd,t) (W) + md7t(X) (@1,1 - wl,l) (W)

+ (w11 — wae) (W) (Mar — maz) (X)
+{(W1,1 —w1,1) (W) = (War — wae) (W)} (Mas —may) (X)
=AY (W) + APE(W) + ALF (W),

for (d,t) € S. Here, we use the unifying notation wg (W) to denote wq+(D, T, X) when (d,t) € S_ and
w1,1(D,T) otherwise. We proceed by establishing convergence rates for each component in the above
decomposition.

We first analyze Agy’tl. A second-order Taylor expansion of ¢ 1(W;w, m) around E[DT] yields
that

E, |ALT ()] = En [Y <E£§T] B ESDTT] >]
E, [DTY]

= oz (EnlDT] — D)) + Oy((EA[DT] - E[DT]|?)



- ‘% (Eq[DT] ~ E[DT]) + 0p(n~"/?). (A.10)

When (d,t) € S_, similar analysis reveals that

En [ AL W) | = Ea [(Y = maa(X) (@as = wae) (W) +mae(X) (@11 = wi) (W)]
=En [(Y — mgs(X)) (Dar — way) (W)]
_ En [g%gjg(m] (E,[DT] - E[DT]) + Op(|E.[DT] — E[DT]?)
= [ﬁgﬁy” (En[DT] = E[DT]) + 0p(n~"7%), (A1)

where the last equation holds under Assumption 4.2(i).
Next, note that Aapf (-) = 0, and when (d,t) € S_, we deduce from Assumption 4.2(ii) that

B, [AL7 W) | = En [(w1,0 = wa) (W) (s — mag) (X)] = op(n "), (A.12)

Analogously, Alff (+) is identically zero, and therefore, we only need to focus the other three cases,

for which we have
E, | A7 7))

=E, [((W011 —w1,1) (W) — (Wgs — waz) (W)) (Mas —may) (X)]

_E, [E[g§]2 (P — ma) <X>] (B, [DT] — E[DTY) + Oy([E.[DT] ~ B[DT]?)  (A13)
— Ep [(@a; — wae) (W) - (Mar —maye) (X)], (A.14)

where the second equality follows from a second-order Taylor expansion of E,[DT] around E[DT].
Taking the fact that E[DT] > 0 under Assumption 2(iii) and that m,; is uniformly convergent to

Mg, We obtain

Combining this result with E,[DT| — E[DT] = O, (n_l/Q), we conclude that (A.13) is o, (n_l/Q) .
Next, we study E, [(Wgs — wae) (W) - (Mar —may) (X)]. Let

(g — may) <X>\] < s — mall, = 0p(1).

Id,tﬁ(la 17 X)
p(1,1)p(d,t, X)’

w}:l,t(W) - (A.15)

based on which, we have the following decomposition

En | (wh, = wae) (W) - (o = mae) (X)] + B | (Bae = wh, ) (W) - (rae = mae) (X)| = Al + AL,
(A.16)

We consider the Lo-norm first. Under Assumption 4.2(iii),

Al =B (why = wae) W) - (g = mas) (X)] +0p (n72).

=Al

w,m




Since a/b— a/b = (& —a)/b— a(b—b)/b*> — (a — a)(b— b)/(bb) + a(b — b)2/(bb?), we have

Aym =E [Jm (p(1,1,X) —p(1,1, X))]
~ | ) (G, X) - (ot X))
B | (UL LX) = (1,1, 50) (0,1, X) 3l 1. )|
+El@i@?%?§%@@uX) p(d,t, X)) }

_All +A12 +A13 +A14

w,m?

where 64:(W) = p(1,1) " gy (Mgt — maz) (X).

For A}U’}m,
— min\ —1L o -
| Agim| <p(L D™ (") E[(BQ,1,X) = p(1,1, X)) (fas — ma)(X)]]
< O(D : Hﬁ(lv 17 ) —p(l, 17 ')HLQ ’ Hﬁld,t - md,t”L2
=0y (Tnsn),
where pmm = infyex [p(d, t, z)|. The first inequality holds under Assumption 2(iii), and the second one

is due to the Cauchy-Schwarz inequality.

Likewise,

-2
!M%Kmﬂwwwmmm&gmm@ﬂ E[|(p(d, t, X) = p(d, t, X)) (g, — ma.0) (X)]]
€ &

<0Q) - p(d,t,-) —p(d,t, )1, - [Mar — maxl,
=Op (rnsn) .

To analyze the convergence of the remaining two terms, we can use a similar approach to the one
used for the previous two terms. However, to complete the analysis, we need to show that p(d, ¢, x) is
uniformly bounded away from 0 across X', with high probability. Due to the uniform convergence, for
any given € € (0,1/2), there is N, > 0 such that sup,cy [p(d, t,x) — p(d, t,z)| < pg””/Q with probability

at least 1 — ¢, whenever n > N,. Thus, when n is sufficiently large, we have

xe zeX

with probability 1 — €, leading to our desired claim.

The sup-norm case can be handled analogously. Different from the Ls-norm, it is now possible to
work directly with the empirical measure, leading to the conclusion that A}ﬂn = Oy (rpsy), without
the necessity of imposing Assumption 4.2(iii).

Next,we examine the estimation effect of the normalizing weight as given in A%ﬂn Let p(1,1) =

E, [Id,t};%;&g(())]- Again, we focus on Lo-norm first. By definition,

A2 = —p(1, )7 By [l (W)« (s —may) (X) |- (B(11) = p(1,1))

. _

AL



We can further decompose Aw’ v into

AT =AT, (A.17)
+ (B = E) [wa, (W) - (Mg —may) (X)] (A.18)
+ E[wa (W) - (Mg — maz) (X)]. (A.19)

=0y (1) + Op (TnSn) + 0p <n_1/2>

Under Assumptions 4.2(iii, iv), (A.17) and (A.18) are Oy (r,,5,) and op (n_l/z), respectively. Since
Pd.t(+) is uniformly bounded over X, (A.19) is Oy, (r,,) by the Cauchy-Schwartz inequality.

Analogously, we have

PLY) — 511 ~(E, - B) [ 1y (B - L0 (A20)
+ (En — E) [Idt Zii{;] (A.21)
1

LX) p(1,1,X)
o8| (B a0 (A.22)
=0y (sn) + Oy (n_1/2) +0p (n_1/2> .

