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This supplemental appendix contains auxiliary lemmas, proofs of the main theorems, and additional
results presented in the main text.

Notation: Hereafter, we use the abbreviations CLT, CMT, LIE, and LLN to represent the central
limit theorem, continuous mapping theorem, law of iterated expectations, and law of large numbers,
respectively. Let fXpxq “ fXc|Xd

pxc|xdq ¨ P pXd “ xdq, Nn “ t1, 2, ..., nu, and ιpd, tq “ 1td “ 1, t “

0u ` 2 ¨ 1td “ 0, t “ 1u ` 3 ¨ 1td “ 0, t “ 0u. The notation an À bn implies that an ď cbn for some
positive constant c when n is sufficiently large. The symbol an „ bn denotes that an{bn Ñ 1 as nÑ8.
We define f P L2pUq to indicate that

ş

U f
2dµ is finite, and let the L2- and sup-norm of f to denote

‖f‖L2
and ‖f‖8, respectively. Denote the ATT by τ , i.e.,

ATT “ τ “ E rY1 p1q |D “ 1, T “ 1s ´ E rY1 p0q |D “ 1, T “ 1s .

A Proofs for main results in the text

Let
τor “ E rY |D “ 1, T “ 1s ´ E rm1,0pXq `m0,1pXq ´m0,0pXq|D “ 1, T “ 1s ,

where md,tpxq “ ErY |D “ d, T “ t,X “ xs, and

τipw “ E rpw1,1pD,T q ´ w1,0pD,T,Xq ´ w0,1pD,T,Xq ` w0,0pD,T,XqqY s ,

where, for pd, tq P S´,

w1,1pD,T q “
DT

ErDT s
,

wd,tpD,T,Xq “
1tD “ d, T “ tupp1, 1, Xq

ppd, t,Xq

N

E
„

1tD “ d, T “ tupp1, 1, Xq

ppd, t,Xq



,

and ppd, t, xq “ P pD “ d, T “ t|X “ xq is a so-called generalized propensity score.

Lemma A.1 Under Assumptions 1 and 2, it follows that τor “ τipw “ τ .

Proof of Lemma A.1:
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Outcome regression estimand: Using md,tp¨q “ ErYtpdq|D “ d, T “ t,X “ ¨s, pd, tq P S´, we get

τor “ErY1p1q|D “ 1, T “ 1s ´ ErErY0p1q|D “ 1, T “ 0, X “ xs|D “ 1, T “ 1s

`
ÿ

tPt0,1u

p´1qt ErErYtp0q|D “ 0, T “ t,X “ xs|D “ 1, T “ 1s

“ErY1p1q|D “ 1, T “ 1s ´ ErErY0p0q|D “ 1, T “ 0, X “ xs|D “ 1, T “ 1s

`
ÿ

tPt0,1u

p´1qt ErErYtp0q|D “ 0, T “ t,X “ xs|D “ 1, T “ 1s

“ErY1p1q ´ Y1p0q|D “ 1, T “ 1s “ τ,

where the second equality follows from Assumptions 2(ii) and the third holds under Assumptions 2(i).
Propensity score estimand: Let pp1, 1q “ P pD “ 1, T “ 1q. Under the overlapping conditions

in Assumption 2(iii), wd,tpd1, t1, xq are well defined for pd, tq P S´, pd1, t1q P t0, 1u2, and x P X almost
everywhere. Additionally,

Erwd,tpD,T,XqY s “ E
„

pp1, 1, XqY Id,t
ppd, t,Xq

N

E
„

1tD “ d, T “ tupp1, 1, Xq

ppd, t,Xq



“ E
„

E
„

ErY |D “ d, T “ t,Xs ¨
Id,t

ppd, t,Xq

ˇ

ˇ

ˇ

ˇ

X



¨
pp1, 1, Xq

pp1, 1q



“ E
„

ErY |D “ d, T “ t,Xs ¨
pp1, 1, Xq

pp1, 1q



“ E rErY |D “ d, T “ t,Xs|D “ 1, T “ 1s

“ E rmd,tpXq|D “ 1, T “ 1s ,

for pd, tq P S´. The second line follows by the LIE, the third equality is by the definition of propensity
scores, and the next to last line is by Bayes’ Law. Next, from Erw1,1pD,T qY s “ ErY |D “ 1, T “ 1s

and the same arguments for the OR estimand, we conclude that τipw “ τ . �

Proof of Theorem 1:
We follow the steps in Hahn (1998) for the derivation of the efficient influence function. Let
fpy|d, t, xq “ fpy|D “ d, T “ t,X “ xq.

Step 1: characterize the tangent space of the statistical model. The observed likelihood is given as

fpy, d, t, xq “fpy|1, 1, xqdtfpy|1, 0, xqdp1´tqfpy|0, 1, xqp1´dqtfpy|0, 0, xqp1´dqp1´tq

¨ pp1, 1, xqdtpp1, 0, xqdp1´tqpp0, 1, xqp1´dqtpp0, 0, xqp1´dqp1´tq ¨ fpxq.

Consider the regular sub-model parameterized by θ ě 0, with the true model indexed by θ0 “ 0,

fθpy, d, t, xq “fθpy|1, 1, xq
dtfθpy|1, 0, xq

dp1´tqfθpy|0, 1, xq
p1´dqtfθpy|0, 0, xq

p1´dqp1´tq

¨ pθp1, 1, xq
dtpθp1, 0, xq

dp1´tqpθp0, 1, xq
p1´dqtpθp0, 0, xq

p1´dqp1´tq

¨ fθpxq.

The score function of this sub-model is given by

sθpy, d, t, xq “dtsθpy|1, 1, xq ` dp1´ tqsθpy|1, 0, xq ` p1´ dqtsθpy|0, 1, xq ` p1´ dqp1´ tqsθpy|0, 0, xq

` dt
9pθp1, 1, xq

pθp1, 1, xq
` dp1´ tq

9pθp1, 0, xq

pθp1, 0, xq
` p1´ dqt

9pθp0, 1, xq

pθp0, 1, xq
` p1´ dqp1´ tq

9pθp0, 0, xq

pθp0, 0, xq
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` tθpxq,

where sθpy|d, t, xq “ Blogfθpy|d, t, xq{Bθ, 9pθpd, t, xq “ Bpθpd, t, xq{Bθ, and tθpxq “ Blogfθpxq{Bθ for
pd, tq P S. For notational simplicity, we suppress subscripts when θ “ θ0.

Now, the tangent space of this model is characterized by

T “tdts11py, xq ` dp1´ tqs10py, xq ` p1´ dqts01py, xq ` p1´ dqp1´ tqs00py, xq

` dtp11pxq ` dp1´ tqp10pxq ` p1´ dqtp01pxq ` p1´ dqp1´ tqp00pxq ` spxqu,

for any functions tsdtp¨, ¨q, pdtp¨qupd,tqPS , and sp¨q such that, for pd, tq P S

sdtp¨, ¨q P L2pY b X q, with
ż

sdtpy, xqfpy|d, t, xqdy “ 0, @x P X , (A.1)

pdtp¨q P L2pX q, with
ÿ

pd,tqPS

ż

pdtpxqfpxqdx “ 0, (A.2)

and
sp¨q P L2pX q, with

ż

spxqfpxqdx “ 0. (A.3)

In Step 2, we show that the target parameter associated with the parametric sub-model is path-wise
differentiable, as defined in Newey (1990).

From Lemma A.1, we know the ATT can be identified by
ř

pd,tqPSp´1qd`t E rErY |D “ d, T “ t,Xs|D “ 1, T “ 1s under Assumptions 1 and 2. For the pa-
rameterized sub-model, we define

τpθq “
p
ş ş

pθp1, 1, xqyfθpy|1, 1, xqfθpxqdydx´
ş ş

pθp1, 1, xqyfθpy|1, 0, xqfθpxqdydxq
ş

pθp1, 1, xqfθpxqdx

´
p
ş ş

pθp1, 1, xqyfθpy|0, 1, xqfθpxqdydx´
ş ş

pθp1, 1, xqyfθpy|0, 0, xqfθpxqdydxq
ş

pθp1, 1, xqfθpxqdx
. (A.4)

Note that the derivative of τpθq with respect to θ, evaluated at θ “ 0, is given by

dτpθq

dθ

ˇ

ˇ

ˇ

ˇ

θ“0

“
ÿ

pd,tqPS
p´1qd`t

ş ş

ypp1, 1, xqspy|d, t, xqfpy|d, t, xqfpxqdydx

pp1, 1q

`

ş

pτpxq ´ τq 9pp1, 1, xqfpxqdx

pp1, 1q

`

ş

pτpxq ´ τqpp1, 1, xqtpxqfpxqdx

pp1, 1q
.

For any w “ py, d, t, xq PW, define

Fτ pwq “
dtpy ´m1,1pxqq

pp1, 1q
`
pp1, 1, xq

pp1, 1q

"

´
dp1´ tqpy ´m1,0pxqq

pp1, 0, xq

´
p1´ dqtpy ´m0,1pxqq

pp0, 1, xq
`
p1´ dqp1´ tqpy ´m0,0pxqq

pp0, 0, xq

*

`
dt

pp1, 1q

ÿ

pd,tqPS
p´1qd`t

ˆ

md,tpxq ´

ż

X
md,tpxqfpxqdx

˙

.