Under Assumption 4.2(v), (A.20) is op (n _1/2) . Since (A.21) is a centered i.i.d. summand, it is

O, (nfl/ ?). Arguing along the same line as for A}, ., we get (A.22) is Op(sy). Collecting these results,

wym
we conclude that both A%U?n and Aw,m are Op(1psSn).
Once again, analysis under the sup-norm rely directly on empirical measure, thus eliminating the
need for conditions on the empirical process. Further details are not provided here for brevity.
To finish the proof of this lemma, we gather the results in (A.9), (A.10), (A.11), (A.12), (A.14),

and (A.16), which leads to

) E,[DT] _
o _qnd+t X _ _ bn 1/2
Ty — T =E, . té)es( D" g (Wiw,m) —71 | +7 <1 E[DT] > + Op(rpsp) + 0p (n )

=E,[neg(W)] + Op(rnsn) + op <n71/2> )

Proof of Theorem 2:

We proceed by applying Lemma 3.1. As we are working with the sup-norm, we need to verify the first
two conditions in Assumption 4.2. Lemmas C.2 and C.3 provide the required verification for these
conditions. With the bandwidth rate conditions in Assumption 5.5 guaranteeing that the leading

remainder term is Op(7y,5,) = 0p (nfl/ 2), we can then derive the asymptotic normality directly from
the CLT. |

Proof of Theorem 3:

Proof of Part (a): We have already shown in Theorem 2 that 74 — 7 = Ep[nea(W)] + 0, (n™1/2).
Following a similar line of reasoning, one can easily demonstrate that 7s, —7 = E,[ns.(W)]+o0p (nfl/ 2),
under Assumptions 1, 2, 5, Condition (i), and the null hypothesis, Hy. Now, by the CLT, we have

Vi (Far = 72) 5 N (0| (rea(W) = mes ()7 ).
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It remains to show that

v, 2V, (A.23)

and
V = ps, > 0. (A.24)

First, it is implied from the proof of Theorem 2 that s s(w) 2> neg(w), uniformly in we W. In a
similar vein, 7. (w) 2 1. (w) uniformly over W, under Hy. Combining these two results, (A.23) then
follows by the CMT and the weak LLN.

From Proposition 1 in Sant’Anna and Zhao (2020), we know that 7ns,(-) is the efficient influence
function for all regular estimators of 75,, which is equal to 7 under Hy. Moreover, since both
Tar and Ty, are consistent for 7g, under Hy, it follows from Lemma 2.1 in Hausman (1978) that
E[nea(W)ns:(W)] = E[ns:(W)?]. Hence, E [(nefr(W) - nsz(W))2] = E[nea(W)?*] - E[ns:(W)?].
Given this result, (A.24) now follows by Proposition 2 and the condition that Var [7(X)|D = 1] > 0.

Proof of Part (b): We proceed by establishing: (i) 7y, — Fgp - Tz — 7ar # 0; (ii) Vi, BV < o0,
under Hj.

Under Assumption 5, and Condition (i) of the theorem, p(d,t,z) % p(d,t,x) and M () LN
mg,¢(x), uniformly in z, for (d,t) € S. Now, applying the LLN, we get 74, L ory and 7, B 7., Result
(i) then follows from the CMT. Next, we deduce from the uniform consistency of p and m, the CMT,
and LLN, that (A.23) holds under H;. Furthermore, Assumptions 2(iii) and 5.3 ensure that both 7)s,
and 7)g, are uniformly bounded, which leads to V' < 0. This concludes the proof of part (b). |

B Results on asymptotic linear expansion of local polynomial esti-
mators

In the next subsection, we provide some well-known results about the U-statistics, based on which,

we derive uniform stochastic expansions of local polynomial estimators in Section B.2.

B.1 Rates of convergence: U-Statistic

Let {X;}? ; be a random sample from an unknown distribution. Given a real-valued function

h(z1,...,z,) that possibly depends on the sample size, define

(n—r) N (X X,

seS(n,r)

U, =

n!

as a r-th order U-statistic with kernel h, where the summation is over S(n, ), the set of permutation
(81, ..., s7) of size r of the set {1,...,n}. Since a given function h can always be replaced by a symmetric
one, we restrict attention to symmetric kernels in what follows. That is, U, can be equivalently

represented as
-1
n
U, = ( ) D (X, X)),
r seC(n,r)

where C(n,r) is the set of combinations (si, ..., s,) of size r of the set {1,...,n}.



For 1 < s < r, define the quantities hys and o4 by
h(a1, .., xs) = E[h(z1, ..., 25, Xot1, ., Xp)]  and oy = Var [hs(X1, ..., X5)]Y2.
We call U,, with kernel h is s*’th order degenerate if o5 = 0 for all s < s*.

Lemma B.1 Let h: X" — R be a permutation-symmetric, measurable function of r arguments such

that E[h(X1,..., X;)] =0, and o, < 00, then U,, = O, (Zr o )

s=1 n5/2

Os

5. The lemma
n

Note that if the U-statistic is s*-th order degenerate, its convergence rate is Y. _ 41

follows directly from Markov’s inequality, and therefore, we omit the proof.

B.2 Asymptotic linear expansion of local polynomial estimators

In this section, we provide some results on the asymptotic expansion of the local polynomial
estimators.

For (d,t) € S_, we define the summand of the (local) score function as

exp(X(we) Va,t)
L+ Z(d',t')es, eXP(X(l‘c)/’Yd',t')

"Z(d,t(Wv z, 7) = (Id,t - ) H(h)X(xc)f{ps(Xv €, ha )‘)7

where H(h) is a diagonal matrix with the main diagonal entries being h=I¥l, for lexicographic-ordered
k, with 0 < |k| < p. Here, we have dropped the subscript of X to ease notational burden. We
let ¢ ({Sat}(anes.) = (51,0:501,500)"- The local Fisher information matrix evaluated at x can be

approximated as
I(z) = diag(p-(z)) — p-(z)p_(2), (B.1)
where p_(z) = (p(1,0,2),p(0,1,2),p(0,0,z)). In addition, we define the local hessian as
SP5 (z) = E[Z(X) ® H(h)X(xe)X (ze) H(h) K ps(X; 2, b, V)]

With these notations in hand, we can introduce several quantities associated with the linear ex-

pansion of the PS estimator. For each (d,t) € S_,

Agi(W,z) = (€34 ® en,1) P (2) A (W, 2, 7% (2)),
Gﬁl}?:) (VV’ [l?) = eé,L(d,t)I(x)A— (Wa .T}),

where A_(W,z,7) = L—({Ad,t(W,ﬂ?,7)}(d,t)es_), and A_(W,z) = ¢ ({Aat(W,2)}(apes_). For the

treated group in t = 1, let Gg{)ls)(x) = =4 )es. Ggpts)(x). Additionally, we define, for a given
observation X
BY(X)) =BG (Wi, X)) |, (B.2)
S 1 S S
Sv(lz,)d,)t(Xj) = > Gg,?t)(wiv Xj) — E[Gift)(Wi, X)X,

i#]

pld,t, X;) — p(d, t, X;) — B¥3),(X;) — s%,(X;).

R(pS) (XJ) n,d,t n,d,t

n,d,t

The three quantities represent the bias, the first-order stochastic part, and the remaining terms derived

from the decomposition of the PS estimator, respectively.
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Focusing on the OR model, for (d,t) € S, the leave-one-out local polynomial estimator has a

closed-form solution given by

A (X 2 e, 150, (X)X (X5) H (ba) L YiKor (Xi5 Xj, bag, Da)
z;éj
where E%(Xj) = ﬁ Z#j Id,t,iH<bd,t)Xi(xC>Xi(xC)/H(bd,t)I?OT(Xi; X bag, Vaz)-
Analogous to the PS case, we use Bfﬁ;?t, Sr(;::l,)t’ and Rfﬁgt to represent the bias, the first-order
stochastic and the remainder terms, respectively. For a given observation X, these quantities are

specified as

Bff,’?xX«) — E[GY7 (Wi, X;) 1],

S(X; —ZGndth,X —E[GY) (Wi, X))1X;],
1]
R (X)) = ha(X;) — ma(X;) — BEL(X)) — 890 (X)),

where
G (Wi, X;) = el 1 S50(X5) ™ H (ba,) X (X)) Ta,i€5 (X)) Kor (Xi3 X5, bags Va),
7t(x) = E[Lgy i H (bay) X (we) X, () H(bd,t)Kor(X;Xj,bd,t,ﬁd,t)],

d,t(m) = Id,t(Y - X(m)'ﬂit).

Lemma B.2 Suppose Assumptions 1, 2, and 5 are satisfied. In addition, Assumptions 5.2(ii) and
5.5(iv)-(vii) hold for (d,t) = (1,1). Then, for (d,t) € S,

sup Bépflt ‘ = Op(hP™ + X + M), (B.3)
jeN,
sup Sq(lp;)t ])‘ =0, ( logn/ (nh“6)> ) (B.4)
JeN,

(ps pptl 2
sup [RES,(X)| = 0p (( (11 4 0 + A + Vlogn/ (k7)) ). (B.5)
JeN,,

(07”) q+1
sup | B, 7 ( j)‘ = Op(bg; +Vato+Vatu),
JjeN,
sup |57, (X)| = Oy (y/logn/ (nbas ™))
JjeN,

2

sup Rfffl?t(Xj)‘ =0p ((bﬁil + 940+ Vatu +1/logn/ (nbd,t”c)) ) :
JENR

Before stating the proof, we need to introduce some additional notations. Since kernel functions K
and L are supported on [—1,1]"¢, the effective support of K((- —z.)/h) is Sy, p = {z: zc + hz € X'} n
[—1,1]%c. When S, = [—1,1]", x is an interior point, otherwise x lies close to the boundary. For
any measurable set S < [—1,1]", let 14(S) = {4 u®K (u)du and s4(S) = {5 u*K?(u)du. Now we let
the Ny x Ny matrices Qg(x.) and Ty(x.), and the Ny x ny matrix My ;(z.) be defined as

QUO(Spn) o QOIS )
QU (Sen) - QUI(Ssn)

11



TON(S, p) o TON(Sy )

To(ze) = 7
TEN(S,, ) ... TED(S,, )
Q(O’k)(sxcyh)
M&k(xc) = )
Q(£7k)(8xcyh)

where Qéi’j )(S) and Tg’j )(S) are n; X n; matrices with their respective (I,m)-th element given by
Vry ()4 (m) (S) and 5¢r. 1y 47, (m) (S). When z is a boundary point, these quantities are not invariant to

x, and thus, capture the boundary effects.

Proof of Lemma B.2:

Given that our data is a random sample, it is straightforward to show the “leave-one-out” estimators

considered in the lemma is asymptotically equivalent to the usual “leave-in” estimators. See Rothe and

Firpo (2019) for a detailed exposition. We therefore focus on the “leave-in” versions in what follows.
We prove the results for PS only. The case for OR follows by generalizing Proposition 7 of Fan

and Guerre (2016) to the case where discrete covariates are accommodated. This generalization can

be achieved by employing the techniques similar to those presented here.
For (B.3), we have

sup B3 )| = sup e 0 Z(a) (13 @ el )9 (@) BLA-(W. 29" 2]

reX
<sup ¢ Z@)|| - sup | (15 @ ey, )57 (2) 7| - sup [ BLA- (W, 2,7* ()]
zeX zeX rzeX

By definition, sup,cy || Z(x)|| = O(1). Standard change of variable gives
¥ (x) = I(z) @ Qp(ze) fx (7) + O (h + Ao + Au) - (B.7)

Since infzex Amin (Z(2)®Qp(xc)) = infrex Amin(Z(2))-infs cx, Amin(Qp(zc)) > 0 and infyex fx(z) >0
under Assumptions 2(iii), 5.6, and 5.1, we get
sup 1 Z(2) ™ ® Qplze) ™t - fx(2)7H]| = O(1), (B.8)

and thus, sup,cy HZps(a:)_lH = O(1). Now, from Lemma B.3, we conclude that sup,cy HBépj)t(x)H =
O (PP + X0 4+ X)) -

Having just demonstrated that 3P*(z)~! is uniformly bounded over X', we can now apply Lemma
B.3 and the CMT to deduce (B.4).

To establish (B.5), the proof proceed through three steps. First, we demonstrate the existence of
a global maximizer for the local log-likelihood function defined in (3.6). Subsequently, we obtain the
uniform asymptotic linear expansion for the local maximum likelihood estimator. Finally, we apply

the delta method to verify that the remainder term exhibits the required rate.

Step 1: Define ¥ = (Is® H (k) ')y and 7*(-) = (I3 ® H(h)~)y*(-). Using the scaled parameters,

12



we rewrite the likelihood as

L0 (5 Z Z Iy H(h)X(c) Yt

z 1(dt)esS—

—log [ 1+ Y. exp (H(WX(2e) o) | Kps(Xiza, b, N). (B.9)
(d/ #)eS_

The gradient and hessian of £5°(¥;x) with respect to 4 are given by

2 H(Wi7$77)7

i=1

V5L (5

3\)—‘
S

AWy, V3L -

where

H(X,2,7) = T(Xe, @e,7) ® H(X, 2, h, ),

H(X,x,h,\) = H(h)X(x)X () H(h) Kps(X; 2, h, \),

I(Xer weyy) = diag(P—(Xe, e, 7)) — ¥ (Xe, 2, 1) ¥ (Xey 26, 7))
U (X,2,7) = t-({¥q:(X(2),7)}(d,p)es_ )

exp ('Y,
L+ Y ies. exp (2700

\I]d,t ('Ia 7) =

Next, we define the following two events

Ein(c) = {sup
zeX

for ¢ > 0 and k,, = y/logn/ (nhve) + hPT1 4+ X, + A,.

By Lemma B.3, we deduce that P (E1,(c1)) — 1, for any fixed ¢; > 0.

Now, standard change-of-variable analysis gives
E[H(X;2,h,A)] = Qp(e) fx(z) + O (h+ Ao + M)

Under Assumptions 5.1 and 5.6, infex fx(2) > 0 and inf, cx, Amin (Qp(xc)) > 0. As a result, there
exists cg > 0 such that inf ey Apin (E [H(X x,h,A\)]) = co, when n is sufficiently large. Coupled with
the fact that

sup
zeX

ZH (Xsi2, by \) — E[H(X;2,h )\)]H op( 1ogn/(nhvc)).