It can be readily verified that dτpθq
dθ

ˇ

ˇ

ˇ

θ“0
“ ErFτ pW qs0pY,D, T,Xqs, thereby showing τpθq is path-wise
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differentiable.
In Step 3, we show that Fτ pW q is the efficient influence function for τ , which we will accomplish

by invoking Theorem 3.1 in Newey (1990). To apply this theorem, we need to verify that Fτ p¨q P T .
By setting

s11py, xq “
y ´m1,1pxq

pp1, 1q
,

p11pxq “ pp1, 1q´1
ÿ

pd,tqPS
p´1qd`t

ˆ

md,tpxq ´

ż

X
md,tpxqfpxqdx

˙

,

sdtpy, xq “ p´1qd`t
pp1, 1, xqpy ´md,tpxqq

ppd, t, xqpp1, 1q
,

pdtpxq, spxq “ 0,

for pd, tq P S´, it is straightforward to show that (A.1)-(A.3) hold, which leads to the desired result.
Finally, since pp1, 1q “ E

“

Id,tpp1, 1, Xqppd, t,Xq
´1
‰

, for pd, tq P S, direct manipulation yields that
Fτ pW q “ ηeffpW q. Now, we take the expectation of η2

effpW q and the semi-parametric efficiency bound
follows by standard manipulation. This completes the proof. �

Proof of Proposition 1: The proof follows directly from the LIE as displayed in the main text. �

Proof of Proposition 2:
It follows by Theorem 1 that

ErηeffpW q2s “
1

ErDT s2
E

»

–DT pτpY,Xq ´ τq2 `
ÿ

pd,tqPS´

Id,tpp1, 1, Xq
2

ppd, t,Xq2
pY ´md,tpXqq

2

fi

fl

“
1

ErDT s2
ErDT pτpXq ´ τq2s

` E

»

–w1,1pD,T q
2pY ´m1,1pXqq

2 `
ÿ

pd,tqPS´

wd,tpD,T,X, pq
2pY ´md,tpXqq

2

fi

fl

” V1,dr ` V2,dr,

where the second equality follows from direct manipulations and the fact that

ErDT ¨ pY ´m1,1pXqq ¨ pmd,tpXq ´ Ermd,tpXq|D “ 1, T “ 1sqs

“ ErErpp1, 1, Xq ¨ pm1,1pXq ´m1,1pXqq ¨ pmd,tpXq ´ Ermd,tpXq|D “ 1, T “ 1sq|Xss “ 0,

for pd, tq P S.
Meanwhile, from Part (b) of Proposition 1 in Sant’Anna and Zhao (2020), we have the following

decomposition,
ErηszpW q2s “ V1,sz ` V2,sz,

where V1,sz ” E
“

DpτpXq ´ τq2
‰

{p2, and

V2,sz ”
1

p2
E
„

DT

λ2
pY ´m1,1pXqq

2 `
Dp1´ T q

p1´ λq2
pY ´m1,0pXqq

2

`
p1´DqTppXq2

p1´ ppXqq2λ2
pY ´m0,1pXqq

2 `
p1´Dqp1´ T qppXq2

p1´ ppXqq2p1´ λq2
pY ´m0,0pXqq

2



. (A.5)
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Under Assumption 3, we have that Er1tT “ tugpXqs “ P pT “ tqErgpXqs, ErId,tY gpXqs “
P pT “ tqEr1tD “ duYtgpXqs, and ppd, t, xq “ p1tt “ 1uλ ` 1tt “ 0up1 ´ λqqppd, xq. It then fol-
lows that

V1,dr “
1

λp2
ErDpτpXq ´ τq2s, (A.6)

and therefore,

V1,dr ´ V1,sz “
1´ λ

p2λ
ErDpτpXq ´ τq2s. (A.7)

We now focus on V2,dr. Observe that

V2,dr “
1

λ2p2

"

ErDT pY1 ´m1,1pXqq
2s ` E

„

Dp1´ T qλ2ppXq2

p1´ λq2ppXq2
pY0 ´m1,0pXqq

2



`E
„

p1´DqTλ2ppXq2

λ2p1´ ppXqq2
pY1 ´m0,1pXqq

2



` E
„

p1´Dqp1´ T qλ2ppXq2

p1´ λq2p1´ ppXqq2
pY0 ´m0,0pXqq

2

*

“
1

p2
E
„

DT

λ2
pY ´m1,1pXqq

2 `
Dp1´ T q

p1´ λq2
pY ´m1,0pXqq

2

`
p1´DqTppXq2

p1´ ppXqq2λ2
pY ´m0,1pXqq

2 `
p1´Dqp1´ T qppXq2

p1´ ppXqq2p1´ λq2
pY ´m0,0pXqq

2



“ V2,sz, (A.8)

where the first equality follows because ppd, t, xq “ P pD “ d,X “ xq ¨ P pT “ tq under Assumption 3.
The desired result then follows from (A.7) and (A.8). �

Proof of Lemma 3.1:
Let ψd,tpW ;w,mq “ 1tdt “ 1uw1,1pD,T qY`1tdt ‰ 1u twd,tpD,T,XqpY ´md,tpXqq ` w1,1pD,T qmd,tpXqu,
and τ̃dr “

ř

pd,tqPSp´1qd`tψd,tpW ;w,mq. Using τ̃dr, we decompose pτdr as

pτdr ´ τ “ ppτdr ´ τ̃drq ` pτ̃dr ´ τq . (A.9)

Note first that the second term, τ̃dr ´ τ , has i.i.d. centered summands with bounded variance;
thus, it is Oppn´1{2q. Now we investigate the behavior of pτdr ´ τ̃dr, for which we make the following
decomposition

ψd,tpW ; pw, pmq ´ ψd,tpW ;w,mq “pY ´md,tpXqq p pwd,t ´ wd,tq pW q `md,tpXq p pw1,1 ´ w1,1q pW q

` pw1,1 ´ wd,tq pW q ppmd,t ´md,tq pXq

` tp pw1,1 ´ w1,1q pW q ´ p pwd,t ´ wd,tq pW qu ppmd,t ´md,tq pXq

”∆ψ,1
d,t pW q `∆ψ,2

d,t pW q `∆ψ,3
d,t pW q,

for pd, tq P S. Here, we use the unifying notation wd,tpW q to denote wd,tpD,T,Xq when pd, tq P S´ and
w1,1pD,T q otherwise. We proceed by establishing convergence rates for each component in the above
decomposition.

We first analyze ∆ψ,1
d,t . A second-order Taylor expansion of ψ1,1pW ; pw, pmq around ErDT s yields

that

En
”

∆ψ,1
1,1 pW q

ı

“ En
„

Y

ˆ

DT

EnrDT s
´

DT

ErDT s

˙

“ ´
En rDTY s
ErDT s2

¨ pEnrDT s ´ ErDT sq `Opp|EnrDT s ´ ErDT s|2q
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“ ´
E rDTY s
ErDT s2

¨ pEnrDT s ´ ErDT sq ` oppn´1{2q. (A.10)

When pd, tq P S´, similar analysis reveals that

En
”

∆ψ,1
d,t pW q

ı

“En rpY ´md,tpXqq p pwd,t ´ wd,tq pW q `md,tpXq p pw1,1 ´ w1,1q pW qs

“En rpY ´md,tpXqq p pwd,t ´ wd,tq pW qs

´
En rDTmd,tpXqs

ErDT s2
pEnrDT s ´ ErDT sq `Opp|EnrDT s ´ ErDT s|2q

“ ´
E rDTmd,tpXqs

ErDT s2
pEnrDT s ´ ErDT sq ` oppn´1{2q, (A.11)

where the last equation holds under Assumption 4.2(i).
Next, note that ∆ψ,2

1,1 p¨q “ 0, and when pd, tq P S´, we deduce from Assumption 4.2(ii) that

En
”

∆ψ,2
d,t pW q

ı

“ En rpw1,1 ´ wd,tqpW q ppmd,t ´md,tq pXqs “ oppn
´1{2q. (A.12)

Analogously, ∆ψ,3
1,1 p¨q is identically zero, and therefore, we only need to focus the other three cases,

for which we have

En
”

∆ψ,3
d,t pW q

ı

“En rpp pw1,1 ´ w1,1q pW q ´ p pwd,t ´ wd,tq pW qq ppmd,t ´md,tq pXqs

“En
„

DT

ErDT s2
ppmd,t ´md,tq pXq



¨ pEnrDT s ´ ErDT sq `Opp|EnrDT s ´ ErDT s|2q (A.13)

´ En rp pwd,t ´ wd,tq pW q ¨ ppmd,t ´md,tq pXqs , (A.14)

where the second equality follows from a second-order Taylor expansion of EnrDT s around ErDT s.
Taking the fact that ErDT s ą 0 under Assumption 2(iii) and that pmd,t is uniformly convergent to

md,t, we obtain∣∣∣∣En „ DT

ErDT s2
ppmd,t ´md,tq pXq

∣∣∣∣ ď En
„∣∣∣∣ DT

ErDT s2

∣∣∣∣ ¨ |ppmd,t ´md,tq pXq|


À ‖pmd,t ´md,t‖8 “ opp1q.

Combining this result with EnrDT s ´ ErDT s “ Op
`

n´1{2
˘

, we conclude that (A.13) is op
`

n´1{2
˘

.

Next, we study En rp pwd,t ´ wd,tq pW q ¨ ppmd,t ´md,tq pXqs. Let

w:d,tpW q “
Id,tppp1, 1, Xq

pp1, 1qpppd, t,Xq
, (A.15)

based on which, we have the following decomposition

En
”´

w:d,t ´ wd,t

¯

pW q ¨ ppmd,t ´md,tq pXq
ı

` En
”´

pwd,t ´ w
:

d,t

¯

pW q ¨ ppmd,t ´md,tq pXq
ı

“ ∆1,n
w,m `∆2,n

w,m.