"o

which is a consequence of Lemma 5 from Fan and Guerre (2016), we deduce that P (Es,(c)) — 1, for
c < Co.

Next, we define a neighborhood of 5*(-),

L(0) = {7() : 170) =7 Ol < brn} -
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Theorem 1 in Tanabe and Sagae (1992) implies that

Lot Z(z,y,7(y) > nf, [T Yarlx®)va:)}anes.) ¢ - I (B.10)
(d,t)eS—
in the sense that their difference is positive definite. For any § > 0, if v € I'(d), Assumption 5.5(ii)
implies that |[v(-) —v*(-)|l,, = o(1). This further suggests that, when n is sufficiently large, the
right-hand side of (B.10) is bounded from below by ¢33, for some positive constant cs.

The analysis leading up to this point demonstrates that for for a given ¢; > 0, it is possible to
select n large enough such that P (E1,(c1)) > 1 —€/2, P(Ea,(c2)) > 1 —€/2, and (B.10) is satisfied.
Now, set 6 > 2cic; ‘ez . Then, for any () € T (d), i-e., [|(x) — *(2)|| = dokn, for all z € X, we
have sup,cy {£h’ (F(z); ) — LY (7*(x); 2)} < 0, with a probability of at least 1 — €. This is because

sup {£7° (y(x); x) — L7 (V" (2); )}

zeX
= sup {V3£5° (3 (2); 2)(7 — 7°(2)) — (3(2) = 3" (@)’ (- V35 L83 0)) (3() = 3° ()2}
< (Sup ! i A_(w;, x,v*(w))H - Clﬂn) d0kin
zeX || T i=1
<0,

where 47, dependent on z, lies between 7(x) and 7*(z). Since £5°(7; ) is continuous, a local maximum,
denoted by 7(z), exists within the compact set {J : |7 — 7*(z)|| < dokn}, for any x € X. Furthermore,
due to the concavity of £5°(-;x), ¥(z) maximizes £5°(-;x) over R3™ for any # € X. Hence, (-) is
the global maximizer of £5’(%(+);+) with a probability exceeding 1 — €. As € is arbitrary and dg is
V() =7 ()|, = Opltin).

Step 2: We proceed to derive the uniform asymptotic linear expansion of 4(-) — 7*(-). Expanding

LY (7; ) using a third-order Taylor series and rearranging the terms lead to

Y(x) -7 sz ~(Wi,z,v*(2)) + RV (X;),

RY(z) = — (3 (2) ™! = 27(x) %Zﬁ (Wi, z,7*(x)) = 35 (2) ™' Ca (),

Culw) = zn] Z Y (apla) = 75, (2)) H(h)X; (we) X (we) H(B) G () — 35 ()
2n

(@ es-
: IL(d,t),L(d’,t’)(XC,% e, 7) ® X (2 H(h) Kps(Xi3 2, b, M),

for an intermediate point 4 lying between 4(z) and v*(z), Xh°(:) = 2 3", H(W;,-,v*(+)), and

. o . (d 7t )
IL(dl,tl),L(dz,t2) =L <{IL(;1’§1)’L(d2’t2)}(d3,t3)68> ;

j:L((d;f:l))’L(d%h)(Xax677) = ]1{(d17t1) = (d27t2)}\pd1,t1 (X(‘/I;C)ﬂf”(ﬂ{(dbtl) = (d37t3)} - \Pds,ts(x(xC)77))

+ Z \I]del oy (X(ze), 7)‘11(1@2 ey (X(@e), V) (1{(de,, te,) = (d3, t3)} — Wit (X(2c),7))-
/1 ,ZQE{LQ},Kl?&eQ
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In view of (B.7) and (B.8), HEPS(-)_lH = O(1). Taking this into account, along with Lemma B.3,

we obtain

n

1
sup || = > A (Wi, z,7*) — E[A_(W,2,7*)] ' = Op ( logn/ (nh“C)) ,
zeX || TV i=1
sup ||[E[A_ (W, z,v*)]|| = O, (th + X + )\u) .
reX
Furthermore,
sup HEPS — ¥ (x -1 H
zeX

< sup ||Zg5(:c)||‘1 -sup || S5 (x) — 5P () | - sup |27 ()|~
reX relX xeX

—0,(1)-0, ( logn/ (nhvc)) -0(1)

=0, ( logn/ (nhUC)) .
where the first inequality is a result of the relationship A=! — B~! = —A71(A — B)B~! and the
Cauchy-Schwarz inequality. The next line is derived from (B.7) and (B.8), and arguments similar to

those employed in the proof of Lemma 5 in Fan and Guerre (2016).
By the triangular inequality and the Cauchy-Schwarz inequality,

SUPHC ;i Z Z H:.Za(d,t),L(d’,t’)(Xc,i,xca:Y(‘T))H

(d,t)eS— (d't")eS—

Jae(@) = Aao @) - [P () = 70 0 @)]| - 11H ()X () |- )ffps<Xi;z,h,A>\

<(dt)(£lr'l%))(€{01}xslle€({ 'L(d,t),b(d',t')(zc,wc,W(@)H'\Wd,t(fﬁ)—ﬁt(x)H (@) =g (@ H}
(B.11)
13 —_
a2 25 sup {[KE o) 1 (X7} (B.12)

When 4 converges uniformly to v*, as established in the first step,

Lyt )z 7 (@) | i (B.11)
is asymptotically bounded, uniformly in z,z € X, and for each (d,t),(d',t') € S_. In addition, we can
deduce from a standard change of variable argument that (B.12) is Op(1). Hence, it can be concluded
that sup,cy |[Cn(2)|| = Op (K2). As a result, we obtain sup,cy [|[R(z)| = Op (k2).

Step 3:  We mnote that p(d,t,z) — p(d,t,x) = VYglen,1,7(x)) — Vaslen,1,7*(z)) and
Vo Vailen, 1,7 (x)) = eéyb(di)l(:r). Utilizing the delta method in conjunction with the uniform
expansion obtained in Step 2 then establishes (B.5). This completes the proof of the lemma. ]

Lemma B.3 Suppose that the conditions of Lemma B.2 hold. Then

n

sup |1 30 AW, 29°(0)) — BLA (2 7*(9«"))]“ = 0, (Gogn/ h)'?), (B13)
xe =1
SEE HE — (W, z,v*(x ))]H =0 (WP + X+ A) (B.14)

Proof of Lemma B.3:

The proof of (B.13) proceeds along similar lines as in Lemma 5 of Fan and Guerre (2016). For any
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given vector k with 0 < |k| < p, define

A (W) = (Tae = Waa(K () 1) M (Ko = 2K (Xia, 1, 2).

~t Xc* c
T 0W,03) = (g = Do (Kl ) M = ke (57,

for (d,t) € S_, and let k,, = (logn/ (nh”C))1/2 . Assumption 5.5 implies that ,, — 0. Moreover, under
Assumptions 5.1, 5.2, and 5.4, we have that, for any € > 0, there exists §,, = n~"@ such that (i)

max | ALY Wi, " (@) = AL Wil @)] < ka3, (B.15)
B[ AL W,z 7*(@)] ~ B[ AL W0l 7" @))] | < hhne/3, (B.16)

for (d,t) € S— and for all z,2" € X such that x4 = 2, and ||z, — 2| < dy; (ii) there is a positive
integer J, = O (n"*), kp > 0, and a set {:cj}}]il < X, such that for all x € X, there exists a j satisfying
x € B(xj,0,) n X, and for all 2’ € B(z;,0,), 2/; = x4;. As a result, X = U}']il (B(zj,0n) N X).

Now, observe that, for (d,t) e S—

- LS AW (Wi 2,7 (2) —E[ﬁéﬁ)(vm,v*(@)]‘
=1

sup |—
xeX
< max |- Z 0 Wiy j 7 () = BLAG) (W, 5,7 ()] (B.7)
1N (k) * ~(k) "
+omax o su = > (Agy Wiz, y* () — Ay (Wi, @, 7" (2 B.18
JEN;i :peB(xwp)mX né( d’t( 7 (@) d,t( 37 ( ]))) ( )
+ max  sup ’E[Eg})(mx,'y*(x))]—E[ﬁgﬁ)(mxj,y*(azj))]‘. (B.19)

JENI, 2eB(24,60)nX

In view of (B.15), (B.18) is bounded from above by

AL Wiy ey () = AR (Wi, v ()| < ene3

max sup h=e
1€Nn,jeNy, xeB(xj,0n)NX

Meanwhile, since x4 = x4, whenever x € B (z;,6y,), (B.16) then implies that (B.19) < ky€/3.
To bound (B.17), we apply Bernstein’s inequality.! Since the support of K is bounded, we have
that ‘ﬁgkt)(VV, x,y* (x))‘ < C||K]|,, for a sufficiently large positive constant C. Additionally, standard

calculation gives
Var | Ag (W, 7 (@) | =El(Tar = p(d, £, (Xe, 2a))2H(R) X () X () H () K (X (20))*1{Xq = 2a}]
+o0(h™")
=h"UL(2)yd,0),u(d) Tp(Te) fx () + 0 (R7) .

Hence, Var [ﬁg?(VV, x, ’y*(w))] < Ch™"¢ under Assumption 5.4.

1 Let {X;}i—; be independent zero-mean random variables. Suppose |X;| < M almost surely, for ¢ € N,,. Then,
Bernstein’s inequality states that for all ¢ > 0,

= t2/2
v (Z di= t) s oxp (‘ SR+ Mt/3) '
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With these two results in hand, we have

1 3k Tk
= 2 A Wiy v (2) = ELAG) (W2, 7% ()]

> Kn€/3>

- ~(k ~(k
A (Wi, 2,7 () — E[AS) (W, 25, 7% (x5))]
=1

e2logn (€2 — Kp) logn
<2J, - < U
exp( C+C(elogn~n1h“6)1/2> P ( C )

> Hne/?))

where the first inequality is due to the Bonferoni inequality and the second is by Bernstein’s inequality.
The far right side goes to 0 when €2 > k. Hence, (B.17) < kn€/3.
Combining (B.17)-(B.19) gives

15 . ~ .
= A (Wi, (@) — E[AG) (W, ()]

This complete the proof for (B.13).
Next, we establish (B.14). Define I,(zq,2q) = 2,2 1{|Tos — 20| = 1} [ [1 IH{Toy = 20y}, and
Lui(zd, za) = Do Haus # Zus) [ 125 H{Tug = zug}. From a Taylor expansion of order p + 1, we

deduce that, uniformly in z € X,

E[Ag (W, 2,7 (x))]
1

D) >, E [I(X&wd)L(d,t>,b<dct'>g§’7§1)(Xcaxd)’l(p“)(ﬁc)ff (W)X () Kn (XM (2)) 1{Xg = zd}]
T (dt)eS—

YD NLia ) (b 6, w) = p(ds s (e, 7)) E | HODX () Kn (XD () 1 Xy = 2}

2q€Xg\rq J=05u

+ (s.0.)
hPtl (p+1)
:m Z I(x)L(d,t),L(d/,t’)Mp,P-i'l(':Uc)gdz’),t’ (z)fx(z)

(d' t")eS_
+ Y M@ za) (p(dy t,w) — p(d. t, (2, 2a))) Mipo(@e) fx (e, 2a)

ZdEXd\LL‘d j=07u
+o(hPT XN + \y)
=O(hPT 4+ X + M),

where (s.0.) stands for smaller order terms. The last equality is due to Assumptions 5.2 and 5.4. W

C Auxiliary lemmas and results

C.1 Auxiliary lemmas

Lemma C.1 Under Assumptions 1 and 2, for d,t € {0, 1} and any measurable function h : X — R,

(1) E[Iqt(Y —may(X))h(X)] =0, (C.1)
(i4) E (w11 — way) (W)h(X)] = 0. (C2)
Proof of Lemma C.1: This lemma follows immediately from the LIE. |
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Lemma C.2 Suppose the conditions of Theorem 2 hold. Then, for @ defined in (3.1) with p given by
(3.7), we have

En[(Y — ma (X)) (@41 — war) (V)] = op(n~"/?),
for (d,t) e S_.

Proof of Lemma C.2:

Recall the definition of w' as given in (A.15), and decompose the difference between g and wq

as
En[(Y — ma (X)) (War — waz) (W)]
= Ep [ (v = mao(X)) (], = wae) (W) | + B | (¥ = mas (X)) (@ =, ) (W)]
= Allu + Agu.
We bound the two terms in turn. By a third-order Taylor expansion of Al around p(d,t,z), we
get
Igt(Y —ma (X)) .
A;:En[ : ) p(1,1,X)—p(1,1,X
p@ Xy LA L)

_E [Id,tp(la LX)(Y —mau(X))
" p?(d,t, X)p(1,1)

=AY+ A2+ R, 4y,

(F(d,1, X) p(d,t,X»} t Ruas

where the remainder term, R, 4, collects the second-order terms. Specifically,

Id,t (_ (ﬁ(la 17X) - p(l, 17 X))(ﬁ(dvt’X) - p(d,t, X)))]

Rypar =E, [(Y - md,t(X))p(L 1) p?(d,t, X)

Lag <p(1,1»X)(ﬁ(d,t,X)—p(d,t,X))Q)}
(1’1) ﬁg(d,t,X) ’

where the intermediate point p(d, ¢, ) lying between p(d, t, z) and p(d, t,z). Under Assumptions 2(iii)

+E, [(Y - maa (X))

and 5.1, both p(d,t,z) and p(d,t,x) are (asymptotically) bounded away from zero, uniformly over
X and for (d,t) € S. Moreover, E[|Y — mg+(X)|] = O(1) under Assumption 5.3. We deduce that
Ruar = O, (Hﬁ(l,l,-) _p(1,1,-)H§O) + 0, <Hﬁ(d,t,-) —p(d,t,-)uic), which is o0, (n~Y/2) by Lemma
B.2 and Assumption 5.5.