(A.16)

We consider the L2-norm first. Under Assumption 4.2(iii),

∆1,n
w,m “ E

”´

w:d,t ´ wd,t

¯

pW q ¨ ppmd,t ´md,tq pXq
ı

looooooooooooooooooooooooooomooooooooooooooooooooooooooon

”∆1
w,m

` op

´

n´1{2
¯

.
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Since â{b̂´ a{b “ pâ´ aq{b´ apb̂´ bq{b2 ´ pâ´ aqpb̂´ bq{pb̂bq ` apb̂´ bq2{pb̂b2q, we have

∆1
w,m “E

„

δd,tpW q

ppd, t,Xq
pppp1, 1, Xq ´ pp1, 1, Xqq



´ E
„

δd,tpW qpp1, 1, Xq

p2pd, t,Xq
ppppd, t,Xq ´ ppd, t,Xqq



´ E
„

δd,tpW q

pppd, t,Xqppd, t,Xq
pppp1, 1, Xq ´ pp1, 1, Xqq ppppd, t,Xq ´ ppd, t,Xqq



` E
„

δd,tpW qpp1, 1, Xq

pppd, t,Xqppd, t,Xq2
ppppd, t,Xq ´ ppd, t,Xqq2



”∆1,1
w,m `∆1,2

w,m `∆1,3
w,m `∆1,4

w,m,

where δd,tpW q “ pp1, 1q´1Id,t ppmd,t ´md,tq pXq.
For ∆1,1

w,m, ∣∣∆1,1
w,m

∣∣ ďpp1, 1q´1
`

pmind,t

˘´1 E r|pppp1, 1, Xq ´ pp1, 1, Xqq ppmd,t ´md,tqpXq|s

ďOp1q ¨ ‖ppp1, 1, ¨q ´ pp1, 1, ¨q‖L2
¨ ‖pmd,t ´md,t‖L2

“Op prnsnq ,

where pmind,t “ infxPX |ppd, t, xq|. The first inequality holds under Assumption 2(iii), and the second one
is due to the Cauchy-Schwarz inequality.

Likewise,

∣∣∆1,2
w,m

∣∣ ďpp1, 1q´1 sup
xPX

|pp1, 1, xq|
"

inf
xPX

|ppd, t, xq|
*´2

E r|ppppd, t,Xq ´ ppd, t,Xqq ppmd,t ´md,tqpXq|s

ďOp1q ¨ ‖pppd, t, ¨q ´ ppd, t, ¨q‖L2
¨ ‖pmd,t ´md,t‖L2

“Op prnsnq .

To analyze the convergence of the remaining two terms, we can use a similar approach to the one
used for the previous two terms. However, to complete the analysis, we need to show that pppd, t, xq is
uniformly bounded away from 0 across X , with high probability. Due to the uniform convergence, for
any given ε P p0, 1{2q, there is Nε ą 0 such that supxPX |pppd, t, xq ´ ppd, t, xq| ď pmind,t {2 with probability
at least 1´ ε, whenever n ě Nε. Thus, when n is sufficiently large, we have

inf
xPX

|pppd, t, xq| ě inf
xPX

|ppd, t, xq|´ sup
xPX

|pppd, t, xq ´ ppd, t, xq| ě pmind,t {2 ą 0,

with probability 1´ ε, leading to our desired claim.
The sup-norm case can be handled analogously. Different from the L2-norm, it is now possible to

work directly with the empirical measure, leading to the conclusion that ∆1,n
w,m “ Op prnsnq, without

the necessity of imposing Assumption 4.2(iii).
Next,we examine the estimation effect of the normalizing weight as given in ∆2,n

w,m. Let ppp1, 1q “

En
”

Id,t
ppp1,1,Xq
pppd,t,Xq

ı

. Again, we focus on L2-norm first. By definition,

∆2,n
w,m “ ´ppp1, 1q

´1
¨ En

”

w:d,tpW q ¨ ppmd,t ´md,tq pXq
ı

loooooooooooooooooooomoooooooooooooooooooon

∆2,1,n
w,m

¨ pppp1, 1q ´ pp1, 1qq .
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We can further decompose ∆2,1,n
w,m into

∆2,1,n
w,m “∆1,n

w,m (A.17)

` pEn ´ Eq rwd,tpW q ¨ ppmd,t ´md,tq pXqs (A.18)

` E rwd,tpW q ¨ ppmd,t ´md,tq pXqs . (A.19)

“Op prnq `Op prnsnq ` op

´

n´1{2
¯

Under Assumptions 4.2(iii, iv), (A.17) and (A.18) are Op prnsnq and op
`

n´1{2
˘

, respectively. Since
pd,tp¨q is uniformly bounded over X , (A.19) is Op prnq by the Cauchy-Schwartz inequality.

Analogously, we have

ppp1, 1q ´ pp1, 1q “pEn ´ Eq
„

Id,t

ˆ

ppp1, 1, Xq

pppd, t,Xq
´
pp1, 1, Xq

ppd, t,Xq

˙

(A.20)

` pEn ´ Eq
„

Id,t
pp1, 1, Xq

ppd, t,Xq



(A.21)

` E
„

Id,t

ˆ

ppp1, 1, Xq

pppd, t,Xq
´
pp1, 1, Xq

ppd, t,Xq

˙

(A.22)

“Op psnq `Op

´

n´1{2
¯

` op

´

n´1{2
¯

.

Under Assumption 4.2(v), (A.20) is op
`

n´1{2
˘

. Since (A.21) is a centered i.i.d. summand, it is
Op

`

n´1{2
˘

. Arguing along the same line as for ∆1
w,m, we get (A.22) is Oppsnq. Collecting these results,

we conclude that both ∆1,n
w,m and ∆2,n

w,m are Opprnsnq.
Once again, analysis under the sup-norm rely directly on empirical measure, thus eliminating the

need for conditions on the empirical process. Further details are not provided here for brevity.
To finish the proof of this lemma, we gather the results in (A.9), (A.10), (A.11), (A.12), (A.14),

and (A.16), which leads to

pτdr ´ τ “En

»

–

ÿ

pd,tqPS
p´1qd`tψd,tpW ;w,mq ´ τ

fi

fl` τ

ˆ

1´
EnrDT s
ErDT s

˙

`Opprnsnq ` op

´

n´1{2
¯

“EnrηeffpW qs `Opprnsnq ` op
´

n´1{2
¯

.

�

Proof of Theorem 2:
We proceed by applying Lemma 3.1. As we are working with the sup-norm, we need to verify the first
two conditions in Assumption 4.2. Lemmas C.2 and C.3 provide the required verification for these
conditions. With the bandwidth rate conditions in Assumption 5.5 guaranteeing that the leading
remainder term is Opprnsnq “ op

`

n´1{2
˘

, we can then derive the asymptotic normality directly from
the CLT. �

Proof of Theorem 3:
Proof of Part (a): We have already shown in Theorem 2 that pτdr ´ τ “ EnrηeffpW qs ` op

`

n´1{2
˘

.
Following a similar line of reasoning, one can easily demonstrate that pτsz´τ “ EnrηszpW qs`op

`

n´1{2
˘

,
under Assumptions 1, 2, 5, Condition (i), and the null hypothesis, H0. Now, by the CLT, we have

?
n ppτdr ´ pτszq

d
Ñ N

´

0, E
”

pηeffpW q ´ ηszpW qq
2
ı¯

.
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It remains to show that
pVn

p
Ñ V, (A.23)

and
V “ ρsz ą 0. (A.24)

First, it is implied from the proof of Theorem 2 that pηeff pwq
p
Ñ ηeffpwq, uniformly in w PW. In a

similar vein, pηszpwq
p
Ñ ηszpwq uniformly over W, under H0. Combining these two results, (A.23) then

follows by the CMT and the weak LLN.
From Proposition 1 in Sant’Anna and Zhao (2020), we know that ηszp¨q is the efficient influence

function for all regular estimators of τsz, which is equal to τ under H0. Moreover, since both
pτdr and pτsz are consistent for τsz under H0, it follows from Lemma 2.1 in Hausman (1978) that
ErηeffpW qηszpW qs “ ErηszpW q2s. Hence, E

”

pηeffpW q ´ ηszpW qq
2
ı

“ E
“

ηeffpW q
2
‰

´ E
“

ηszpW q
2
‰

.
Given this result, (A.24) now follows by Proposition 2 and the condition that Var rτpXq|D “ 1s ą 0.

Proof of Part (b): We proceed by establishing: (i) pτsz ´ pτdr
p
Ñ τsz ´ τdr ‰ 0; (ii) pVn

p
Ñ V ă 8,

under H1.
Under Assumption 5, and Condition (i) of the theorem, pppd, t, xq

p
Ñ ppd, t, xq and pmd,tpxq

p
Ñ

md,tpxq, uniformly in x, for pd, tq P S. Now, applying the LLN, we get pτdr
p
Ñ τdr and pτsz

p
Ñ τsz. Result

(i) then follows from the CMT. Next, we deduce from the uniform consistency of pp and pm, the CMT,
and LLN, that (A.23) holds under H1. Furthermore, Assumptions 2(iii) and 5.3 ensure that both pηsz

and pηdr are uniformly bounded, which leads to V ă 8. This concludes the proof of part (b). �

B Results on asymptotic linear expansion of local polynomial esti-
mators

In the next subsection, we provide some well-known results about the U-statistics, based on which,
we derive uniform stochastic expansions of local polynomial estimators in Section B.2.

B.1 Rates of convergence: U-Statistic

Let tXiu
n
i“1 be a random sample from an unknown distribution. Given a real-valued function

hpx1, ..., xrq that possibly depends on the sample size, define

Un “
pn´ rq!

n!