The first two terms in the decomposition of AL share a similar structure. We only derive the
stochastic limit for ALl

Using the asymptotic expansion of local polynomial estimators in Lemma B.2, we obtain

1A [ Lai(Yi —ma (X)) /o ms) (ps) (ps)
11 _ sby ) Db 3 Db . p .
Bo =5 Z_Zl{ p(d,t, X;)p(1,1) <B"’171<X’) S () + R”vlvl(Xz)) '

We proceed by establishing bounds for the convergence rate of the terms involving the bias, the

first-order stochastic and the remainder, respectively.
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To analyze the bias, we first apply Chebyshev’s inequality and obtain

Iq4,i(Yi —ma(X5)) Lps) o[ Har(Y = ma (X)) ps)
*2 p(d, t, X)p(L. 1) "v“(X')‘E[p<d,t,X>p<1,1> Wm]

+0, (n*l/Q(hp*1 + Ao + )\u)) ,

where the rate of the remainder comes from standard variance calculation. Owning to Lemma C.1(i),

the mean on the right-hand side is zero, which leads to

1 Lasi(Yi — ma(X5)) (ps) -1/2
_ bhd) d B XZ' = p+1 1) u . .
T B (%) = (R 12000 4 20 + M) (C.3)

Under the bandwidth restrictions in Assumption 5.5, this term is o, (nfl/ 2).
We now introduce the term )1 q4¢(Wj, W;), which represents the summand of the first-order

stochastic term as follows

Lo, (Y = mai(Xi)) ( A09) 0r v ®s) (7. | X
Y a(Wi, W) = =4 s (67 wy, x0) —BIGT (W, X)1XiD) . (€
By its definition, we have
Idtz Y — mdt<X ) (ps) N 1 AN : )

Given the construction, we have E [ty 4.(W;, W;)|W;] = 0. Moreover, by Lemma C.1(i), we also
have that E [¢, 4.:(W;, W;)|W;] = 0. Hence, (C.5) represents a second-order U-statistic with first-order

degenerate kernel. Lemma B.1 and standard variance calculation then gives that

Z 2 VYu,dt(Wi, Wj) = Oy (n_lh_vc/2) : (C.6)
i=1j#i
Under our bandwidth assumptions, this term is o, (n_l/ 2).
Under Assumption 2(iii), p(d,t,x) is uniformly bounded away from zero for all z € X and for all
(d,t) € S—. Also, under Assumption 5.3, we have E[|Y — mg:(X)|] = O(1). Consequently, we can
deduce that

*ZId”Y mdt(X))Rg?i?l(Xi):O (
_o, ((W g+ et W)) ©7)

sup ’Rn,l,l i)

i€EN,

(d,t, X;)p(1, 1)

which is o, (nfl/ 2) under Assumption 5.5.
Combining (C.3), (C.6), and (C.7), we can conclude that ALl = o, (n_l/Q).
By the same reasoning, we can demonstrate that Al? is dominated by the first-order stochastic
term. Define
Liap(1, 1, X:)(Yi — ma(Xi))
p*(d,t, Xi)p(1,1)

Yuzar (Wi, Wy) = - (64 Wy x0) —EIGE Wi X)IX]) . (C8)

As a result, the leading term is given by n=t(n — 1)71 3" | Z;;Z 2,44 (Wi, Wj), which has an order
of O, (nilh*’”C/Q) =0p (n*1/2). The detailed proof is omitted for brevity.
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Iyp(1,1, X
Now, let’s consider AZ. Define p(1,1) = E,, [‘M}

p(d,t, X)
2 [d,tﬁa?l?X)(Y_md,t(X)) 1 _ 1
Bu = En [ P(d.t.X) <ﬁ<1, DL 1>>]
Id,tﬁ(LLX)(Y_md,t(X)) ~
—, [ FP e 0, (30.1) - pi1. ),

where the second line follows by a first-order Taylor expansion of the right-hand side of the first
equality in p(1,1) around p(1,1). In the proof of Lemma 3.1, it is established that when p is uniformly
convergent to p, [p(1,1) — p(1,1)| = op(1). The uniform convergence follows by Lemma B.2 under the
rate conditions specified in Assumption 5.5.

To study the first term, we can use an approach similar to the proof of Al and show that

E, [Id,tﬁ(l, 17;((;’(:’/);)md,t(X))} _E, {Id,tp(L 17p)(2’(t3’/);)md,t(X))} +o, <n—1/2) ‘

Due to Lemma C.1(i), the first term on the right-hand side of the preceding equation has a mean of

zero. Consequently, this term is of order O, (nfl/ 2) . This completes our proof. |

Lemma C.3 Suppose the conditions of Theorem 2 hold, then with m given by (3.9),
En[(wi1 — wae) (W) - (Magy —may)] = 0p(n~Y?),
for (d,t) e S_.

Proof of Lemma C.3:
The proof closely resembles the first part of Lemma C.2. We first decompose the estimation error for
the OR functions as

S 1 $ or or or
Eal(tn =) () (g = mag) (GO) = 2 3 { (s = wan) (W) (BYZ (X0 + S0 (X0 + BIZ(X0) |
We address the three terms individually. For the bias term
2 { wi1 — wa) (W )Br(:;,)t(Xi)} =E [(wl,l - wd,t)(W)BT(SZ,)t(X)] +0p (n_l/Q(bfﬁl +odt + 19u,d,t)>

=0p (”_I/Q(bgzl + oa + ﬁu,d,t)) =0p <n_1/2> ,

where the first equality follows from Chebyshev’s inequality, and the second is derived from Lemma
C.1(ii).

Next, for the first-order stochastic term, we define
Ut (Wi, Wj) = (w11 — wae)(Wi) (G;?:)(WjaXi) - E[GEZZ)(ijXz‘)’XiD ; (C.9)

By definition,

fZ{ wW1,1 — Wt (W)S'r(Ld)t(X)} = n(nl_]_)z Zwm,d,t(Wth)'

i=1j#i

In view of Lemma C.1(ii), the right-hand side of the above equation is a second-order U-statistic
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with a degenerate first-order kernel. A standard variance calculation shows that it is of the order

Op (nilbsct/ 2), which is o, (nil/ 2) due to our bandwidth restrictions.

Finally, as p(d, t, z) is uniformly bounded away from zero under Assumption 2(iii), we have

2
=0, (((bgjl + Vo.dt + Vuat) +4/logn/ (nbgft>) ) ,

1/ 2) under Assumption 5.5. This completes our proof.