ÿ

sPSpn,rq

hpXs1 , ..., Xrq,

as a r-th order U-statistic with kernel h, where the summation is over Spn, rq, the set of permutation
ps1, ..., srq of size r of the set t1, ..., nu. Since a given function h can always be replaced by a symmetric
one, we restrict attention to symmetric kernels in what follows. That is, Un can be equivalently
represented as

Un “

˜

n

r

¸´1
ÿ

sPCpn,rq
hpXs1 , ..., Xsrq,

where Cpn, rq is the set of combinations ps1, ..., srq of size r of the set t1, ..., nu.
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For 1 ď s ď r, define the quantities hs and σs by

hspx1, ..., xsq “ Erhpx1, ..., xs, Xs`1, ..., Xrqs and σs “ Var rhspX1, ..., Xsqs
1{2 .

We call Un with kernel h is s˚’th order degenerate if σs “ 0 for all s ď s˚.

Lemma B.1 Let h : X r Ñ R be a permutation-symmetric, measurable function of r arguments such
that ErhpX1, ..., Xrqs “ 0, and σr ă 8, then Un “ Op

´

řr
s“1

σs
ns{2

¯

.

Note that if the U-statistic is s˚-th order degenerate, its convergence rate is
řr
s“s˚`1

σs
ns{2 . The lemma

follows directly from Markov’s inequality, and therefore, we omit the proof.

B.2 Asymptotic linear expansion of local polynomial estimators

In this section, we provide some results on the asymptotic expansion of the local polynomial
estimators.

For pd, tq P S´, we define the summand of the (local) score function as

rAd,tpW,x, γq “

˜

Id,t ´
exppXpxcq

1γd,tq

1`
ř

pd1,t1qPS´ exppXpxcq1γd1,t1q

¸

HphqXpxcq rKpspX;x, h, λq,

where Hphq is a diagonal matrix with the main diagonal entries being h´|k|, for lexicographic-ordered
k, with 0 ď |k| ď p. Here, we have dropped the subscript of X to ease notational burden. We
let ι´ptSd,tupd,tqPS´q “ pS11,0, S

1
0,1, S

1
0,0q

1. The local Fisher information matrix evaluated at x can be
approximated as

Ipxq “ diagpp´pxqq ´ p´pxqp
1
´pxq, (B.1)

where p´pxq “ ppp1, 0, xq, pp0, 1, xq, pp0, 0, xqq. In addition, we define the local hessian as

Σpspxq “ ErIpXq bHphqXpxcqXpxcq1Hphq rKpspX;x, h, λqs.

With these notations in hand, we can introduce several quantities associated with the linear ex-
pansion of the PS estimator. For each pd, tq P S´,

Ad,tpW,xq “ pe3,ιpd,tq b eNp,1q
1Σpspxq´1

rA´pW,x, γ
˚pxqq,

G
ppsq
d,t pW,xq “ e13,ιpd,tqIpxqA´pW,xq,

where rA´pW,x, γq “ ι´ptÃd,tpW,x, γqupd,tqPS´q, and A´pW,xq “ ι´ptAd,tpW,xqupd,tqPS´q. For the
treated group in t “ 1, let Gppsq1,1 pxq “ ´

ř

pd,tqPS´ G
ppsq
d,t pxq. Additionally, we define, for a given

observation Xj

B
ppsq
n,d,tpXjq “ ErGppsqd,t pWi, Xjq|Xjs, (B.2)

S
ppsq
n,d,tpXjq “

1

n´ 1

ÿ

i‰j

G
ppsq
d,t pWi, Xjq ´ ErGppsqd,t pWi, Xjq|Xjs,

R
ppsq
n,d,tpXjq “ p̂pd, t,Xjq ´ ppd, t,Xjq ´B

ppsq
n,d,tpXjq ´ S

ppsq
n,d,tpXjq.

The three quantities represent the bias, the first-order stochastic part, and the remaining terms derived
from the decomposition of the PS estimator, respectively.
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Focusing on the OR model, for pd, tq P S, the leave-one-out local polynomial estimator has a
closed-form solution given by

pmd,tpXjq “
1

n´ 1

ÿ

i‰j

e1Nq ,1Σ̂or ´1
d,t pXjqXipXjqHpbd,tqId,t,iYi rKorpXi;Xj , bd,t, ϑd,tq,

where pΣor
d,tpXjq “

1
n´1

ř

i‰j Id,t,iHpbd,tqXipxcqXipxcq
1Hpbd,tq rKorpXi;Xj , bd,t, ϑd,tq.

Analogous to the PS case, we use Bporqn,d,t, S
porq
n,d,t, and R

porq
n,d,t to represent the bias, the first-order

stochastic and the remainder terms, respectively. For a given observation Xj , these quantities are
specified as

B
porq
n,d,tpXjq “ ErGporqd,t pWi, Xjq|Xjs,

S
porq
n,d,tpXjq “

1

n´ 1

ÿ

i‰j

G
porq
n,d,tpWi, Xjq ´ ErGporqd,t pWi, Xjq|Xjs,

R
porq
n,d,tpXjq “ m̂d,tpXjq ´md,tpXjq ´B

porq
n,d,tpXjq ´ S

porq
n,d,tpXjq,

where

G
porq
d,t pWi, Xjq “ e1Nq ,1Σor

d,tpXjq
´1Hpbd,tqXipXjqId,t,iξ

or
d,t,ipXjq rKorpXi;Xj , bd,t, ϑd,tq,

Σor
d,tpxq “ ErId,t,iHpbd,tqXipxcqXipxcq

1Hpbd,tq rKorpX;Xj , bd,t, ϑd,tqs,

ξord,tpxq “ Id,tpY ´Xpxq1β˚d,tq.

Lemma B.2 Suppose Assumptions 1, 2, and 5 are satisfied. In addition, Assumptions 5.2(ii) and
5.5(iv)-(vii) hold for pd, tq “ p1, 1q. Then, for pd, tq P S,

sup
jPNn

ˇ

ˇ

ˇ
B
ppsq
n,d,tpXjq

ˇ

ˇ

ˇ
“ Opph

p`1 ` λo ` λuq, (B.3)

sup
jPNn

ˇ

ˇ

ˇ
S
ppsq
n,d,tpXjq

ˇ

ˇ

ˇ
“ Op

´

a

log n{ pnhυcq
¯

, (B.4)

sup
jPNn

ˇ

ˇ

ˇ
R
ppsq
n,d,tpXjq

ˇ

ˇ

ˇ
“ Op

ˆ

´

hp`1 ` λo ` λu `
a

log n{ pnhυcq
¯2
˙

, (B.5)

sup
jPNn

ˇ

ˇ

ˇ
B
porq
n,d,tpXjq

ˇ

ˇ

ˇ
“ Oppb

q`1
d,t ` ϑd,t,o ` ϑd,t,uq,

sup
jPNn

ˇ

ˇ

ˇ
S
porq
n,d,tpXjq

ˇ

ˇ

ˇ
“ Op

´
b

log n{ pnbd,t
υcq

¯

,

sup
jPNn

ˇ

ˇ

ˇ
R
porq
n,d,tpXjq

ˇ

ˇ

ˇ
“ Op

ˆ

´

bp`1
d,t ` ϑd,t,o ` ϑd,t,u `

b

log n{ pnbd,t
υcq

¯2
˙

.

Before stating the proof, we need to introduce some additional notations. Since kernel functions K
and L are supported on r´1, 1sυc , the effective support of Kpp¨ ´ xcq{hq is Sxc,h “ tz : xc ` hz P X u X
r´1, 1sυc . When Sxc,h “ r´1, 1sυc , x is an interior point, otherwise x lies close to the boundary. For
any measurable set S Ă r´1, 1sυc , let νkpSq “

ş

S ukKpuqdu and κkpSq “
ş

S ukK2puqdu. Now we let
the N` ˆN` matrices Q`pxcq and T`pxcq, and the N` ˆ nk matrix M`,kpxcq be defined as

Q`pxcq “

¨

˚

˚

˝

Qp0,0qpSxc,hq ... Qp0,`qpSxc,hq
...

. . .
...

Qp`,0qpSxc,hq . . . Qp`,`qpSxc,hq

˛

‹

‹

‚

, (B.6)
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T`pxcq “

¨

˚

˚

˝

Tp0,0qpSxc,hq ... Tp0,`qpSxc,hq
...

. . .
...

Tp`,0qpSxc,hq . . . Tp`,`qpSxc,hq

˛

‹

‹

‚

,

M`,kpxcq “

¨

˚

˚

˝

Qp0,kqpSxc,hq
...

Qp`,kqpSxc,hq

˛

‹

‹

‚

,

where Q
pi,jq
` pSq and T

pi,jq
` pSq are ni ˆ nj matrices with their respective pl,mq-th element given by

νπiplq`πjpmqpSq and κπiplq`πjpmqpSq. When x is a boundary point, these quantities are not invariant to
x, and thus, capture the boundary effects.

Proof of Lemma B.2:
Given that our data is a random sample, it is straightforward to show the “leave-one-out” estimators
considered in the lemma is asymptotically equivalent to the usual “leave-in” estimators. See Rothe and
Firpo (2019) for a detailed exposition. We therefore focus on the “leave-in” versions in what follows.

We prove the results for PS only. The case for OR follows by generalizing Proposition 7 of Fan
and Guerre (2016) to the case where discrete covariates are accommodated. This generalization can
be achieved by employing the techniques similar to those presented here.