— Z { w1,1 — wdt (W)Rffg)t(X )} Op <SUP ‘Rfmog)t i)

which is o, (n*

C.2 Mean integrated squared error

Cross-validated bandwidth asymptotically minimizes the mean integrated squared errors (MISE).
Given user-specified weight functions w?®(-),w{ () : X — Ry, MISE is defined as

X(hy A {bat; Y} dpes. ) =JXE [Hf)_( ) —p_(2)| ]wps( )
+ 2 L{ E [|md,t($) - md,t(x)\g] wgy(z)de.

Let (h*, A", {b7;, U7} (at)es_) denote the minimizer of the MISE. In the subsequent analysis, we
investigate the properties of these optimal smoothing parameters.

For (d,t) € S_, we represent the my x 1 vector of k-th derivatives p(d,t,z) as pilkt)(x), or-

dered lexicographically according to the method discussed earlier in the paper. Define g(_k) () =
k k . _

(el@). gl @),80@).  For j = pa let oi(@e) = ey, Qi) Myar(ee), dhalae) =

eﬁvjle](xc) M, o(zc), and 0i(zc) = eﬁVjJQj(mc)_lTj(a;c)Qj(:vc)_leNjJ. Additionally, we define

terms associated with the asymptotic bias and variance of p_(z) — p_(z) as follows

p+1
B (0. ) =~ (e (@0T(@)

+ Z Z W)‘ i1 (xdazd)Qp 2(ze) (P-(2) — P— (e, 24)) ,

raeXg\wgjmo X
VS (2, b, ) = I(x )Q;U)(xC)
hve fx(x)
For the OR functions, we define
pa+1

= (@)

f NN B o) (mase) - maee ).

24€Xg\Tq J=0u

B (x,b,9)

2 v Ze
Vii(2,b,0) = bi;}fz() ),

where O'?Lt(:E) =E[I5:(Y —ma(X))*|X = z].

21



Finally, we define a first-order approximation of the MISE as
X*(h‘a A {bd,t; 79d,t}(d,t)€S_) = f {”Bps (HT, h, )‘) H2 + tr(vps (HT, h, )‘))} pr(x)dw

+ J {Bdt T bdt,ﬂdt) +th(x bdtﬂgdt }wdt )dz.  (C.10)
(d,t)eS—

We denote the constrained minimizer of x* as (h°, Ao,b§7t,ﬁ§t

t(d,t)eS ), where each argument of the

function is constrained to be non-negative.

Assumption C.1 1. The constrained minimizer of x*, denoted as (h%, A {03 ;, V7, }(dpes_): is
uniquely determined and finite.

2. The constrained minimizer resides in [0, §,]*2, where n¢§, — oo for any € > 0.

Theorem C.1 Assuming that Assumptions 1, 5, and C.1 hold and both p and ¢ are odd, the optimal
bandwidths (h*, \*,{b] ,, 7}, }(a,)es_) satisty

B ~ hon—l/(2p+vc+2)’ ¥ -~ )\on—Z/(2p+vc+2)’

szt -~ bg’tn—1/(2q+uc+2)7 ﬁ;,t - ﬁg7tn72/(2q+vg+2)’ for (d,t) € S_.

Proof of Theorem C.1:

From the uniform linear expansions of Lemma B.2, we know that
E[Ip- () = p-(@)*] = IBIZ(@)A—(W,2)]|> + 0" tr (Var [Z(@)A- (W, 2)]) + (5.0,
where
E[Z(2)A (W, )] = Z()(s ® en,1)'S"(2) " E[A_(W,z,7*(2))]

pPHl / -1 (p+1)
= 0 E) s e, ) (Z(2) ® Qplae) fx(2)) ™ (Z(0) @ My () vee (7)) fix(0)

+ Z Z Nilj(xq, zq) (P—(z) — P—(Zc, 24)) @ My o(xe) fx (Te, 2q) ¢ + 0 (hp+1 + X + /\u)

ZdEXd\Z‘d j=ou

thrl
(p+ 1)

+ Z Z & x?;d))‘ i1 (l‘d,zd)eN 1Qp(l‘c) Mp,o(ze) (P-(2) = P—(2c; 2a))

24€EXg\xq J=0,u X

ey 1Qplre) My (2)g” T (2)Z(2)

+o (AP + X + M)
=BP*(x,h, \) + 0 (WP + Xy + ) (C.11)

and

Var [Z(z)A— (W, 2)] =h™"I(x)(I3 ® en,1)’E"(2) " (Z(2) @ Ty(e) fx () £ (2) "' (I3 @ en, 1) L(x)
=h""I(z) (I3 ® en,1) (Z(2) ® Qp(zc) fx () ™" (Z(2) ® Tp(ac) fx (2))
(Z(2) ® Qp(e) fx (2)) ™ (I3 ® e, 1)L(2) + 0 (R7)
ZhivcfX(x)ilz(x)ekp,lQp(%) p(xC)Qp(xC)ileNpJ +o (hivc)
=VP*(z, b, \) + o (h7%). (C.12)
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Analogously, for (d,t) € S—

E ([ (2) — mae(@)P] = [BIGE W.2)]| 40 Var [€5) (W) | + (s.0),

where
E[GY7 (W, 2)] = e, 1 E53(2) ™ B[H (ba) X(X;) 163, (2) Kor (X 2, baz, )]
bz]l"rl -
=0t TP (Quee) fx (@) My g (ze)m ™ (@) fx ()
+ 0 D) Vangli(@as za) (mag(w) = mag (e, 20)) Moo (@) fx (e, Zd)}
2d€EXg\Tq J=0,u
0 (bqtl +Dgp0+ ﬁd,t,u)
+1
:bglit (6/ Q (.I‘C)_lM +1($c)m(Q+1)(x))
(q_|_1) Ng,1%%q q,9 d.t
Ty 2,
+ 2] fX(f)ﬁ (2, 20)€l, 1 Qa(e) Mg (@e) (ma(z) — mag(we, za))
2d€Xg\z g J=0,u X
+o (bgt + a0+ 19d7t,u) ,
=B, (@, b4, 9a) + 0 (B + Do + V) (C.13)
and

Var [ G377 (W, 2)] =bz3ely, 1 55(@) ™ ELH (b ) X (G Tae(Y — may(X)?
+ H(ba,)X(X;) Kor(X;2,ba s, 9a)* S5 (@) ten, 1 + o (b7)
=byvee, 1 (Qq(we) fx (2)) ™ (07 1(2) Ty(@e) fx (2)) (Qqlae) fx (x)) ™ + 0 (b7)
:bd,tvcfX(x) Ug,t(x)eNqJQq(mc) "y (20)Qq(ze) ey + 0 (b7%)
=V (b, Vay) + o (b77). (C.14)

Now, we define

(WT AT D) 90 Y anes. ) = (n2/CPHoetDp 2/ GrrvetD ) (V) Catvet)y, 2/ CatvetDy, 4 s ).