For (B.3), we have

sup
xPX

∥∥∥Bppsqn,d,tpxq
∥∥∥ “ sup

xPX

∥∥∥e13,ιpd,tqIpxqpI3 b e
1
Np,1qΣ

pspxq´1 Er rA´pW,x, γ˚pxqqs
∥∥∥

ď sup
xPX

∥∥∥e13,ιpd,tqIpxq∥∥∥ ¨ sup
xPX

∥∥∥pI3 b e
1
Np,1qΣ

pspxq´1
∥∥∥ ¨ sup

xPX

∥∥∥Er rA´pW,x, γ˚pxqqs∥∥∥ .
By definition, supxPX ‖Ipxq‖ “ Op1q. Standard change of variable gives

Σpspxq “ Ipxq bQppxcqfXpxq `O ph` λo ` λuq . (B.7)

Since infxPX λminpIpxqbQppxcqq “ infxPX λminpIpxqq¨infxcPXc λminpQppxcqq ą 0 and infxPX fXpxq ą 0

under Assumptions 2(iii), 5.6, and 5.1, we get

sup
xPX

∥∥Ipxq´1 bQppxcq
´1 ¨ fXpxq

´1
∥∥ “ Op1q, (B.8)

and thus, supxPX
∥∥Σpspxq´1

∥∥ “ Op1q. Now, from Lemma B.3, we conclude that supxPX

∥∥∥Bppsqn,d,tpxq
∥∥∥ “

O
`

hp`1 ` λo ` λu
˘

.

Having just demonstrated that Σpspxq´1 is uniformly bounded over X , we can now apply Lemma
B.3 and the CMT to deduce (B.4).

To establish (B.5), the proof proceed through three steps. First, we demonstrate the existence of
a global maximizer for the local log-likelihood function defined in (3.6). Subsequently, we obtain the
uniform asymptotic linear expansion for the local maximum likelihood estimator. Finally, we apply
the delta method to verify that the remainder term exhibits the required rate.

Step 1: Define γ̄ “ pI3 bHphq
´1qγ and γ̄˚p¨q “ pI3 bHphq

´1qγ˚p¨q. Using the scaled parameters,
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we rewrite the likelihood as

Lpsn pγ̄;xq “
1

n

n
ÿ

i“1

ÿ

pd1,t1qPS´

Id,tHphqXpxcq
1γ̄d,t

´ log

¨

˝1`
ÿ

pd1,t1qPS´

exp
`

HphqXpxcq
1γ̄d1,t1

˘

˛

‚
rKpspXi;x, h, λq. (B.9)

The gradient and hessian of Lpsn pγ̄;xq with respect to γ̄ are given by

∇γ̄Lpsn pγ̄;xq “
1

n

n
ÿ

i“1

rA´pWi, x, γq, ∇2
γ̄γ̄1Lpsn pγ̄;xq “

1

n

n
ÿ

i“1

HpWi, x, γq,

where

HpX,x, γq “ IpXc, xc, γq b rHpX,x, h, λq,

rHpX,x, h, λq “ HphqXpxcqXpxcq
1Hphq rKpspX;x, h, λq,

IpXc, xc, γq “ diagpΨ´pXc, xc, γqq ´Ψ´pXc, xc, γqΨ´pXc, xc, γq
1,

Ψ´pX,x, γq “ ι´ptΨd,tpXpxq, γqupd,tqPS´q,

Ψd,tpx, γq “
exp px1γd,tq

1`
ř

pd1,t1qPS´ exp
`

x1γd1,t1
˘ .

Next, we define the following two events

E1npcq “

#

sup
xPX

∥∥∥∥∥ 1

n

n
ÿ

i“1

rA´pWi, x, γ
˚pxqq

∥∥∥∥∥ ă cκn

+

,

E2npcq “

#

inf
xPX

λmin

˜

1

n

n
ÿ

i“1

rHpX;x, h, λq

¸

ą c

+

,

for c ą 0 and κn “
a

log n{ pnhυcq ` hp`1 ` λu ` λo.
By Lemma B.3, we deduce that P pE1npc1qq Ñ 1, for any fixed c1 ą 0.
Now, standard change-of-variable analysis gives

Er rHpX;x, h, λqs “ QppxcqfXpxq `O ph` λo ` λuq .

Under Assumptions 5.1 and 5.6, infxPX fXpxq ą 0 and infxcPXc λmin pQppxcqq ą 0. As a result, there
exists c2 ą 0 such that infxPX λminpEr rHpX;x, h, λqsq ě c2, when n is sufficiently large. Coupled with
the fact that

sup
xPX

∥∥∥∥∥ 1

n

n
ÿ

i“1

rHpXi;x, h, λq ´ Er rHpX;x, h, λqs

∥∥∥∥∥ “ Op

´

a

log n{ pnhυcq
¯

.

which is a consequence of Lemma 5 from Fan and Guerre (2016), we deduce that P pE2npcqq Ñ 1, for
c ď c2.

Next, we define a neighborhood of γ̄˚p¨q,

Γpδq “ tγp¨q : ‖γ̄p¨q ´ γ̄˚p¨q‖8 ď δκnu .
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Theorem 1 in Tanabe and Sagae (1992) implies that

inf
x,yPX

Ipx, y, γpyqq ą inf
x,yPX

$

&

%

ź

pd,tqPS´

Ψd,tptxpyq
1γd,tpyqupd,tqPS´q

,

.

-

¨ I3, (B.10)

in the sense that their difference is positive definite. For any δ ą 0, if γ P Γpδq, Assumption 5.5(ii)
implies that ‖γp¨q ´ γ˚p¨q‖8 “ op1q. This further suggests that, when n is sufficiently large, the
right-hand side of (B.10) is bounded from below by c3I3, for some positive constant c3.

The analysis leading up to this point demonstrates that for for a given c1 ą 0, it is possible to
select n large enough such that P pE1npc1qq ą 1 ´ ε{2, P pE2npc2qq ą 1 ´ ε{2, and (B.10) is satisfied.
Now, set δ0 ą 2c1c

´1
2 c´1

3 . Then, for any γp¨q P BΓpδ0q, i.e., ‖γ̄pxq ´ γ̄˚pxq‖ “ δ0κn, for all x P X , we
have supxPX tL

ps
n pγ̄pxq;xq ´ Lpsn pγ̄˚pxq;xqu ă 0, with a probability of at least 1´ ε. This is because

sup
xPX

tLpsn pγ̄pxq;xq ´ Lpsn pγ̄˚pxq;xqu

“ sup
xPX

 

∇γ̄Lpsn pγ̄˚pxq;xqpγ̄ ´ γ̄˚pxqq ´ pγ̄pxq ´ γ̄˚pxqq1
`

´∇2
γ̄γ̄1Lpsn pγ̄:;xq

˘

pγ̄pxq ´ γ̄˚pxqq{2
(

ď

˜

sup
xPX

∥∥∥∥∥ 1

n

n
ÿ

i“1

rA´pWi, x, γ
˚pxqq

∥∥∥∥∥´ c1κn

¸

¨ δ0κn

ă0,

where γ̄:, dependent on x, lies between γ̄pxq and γ̄˚pxq. Since Lpsn pγ̄;xq is continuous, a local maximum,
denoted by ˆ̄γpxq, exists within the compact set tγ̄ : ‖γ̄ ´ γ̄˚pxq‖ ď δ0κnu, for any x P X . Furthermore,
due to the concavity of Lpsn p¨;xq, ˆ̄γpxq maximizes Lpsn p¨;xq over R3Np for any x P X . Hence, ˆ̄γp¨q is
the global maximizer of Lpsn pγ̄p¨q; ¨q with a probability exceeding 1 ´ ε. As ε is arbitrary and δ0 is
independent of x, it can be inferred that

∥∥ˆ̄γp¨q ´ γ̄˚p¨q
∥∥
8
“ Oppκnq.

Step 2: We proceed to derive the uniform asymptotic linear expansion of ˆ̄γp¨q ´ γ̄˚p¨q. Expanding
Lpsn pγ̄;xq using a third-order Taylor series and rearranging the terms lead to

ˆ̄γpxq ´ γ̄˚pxq “
1

n

n
ÿ

i“1

Σpspxq´1
rA´pWi, x, γ

˚pxqq `RγpXjq,

where

Rγpxq “ ´
`

Σps
n pxq

´1 ´ Σpspxq´1
˘

¨
1

n

n
ÿ

i“1

rA´pWi, x, γ
˚pxqq ´ Σps

n pxq
´1Cnpxq,

Cnpxq “
1

2n

n
ÿ

i“1

ÿ

pd,tqPS´

ÿ

pd1,t1qPS´

pˆ̄γd,tpxq ´ γ̄
˚
d,tpxqq

1HphqXipxcqXipxcq
1Hphqpˆ̄γd1,t1pxq ´ γ̄

˚
d1,t1pxqq

¨ 9Iιpd,tq,ιpd1,t1qpXc,i, xc, γ̃q bXipxcqHphq rKpspXi;x, h, λq,

for an intermediate point γ̃ lying between pγpxq and γ˚pxq, Σps
n p¨q “

1
n

řn
i“1 HpWi, ¨, γ

˚p¨qq, and

9Iιpd1,t1q,ιpd2,t2q “ ι´
ˆ

!

9Ipd3,t3qιpd1,t1q,ιpd2,t2q

)

pd3,t3qPS´

˙

,

9Ipd3,t3qιpd1,t1q,ιpd2,t2q
pXc, xc, γq “ 1tpd1, t1q “ pd2, t2quΨd1,t1pXpxcq, γqp1tpd1, t1q “ pd3, t3qu ´Ψd3,t3pXpxcq, γqq

`
ÿ

`1,`2Pt1,2u,`1‰`2

Ψd`1 ,t`1
pXpxcq, γqΨd`2 ,t`2

pXpxcq, γqp1tpd`2 , t`2q “ pd3, t3qu ´Ψd3,t3pXpxcq, γqq.
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In view of (B.7) and (B.8),
∥∥Σpsp¨q´1

∥∥ “ Op1q. Taking this into account, along with Lemma B.3,
we obtain

sup
xPX

∥∥∥∥∥ 1

n

n
ÿ

i“1

A´pWi, x, γ
˚q ´ ErA´pW,x, γ

˚qs

∥∥∥∥∥ “ Op

´

a

log n{ pnhυcq
¯

,

sup
xPX

‖ErA´pW,x, γ
˚qs‖ “ Op

`

hp`1 ` λo ` λu
˘

.

Furthermore,

sup
xPX

∥∥Σps
n pxq

´1 ´ Σpspxq´1
∥∥

ď sup
xPX

‖Σps
n pxq‖

´1
¨ sup
xPX

‖Σps
n pxq ´ Σpspxq‖ ¨ sup

xPX
‖Σpspxq‖´1

“ Opp1q ¨Op

´

a

log n{ pnhυcq
¯

¨Op1q

“ Op

´

a

log n{ pnhυcq
¯

.

where the first inequality is a result of the relationship A´1 ´ B´1 “ ´A´1pA ´ BqB´1 and the
Cauchy-Schwarz inequality. The next line is derived from (B.7) and (B.8), and arguments similar to
those employed in the proof of Lemma 5 in Fan and Guerre (2016).

By the triangular inequality and the Cauchy-Schwarz inequality,

sup
xPX

‖Cnpxq‖ ď
1

2n

n
ÿ

i“1

ÿ

pd,tqPS´

ÿ

pd1,t1qPS´

∥∥∥ 9Iιpd,tq,ιpd1,t1qpXc,i, xc, γ̃pxqq
∥∥∥

¨
∥∥ˆ̄γd,tpxq ´ γ̄

˚
d,tpxq

∥∥ ¨ ∥∥ˆ̄γd1,t1pxq ´ γ̄
˚
d1,t1pxq

∥∥ ¨ ‖HphqXipxcq‖
3
¨

∣∣∣ rKpspXi;x, h, λq
∣∣∣

À max
pd,tq,pd1,t1qPt0,1u

sup
x,zPX

!∥∥∥ 9Iιpd,tq,ιpd1,t1qpzc, xc, γ̃pxqq
∥∥∥ ¨ ∥∥ˆ̄γd,tpxq ´ γ̄

˚
d,tpxq

∥∥ ¨ ∥∥ˆ̄γd1,t1pxq ´ γ̄
˚
d1,t1pxq

∥∥)
(B.11)

¨
1

n

n
ÿ

i“1

sup
xPX

!∣∣∣Kps
h pX

p1q
i pxcqq

∣∣∣ ¨ ‖HphqXipxcq‖
3
)

. (B.12)

When γ̃ converges uniformly to γ˚, as established in the first step,
∥∥∥ 9Iιpd,tq,ιpd1,t1qpzc, xc, γ̃pxqq

∥∥∥ in (B.11)
is asymptotically bounded, uniformly in x, z P X , and for each pd, tq, pd1, t1q P S´. In addition, we can
deduce from a standard change of variable argument that (B.12) is Opp1q. Hence, it can be concluded
that supxPX ‖Cnpxq‖ “ Op

`

κ2
n

˘

. As a result, we obtain supxPX ‖Rγpxq‖ “ Op
`

κ2
n

˘

.
Step 3: We note that pppd, t, xq ´ ppd, t, xq “ Ψd,tpeNp,1, pγpxqq ´ Ψd,tpeNp,1, γ

˚pxqq and
∇γd,tΨd,tpeNp,1, γ

˚pxqq “ e13,ιpd,tqIpxq. Utilizing the delta method in conjunction with the uniform
expansion obtained in Step 2 then establishes (B.5). This completes the proof of the lemma. �

Lemma B.3 Suppose that the conditions of Lemma B.2 hold. Then

sup
xPX

∥∥∥∥∥ 1

n

n
ÿ

i“1

rA´pWi, x, γ
˚pxqq ´ Er rA´pW,x, γ˚pxqqs

∥∥∥∥∥ “ Op

´

plog n{ pnhυcqq1{2
¯

, (B.13)

sup
xPX

∥∥∥Er rA´pW,x, γ˚pxqqs∥∥∥ “ O
`

hp`1 ` λo ` λu
˘

. (B.14)

Proof of Lemma B.3:
The proof of (B.13) proceeds along similar lines as in Lemma 5 of Fan and Guerre (2016). For any
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given vector k with 0 ď |k| ď p, define

rA
pkq
d,t pW,x, γq “ pId,t ´Ψd,tpXpxcq, γqqh

´|k|pXc ´ xcq
k
rK pX;x, h, λq ,

rA
:,pkq
d,t pW,xc, γq “ pId,t ´Ψd,tpXpxcq, γqqh

´|k|pXc ´ xcq
kK

ˆ

Xc ´ xc
h

˙

,

for pd, tq P S´, and let κn “ plog n{ pnhυcqq1{2 . Assumption 5.5 implies that κn Ñ 0. Moreover, under
Assumptions 5.1, 5.2, and 5.4, we have that, for any ε ą 0, there exists δn “ n´κa such that (i)

max
iPNn

∣∣∣ rA:,pkqd,t pWi, xc, γ
˚pxqq ´ rA

:,pkq
d,t pWi, x

1
c, γ

˚px1qq
∣∣∣ ď hυcκnε{3, (B.15)∣∣∣E ”

rA
:,pkq
d,t pW,xc, γ

˚pxqq
ı

´ E
”

rA
:,pkq
d,t pW,x

1
c, γ

˚px1qq
ı∣∣∣ ď hυcκnε{3, (B.16)

for pd, tq P S´ and for all x, x1 P X such that xd “ x1d and ‖xc ´ x1c‖ ď δn; (ii) there is a positive
integer Jn “ O pnκbq, κb ą 0, and a set txjuJnj“1 Ă X , such that for all x P X , there exists a j satisfying
x P B pxj , δnq X X , and for all x1 P B pxj , δnq, x1d “ xd,j . As a result, X “

ŤJn
j“1 pB pxj , δnq X X q .

Now, observe that, for pd, tq P S´

sup
xPX

∣∣∣∣∣ 1

n

n
ÿ

i“1

rA
pkq
d,t pWi, x, γ

˚pxqq ´ Er rApkqd,t pW,x, γ
˚pxqqs

∣∣∣∣∣
ď max
jPNJn

∣∣∣∣∣ 1

n

n
ÿ

i“1

rA
pkq
d,t pWi, xj , γ

˚pxjqq ´ Er rApkqd,t pW,xj , γ
˚pxjqqs

∣∣∣∣∣ (B.17)

` max
jPNJn

sup
xPBpxj ,δnqXX

∣∣∣∣∣ 1

n

n
ÿ

i“1

´

rA
pkq
d,t pWi, x, γ

˚pxqq ´ rA
pkq
d,t pWi, xj , γ

˚pxjqq
¯

∣∣∣∣∣ (B.18)

` max
jPNJn

sup
xPBpxj ,δnqXX

∣∣∣Er rApkqd,t pW,x, γ˚pxqqs ´ Er rApkqd,t pW,xj , γ
˚pxjqqs

∣∣∣ . (B.19)

In view of (B.15), (B.18) is bounded from above by

max
iPNn,jPNJn

sup
xPBpxj ,δnqXX

h´υc
∣∣∣ rA:,pkqd,t pWi, xc, γ

˚pxqq ´ rA
:,pkq
d,t pWi, xc,j , γ

˚pxjqq
∣∣∣ ď κnε{3.

Meanwhile, since xd “ xd,j , whenever x P B pxj , δnq, (B.16) then implies that (B.19) ď κnε{3.
To bound (B.17), we apply Bernstein’s inequality.1 Since the support of K is bounded, we have

that
∣∣∣ rApkqd,t pW,x, γ˚pxqq∣∣∣ ď C ‖K‖8, for a sufficiently large positive constant C. Additionally, standard

calculation gives

Var
”

rAd,tpW,x, γ
˚pxqq

ı

“ErpId,t ´ ppd, t, pXc, xdqqq
2HphqXpxcqXpxcq

1HphqKhpXipxcqq
2
1tXd “ xdus

` o
`

h´υc
˘

“h´υcIpxqιpd,tq,ιpd,tqTppxcqfXpxq ` o
`

h´υc
˘

.

Hence, Var
”

rA
pkq
d,t pW,x, γ

˚pxqq
ı

ď Ch´υc under Assumption 5.4.

1 Let tXiu
n
i“1 be independent zero-mean random variables. Suppose |Xi| ď M almost surely, for i P Nn. Then,

Bernstein’s inequality states that for all t ě 0,

P

˜

n
ÿ

i“1

Xi ě t

¸

ď exp

ˆ

´
t2{2

řn
i“1 ErX2

i s `Mt{3

˙

.
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With these two results in hand, we have

P

˜

max
jPNJn

∣∣∣∣∣ 1

n

n
ÿ

i“1

rA
pkq
d,t pWi, xj , γ

˚pxjqq ´ Er rApkqd,t pW,xj , γ
˚pxjqqs

∣∣∣∣∣ ě κnε{3

¸

ď

Jn
ÿ

j“1

P

˜∣∣∣∣∣ 1

n

n
ÿ

i“1

rA
pkq
d,t pWi, xj , γ

˚pxjqq ´ Er rApkqd,t pW,xj , γ
˚pxjqqs

∣∣∣∣∣ ě κnε{3

¸

ď2Jn exp

ˆ

´
ε2 log n

C ` Cpε log n ¨ n´1h´υcq1{2

˙

ď exp

ˆ

´
pε2 ´ κbq log n

C

˙

,

where the first inequality is due to the Bonferoni inequality and the second is by Bernstein’s inequality.
The far right side goes to 0 when ε2 ą κb. Hence, (B.17) ď κnε{3.