It follows from (C.11)-(C.14) and standard analysis that
X(ha A, {bd,tv ﬁd,t}(d,t)esf)
— 2P+ D)/ @ptvet?) f {HB”S(ﬂc, A DI + (VP (2, b1, AT o (@) de
X
+o (RPN + Ay + h7Y)

e+ et Y f (B .6 90,7 + Vb0 ) Y o ()
(d,t)eS—

+o ( 2, {bgf +dt0 + Vatu+ bd}h}) 7
(

d,t)eS—

uniformly over [0, 6,]'2. Since x* is separable in (h, A) and ({bgz, Va} (dit)e s ), and its constrained min-
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imizer is well-defined, unique, and finite under Assumption C.1, the proof is completed by minimizing
x with respect to (hf, AT {bdt, th}(d7t)65_) and recalling the definition of (h?, A%, {07 ;, 97 ;}(4,)es_). W

C.3 Plug-in estimators

When employing the frequency method (i.e., A = ¥4+ = 0), a straightforward plug-in rule can
be used to determine the bandwidths (A, {b4:}4,)es_)- Notably, local polynomial estimators with an
odd degree of fit are adaptive to boundaries, implying that the convergence rate of bias and variance
remains constant regardless of the location of z. By solving Equation (C.10) and applying Theorem

C.1, the following results are obtained

(p+1) 2 —1/(2p+vc+2)
BE — SHQpl (zc)g= (w)Z(z)H wh(z)dz 2(p+ 1)n
| T @@)ep(re) [ fx (@) - wr(@)da v {(p + 1)1} !
—1/(2q+vc+2)
b o § gt e o 4 1y for (d4,1) € S
N T TopleaIx @) W @de v {(g+ )P  for (d,t) €S-

These bandwidths, however, are infeasible due to the presence of unknown quantities related to the
derivatives of the nuisance functions and local Fisher information. To estimate the optimal bandwidths,
preliminary approximations of these quantities are necessary. An additional challenge arises from the
complicated dependence of the plug-in bandwidths on the location of 2 (through ¢” and V). One
possible solution is to substitute the values evaluated at a boundary point with those associated with
interior points. This replacement has a negligible impact on the consistency of the optimal bandwidth

in general. The bandwidth selection process can be outlined in the following algorithm:

Algorithm C.1 1. Let X, collect all the unique values of {X;},. Construct standard kernel

estimates of covariate density with mixed data, fx (z), for x € X,, following, e.g., Racine and Li
(2004).

2. Use a polynomial multinomial logit regression of order £ = p + 2 to get preliminary estimates
i(m),g(p“)( ), g(””) (x), for x € A,. Run polynomial regressions of order £ = ¢ + 2 to obtain

rhgf;rl)( ) and mgqt+2) (x), for x € A,.

3. Compute preliminary bandwidths

) ) —1/(2p+v+2)
(B H@:mé—p Yoz ] 2(p + )n
h = z n[fX (X) tr (i(X))] vi{(p+ 1)1} :
) —1/(2¢+v+2)
. E, HQq,lmdqjl )H } 2(q + 1)n
e v E, [fx (X)] vlla+ DY |
(e, Y
h= E, [f)_( (X)tr (Z(X)ﬂ@@gﬂ)] v(2p+3)lp+2)1 |
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) (q+2 9 —1/(2g+v+4)
n Qq+1md t m

"[Hf);l( )0l H] v(2g + 3)[(¢q + 2)!] ’

dt =

where we omitted the dependence of o® and g’ on z. to signify that the boundary ef-
fect is disregarded. Furthermore, in the preceding equations, gg’. = I]’ijij_le’jH, Q] =
I}VjJQ;lTjQ;lIN].J, and Iy, ; is a N; x n; matrix consisting of the last n; columns of the

N; x N; identity matrix.

4. Run a local polynomial logistic regression of order £ = p + 1, with bandwidth h, to obtain

g(_pH)( ). For each (d,t) € S_, run a local polynomial regression of order ¢{ = ¢ + 1, using

bandwidth bd +, to get m(qJr )( ), for z € X,

5. Run a local polynomial logistic regression of order ¢ = p, with bandwidth ﬁ, to obtain 7 (z), for
r e X,

6. Compute the optimal bandwidth 7 and /[;d7t, following
b & p+1 T 2
En || e,8%" ()20 |
oy B [ F () tr (Z00)) | vl + 1)}

(e o] e Y

bat = E, [f;( (X )] v{(g+ 1)!}2

—1/(2p+v+2)

=
I

C.4 Cluster-robust inference: bootstrap procedures

In this section, we introduce two bootstrap procedures that are suitable for cluster-robust inference.
The first algorithm uses a multiplier-bootstrap method to compute studentized and cluster-robust stan-
dard errors. This method has been previously described in Kline and Santos (2012) and Callaway, Li
and Oka (2018). The second procedure is a bootstrap Hausman-type test, which provides bootstrapped
p-values.

Let V", be a sequence of 7.i.d. random variables with zero mean and unit variance, which is
independent of the original sample. One example is i.i.d. Bernoulli random variables with P(V =
vg) = 1 —vp/v/5 and P(V = 1—wg) = v9/+/5, where vy = (v/5+1)/2, as suggested by Mammen (1993).
Now, given a generic ATT estimator, 7, and an estimator of its influence function, 7(-), we compute

the clustered standard errors as follows:

Algorithm C.2 1. In iteration b, draw a realization of V;, for each cluster. All observations within

the same cluster share the same value of Vj,.

2. Calculate a bootstrap estimate for ATT as

Ty =T+ Eu[V - (W)].
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Form a bootstrap draw of the limiting distribution as
Ry =/ (7 7).
3. Repeat Steps 1-2 B times.

4. Calculate the bootstrapped standard error, 6*, as the bootstrap interquartile range normalized
by the interquartile range of the standard normal distribution: 6* = (go.75(R) —qo.25(R))/(20.75 —
20.25), where qp(R) is the p-th sample quantile of the ]%b in the B draws, and z, is the p-th quantile

of the standard normal distribution.

Given the two DR DID estimators, 74, based on (3.1), 75, based on (4.1), and their respective linear
expansions, 7)4,-(+) given in (3.11) and 75, (-) given in (4.3), we conduct a cluster-robust Hausman-type

test as follows
Algorithm C.3 1. Calculate the Hausman test statistic, 7T,, following (4.2).

2. In iteration b, generate a realization of V} for each cluster. Observations within the same cluster

share the same value of Vj,.

3. Calculate bootstrap estimates of the ATT as

Ty =T + En[Vy - (W],
Vit = En[Vh - (Hepr (W) — G52 (W))].

Form a bootstrap test statistic, 7,*, as
~ a2
772* =n (T;r,b - T:z,b) /VE)*
4. Repeat Steps 1-2 B times.

5. Calculate the bootstrapped p-value, p*, as the proportion of the bootstrap test statistics, {7,* }le,

that are greater than or equal to 7,.
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