Combining (B.17)-(B.19) gives

P

˜

sup
xPX

∣∣∣∣∣ 1

n

n
ÿ

i“1

rA
pkq
d,t pWi, x, γ

˚pxqq ´ Er rApkqd,t pW,x, γ
˚pxqqs

∣∣∣∣∣ ě κnε

¸

Ñ 0. (B.20)

This complete the proof for (B.13).
Next, we establish (B.14). Define Iopxd, zdq “

řυo
s“1 1t|xo,s ´ zo,s| “ 1u

ś

l‰s 1txo,l “ zo,lu, and
Iupxd, zdq “

řυu
s“1 1txu,s ‰ zu,su

ś

l‰s 1txu,l “ zu,lu. From a Taylor expansion of order p ` 1, we
deduce that, uniformly in x P X ,

Er rAd,tpW,x, γ˚pxqqs

“
1

pp` 1q!

ÿ

pd1,t1qPS´

E
”

IpXc, xdqιpd,tq,ιpd1,t1qg
pp`1q
d1,t1 pXc, xdq

1Xpp`1qpxcqHphqXpxcqKhpX
p1qpxcqq1tXd “ xdu

ı

`
ÿ

zdPXdzxd

ÿ

j“o,u

λjIjpxd, zdq pppd, t, xq ´ ppd, t, pxc, zdqqqE
”

HphqXpxcqKhpX
p1qpxcqq1tXd “ zdu

ı

` ps.o.q

“
hp`1

pp` 1q!

ÿ

pd1,t1qPS´

Ipxqιpd,tq,ιpd1,t1qMp,p`1pxcqg
pp`1q
d1,t1 pxqfXpxq

`
ÿ

zdPXdzxd

ÿ

j“o,u

λjIjpxd, zdq pppd, t, xq ´ ppd, t, pxc, zdqqqMp,0pxcqfXpxc, zdq

` ophp`1 ` λo ` λuq

“Ophp`1 ` λo ` λuq,

where ps.o.q stands for smaller order terms. The last equality is due to Assumptions 5.2 and 5.4. �

C Auxiliary lemmas and results

C.1 Auxiliary lemmas

Lemma C.1 Under Assumptions 1 and 2, for d, t P t0, 1u and any measurable function h : X Ñ R,

piq E rId,tpY ´md,tpXqqhpXqs “ 0, (C.1)

piiq E rpw1,1 ´ wd,tq pW qhpXqs “ 0. (C.2)

Proof of Lemma C.1: This lemma follows immediately from the LIE. �
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Lemma C.2 Suppose the conditions of Theorem 2 hold. Then, for pw defined in (3.1) with pp given by
(3.7), we have

EnrpY ´md,tpXqq p pwd,t ´ wd,tq pW qs “ oppn
´1{2q,

for pd, tq P S´.

Proof of Lemma C.2:

Recall the definition of w: as given in (A.15), and decompose the difference between pwd,t and wd,t
as

EnrpY ´md,tpXqq p pwd,t ´ wd,tq pW qs

“ En
”

pY ´md,tpXqq
´

w:d,t ´ wd,t

¯

pW q
ı

` En
”

pY ´md,tpXqq
´

pwd,t ´ w
:

d,t

¯

pW q
ı

” ∆1
w `∆2

w.

We bound the two terms in turn. By a third-order Taylor expansion of ∆1
w around ppd, t, xq, we

get

∆1
w “En

„

Id,tpY ´md,tpXqq

ppd, t,Xqpp1, 1q
pppp1, 1, Xq ´ pp1, 1, Xqq



´ En
„

Id,tpp1, 1, XqpY ´md,tpXqq

p2pd, t,Xqpp1, 1q
ppppd, t,Xq ´ ppd, t,Xqq



`Rn,d,t

”∆11
w `∆12

w `Rn,d,t,

where the remainder term, Rn,d,t, collects the second-order terms. Specifically,

Rn,d,t “En
„

pY ´md,tpXqq
Id,t

pp1, 1q

ˆ

´
pppp1, 1, Xq ´ pp1, 1, Xqqppppd, t,Xq ´ ppd, t,Xqq

p2pd, t,Xq

˙

` En
„

pY ´md,tpXqq
Id,t

pp1, 1q

ˆ

pp1, 1, Xqppppd, t,Xq ´ ppd, t,Xqq2

p̃3pd, t,Xq

˙

,

where the intermediate point p̃pd, t, xq lying between pppd, t, xq and ppd, t, xq. Under Assumptions 2(iii)
and 5.1, both pppd, t, xq and ppd, t, xq are (asymptotically) bounded away from zero, uniformly over
X and for pd, tq P S. Moreover, Er|Y ´ md,tpXq|s “ Op1q under Assumption 5.3. We deduce that
Rn,d,t “ Op

´

‖ppp1, 1, ¨q ´ pp1, 1, ¨q‖2
8

¯

` Op

´

‖pppd, t, ¨q ´ ppd, t, ¨q‖2
8

¯

, which is op
`

n´1{2
˘

by Lemma
B.2 and Assumption 5.5.

The first two terms in the decomposition of ∆1
w share a similar structure. We only derive the

stochastic limit for ∆11
w .

Using the asymptotic expansion of local polynomial estimators in Lemma B.2, we obtain

∆11
w “

1

n

n
ÿ

i“1

"

Id,t,ipYi ´md,tpXiqq

ppd, t,Xiqpp1, 1q

´

B
ppsq
n,1,1pXiq ` S

ppsq
n,1,1pXiq `R

ppsq
n,1,1pXiq

¯

*

.

We proceed by establishing bounds for the convergence rate of the terms involving the bias, the
first-order stochastic and the remainder, respectively.
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To analyze the bias, we first apply Chebyshev’s inequality and obtain

1

n

n
ÿ

i“1

Id,t,ipYi ´md,tpXiqq

ppd, t,Xiqpp1, 1q
B
ppsq
n,1,1pXiq “E

„

Id,tpY ´md,tpXqq

ppd, t,Xqpp1, 1q
B
ppsq
n,1,1pXq



`Op

´

n´1{2php`1 ` λo ` λuq
¯

,

where the rate of the remainder comes from standard variance calculation. Owning to Lemma C.1(i),
the mean on the right-hand side is zero, which leads to

1

n

n
ÿ

i“1

Id,t,ipYi ´md,tpXiqq

ppd, t,Xiqpp1, 1q
B
ppsq
n,1,1pXiq “ Op

´

n´1{2php`1 ` λo ` λuq
¯

. (C.3)

Under the bandwidth restrictions in Assumption 5.5, this term is op
`

n´1{2
˘

.
We now introduce the term ψw1,d,tpWi,Wjq, which represents the summand of the first-order

stochastic term as follows

ψw1,d,tpWi,Wjq “
Id,t,ipYi ´md,tpXiqq

ppd, t,Xiqpp1, 1q

´

G
ppsq
1,1 pWj , Xiq ´ ErGppsq1,1 pWj , Xiq|Xis

¯

. (C.4)

By its definition, we have

1

n

n
ÿ

i“1

Id,t,ipYi ´md,tpXiqq

ppd, t,Xiqpp1, 1q
S
ppsq
n,1,1pXiq “

1

npn´ 1q

n
ÿ

i“1

n
ÿ

j‰i

ψw1,d,tpWi,Wjq. (C.5)

Given the construction, we have E rψw,d,tpWi,Wjq|Wis “ 0. Moreover, by Lemma C.1(i), we also
have that E rψw,d,tpWi,Wjq|Wjs “ 0. Hence, (C.5) represents a second-order U-statistic with first-order
degenerate kernel. Lemma B.1 and standard variance calculation then gives that

1

npn´ 1q

n
ÿ

i“1

n
ÿ

j‰i

ψw1,d,tpWi,Wjq “ Op

´

n´1h´υc{2
¯

, (C.6)

Under our bandwidth assumptions, this term is op
`

n´1{2
˘

.
Under Assumption 2(iii), ppd, t, xq is uniformly bounded away from zero for all x P X and for all

pd, tq P S´. Also, under Assumption 5.3, we have Er|Y ´ md,tpXq|s “ Op1q. Consequently, we can
deduce that

1

n

n
ÿ

i“1

Id,t,ipYi ´md,tpXiqq

ppd, t,Xiqpp1, 1q
R
ppsq
n,1,1pXiq “Op

ˆ

sup
iPNn

∣∣∣Rppsqn,1,1pXiq

∣∣∣˙
“Op

ˆ

´

hp`1 ` λo ` λu `
a

log n{ pnhυcq
¯2
˙

(C.7)

which is op
`

n´1{2
˘

under Assumption 5.5.
Combining (C.3), (C.6), and (C.7), we can conclude that ∆11

w “ op
`

n´1{2
˘

.
By the same reasoning, we can demonstrate that ∆12

w is dominated by the first-order stochastic
term. Define

ψw2,d,tpWi,Wjq “ ´
Id,tpp1, 1, XiqpYi ´md,tpXiqq

p2pd, t,Xiqpp1, 1q

´

G
ppsq
d,t pWj , Xiq ´ ErGppsqd,t pWj , Xiq|Xis

¯

, (C.8)

As a result, the leading term is given by n´1pn ´ 1q´1
řn
i“1

řn
j‰i ψw2,d,tpWi,Wjq, which has an order

of Op
`

n´1h´υc{2
˘

“ op
`

n´1{2
˘

. The detailed proof is omitted for brevity.
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Now, let’s consider ∆2
w. Define ppp1, 1q “ En

„

Id,tppp1, 1, Xq

pppd, t,Xq



.

∆2
w “ En

„

Id,tppp1, 1, XqpY ´md,tpXqq

pppd, t,Xq

ˆ

1

ppp1, 1q
´

1

pp1, 1q

˙

“ En
„

Id,tppp1, 1, XqpY ´md,tpXqq

pppd, t,Xq



¨Op p|ppp1, 1q ´ pp1, 1q|q ,

where the second line follows by a first-order Taylor expansion of the right-hand side of the first
equality in ppp1, 1q around pp1, 1q. In the proof of Lemma 3.1, it is established that when pp is uniformly
convergent to p, |ppp1, 1q ´ pp1, 1q| “ opp1q. The uniform convergence follows by Lemma B.2 under the
rate conditions specified in Assumption 5.5.

To study the first term, we can use an approach similar to the proof of ∆1
w, and show that

En
„

Id,tppp1, 1, XqpY ´md,tpXqq

pppd, t,Xq



“ En
„

Id,tpp1, 1, XqpY ´md,tpXqq

ppd, t,Xq



` op

´

n´1{2
¯

.

Due to Lemma C.1(i), the first term on the right-hand side of the preceding equation has a mean of
zero. Consequently, this term is of order Op

`

n´1{2
˘

. This completes our proof. �

Lemma C.3 Suppose the conditions of Theorem 2 hold, then with pm given by (3.9),

Enrpw1,1 ´ wd,tqpW q ¨ ppmd,t ´md,tqs “ oppn
´1{2q,

for pd, tq P S´.

Proof of Lemma C.3:
The proof closely resembles the first part of Lemma C.2. We first decompose the estimation error for
the OR functions as

Enrpw1,1 ´ wd,tqpW q ppmd,t ´md,tq pXqs “
1

n

n
ÿ

i“1

!

pw1,1 ´ wd,tqpWiq

´

B
porq
n,d,tpXiq ` S

porq
n,d,tpXiq `R

porq
n,d,tpXiq

¯)

.

We address the three terms individually. For the bias term

1

n

n
ÿ

i“1

!

pw1,1 ´ wd,tqpWiqB
porq
n,d,tpXiq

)

“ E
”

pw1,1 ´ wd,tqpW qB
porq
n,d,tpXq

ı

`Op

´

n´1{2pbq`1
d,t ` ϑo,d,t ` ϑu,d,tq

¯

“ Op

´

n´1{2pbq`1
d,t ` ϑo,d,t ` ϑu,d,tq

¯

“ op

´

n´1{2
¯

,

where the first equality follows from Chebyshev’s inequality, and the second is derived from Lemma
C.1(ii).

Next, for the first-order stochastic term, we define

ψm,d,tpWi,Wjq “ pw1,1 ´ wd,tqpWiq

´

G
porq
d,t pWj , Xiq ´ ErGporqd,t pWj , Xiq|Xis

¯

, (C.9)

By definition,

1

n

n
ÿ

i“1

!

pw1,1 ´ wd,tqpWiqS
porq
n,d,tpXiq

)

“
1

npn´ 1q

n
ÿ

i“1

n
ÿ

j‰i

ψm,d,tpWi,Wjq.

In view of Lemma C.1(ii), the right-hand side of the above equation is a second-order U-statistic
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with a degenerate first-order kernel. A standard variance calculation shows that it is of the order
Op

´

n´1b
υc{2
d,t

¯

, which is op
`

n´1{2
˘

due to our bandwidth restrictions.
Finally, as ppd, t, xq is uniformly bounded away from zero under Assumption 2(iii), we have

1

n

n
ÿ

i“1

!

pw1,1 ´ wd,tqpWiqR
porq
n,d,tpXiq

)

“ Op

ˆ

sup
iPNn

∣∣∣Rporqn,d,tpXiq

∣∣∣˙

“ Op

˜

ˆ

pbq`1
d,t ` ϑo,d,t ` ϑu,d,tq `

c

log n{
´

nbυcd,t

¯

˙2
¸

,

which is op
`

n´1{2
˘

under Assumption 5.5. This completes our proof. �

C.2 Mean integrated squared error

Cross-validated bandwidth asymptotically minimizes the mean integrated squared errors (MISE).
Given user-specified weight functions ωpsp¨q, ωord,tp¨q : X Ñ R`, MISE is defined as

χph, λ, tbd,t, ϑd,tupd,tqPS´q “

ż

X
E
”

‖p̂´pxq ´ p´pxq‖2
ı

ωpspxqdx

`
ÿ

pd,tqPS´

ż

X
E
”

|m̂d,tpxq ´md,tpxq|2
ı

ωord,tpxqdx.

Let ph˚, λ˚, tb˚d,t, ϑ
˚
d,tupd,tqPS´q denote the minimizer of the MISE. In the subsequent analysis, we

investigate the properties of these optimal smoothing parameters.
For pd, tq P S´, we represent the nk ˆ 1 vector of k-th derivatives ppd, t, xq as p

pkq
d,t pxq, or-

dered lexicographically according to the method discussed earlier in the paper. Define g
pkq
´ pxq “

´

g
pkq
1,0pxq,g

pkq
0,1pxq,g

pkq
0,0pxq

¯

. For j “ p, q, let %bj,1pxcq “ e1Nj ,1
Qjpxcq

´1Mj,j`1pxcq, %bj,2pxcq “

e1Nj ,1
Qjpxcq

´1Mj,0pxcq, and %vj pxcq “ e1Nj ,1
Qjpxcq

´1TjpxcqQjpxcq
´1eNj ,1. Additionally, we define

terms associated with the asymptotic bias and variance of p̂´pxq ´ p´pxq as follows

Bpspx, h, λq “ hp`1

pp` 1q!
%bp,1pxcqg

pp`1q
´ pxqIpxq

`
ÿ

zdPXdzxd

ÿ

j“o,u

fXpxc, zdq

fXpxq
λjIjpxd, zdq%

b
p,2pxcq pp´pxq ´ p´pxc, zdqq ,

Vpspx, h, λq “
Ipxq%vppxcq
hυcfXpxq

.

For the OR functions, we define

Bord,tpx, b, ϑq “
bq`1

pq ` 1q!

´

%bq,1pxcqm
pq`1q
d,t pxq

¯

`
ÿ

zdPXdzxd

ÿ

j“o,u

fXpxc, zdq

fXpxq
ϑjIjpxd, zdq%

b
q,2pxcq pmd,tpxq ´md,tpxc, zdqq ,

Vord,tpx, b, ϑq “
σ2
d,tpxq%

v
qpxcq

bυcfXpxq
,

where σ2
d,tpxq “ ErId,tpY ´md,tpXqq

2|X “ xs.
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Finally, we define a first-order approximation of the MISE as

χ˚ph, λ, tbd,t, ϑd,tupd,tqPS´q “

ż

X

!

‖Bpspx, h, λq‖2
` trpVpspx, h, λqq

)

ωpspxqdx

`
ÿ

pd,tqPS´

ż

X

 

Bord,tpx, bd,t, ϑd,tq2 ` Vord,tpx, bd,t, ϑd,tq
(

ωord,tpxqdx. (C.10)

We denote the constrained minimizer of χ˚ as pho, λo, bod,t, ϑ
o
d,tpd,tqPS´

q, where each argument of the
function is constrained to be non-negative.

Assumption C.1 1. The constrained minimizer of χ˚, denoted as pho, λo, tbod,t, ϑ
o
d,tupd,tqPS´q, is

uniquely determined and finite.

2. The constrained minimizer resides in r0, δns12, where nεδn Ñ8 for any ε ą 0.

Theorem C.1 Assuming that Assumptions 1, 5, and C.1 hold and both p and q are odd, the optimal
bandwidths ph˚, λ˚, tb˚d,t, ϑ

˚
d,tupd,tqPS´q satisfy

h˚ „ hon´1{p2p`υc`2q, λ˚ „ λon´2{p2p`υc`2q,

b˚d,t „ bod,tn
´1{p2q`υc`2q, ϑ˚d,t „ ϑod,tn

´2{p2q`υc`2q, for pd, tq P S´.

Proof of Theorem C.1:
From the uniform linear expansions of Lemma B.2, we know that

E
”

‖p̂´pxq ´ p´pxq‖2
ı

“ ‖ErIpxqA´pW,xqs‖2
` n´1 tr pVar rIpxqA´pW,xqsq ` ps.o.q,

where

ErIpxqA´pW,xqs “ IpxqpI3 b eNp,1q
1Σpspxq´1 Er rA´pW,x, γ˚pxqqs

“
hp`1

pp` 1q!
IpxqpI3 b eNp,1q

1pIpxq bQppxcqfXpxqq
´1

!

pIpxq bMp,p`1pxcqq vec
´

g
pp`1q
´ pxq

¯

fXpxq

`
ÿ

zdPXdzxd

ÿ

j“o,u

λjIjpxd, zdq pp´pxq ´ p´pxc, zdqq bMp,0pxcqfXpxc, zdq

,

.

-

` o
`

hp`1 ` λo ` λu
˘

“
hp`1

pp` 1q!
e1Np,1Qppxcq

´1Mp,p`1pxcqg
pp`1q
´ pxqIpxq

`
ÿ

zdPXdzxd

ÿ

j“o,u

fXpxc, zdq

fXpxq
λjIjpxd, zdqe

1
Np,1Qppxcq

´1Mp,0pxcq pp´pxq ´ p´pxc, zdqq

` o
`

hp`1 ` λo ` λu
˘

“Bpspx, h, λq ` o
`

hp`1 ` λo ` λu
˘

, (C.11)

and

Var rIpxqA´pW,xqs “h
´υcIpxqpI3 b eNp,1q

1Σpspxq´1 pIpxq bTppxcqfXpxqqΣpspxq´1pI3 b eNp,1qIpxq

“h´υcIpxqpI3 b eNp,1q
1pIpxq bQppxcqfXpxqq

´1 pIpxq bTppxcqfXpxqq

¨ pIpxq bQppxcqfXpxqq
´1pI3 b eNp,1qIpxq ` o

`

h´υc
˘

“h´υcfXpxq
´1Ipxqe1Np,1Qppxcq

´1TppxcqQppxcq
´1eNp,1 ` o

`

h´υc
˘

“Vpspx, h, λq ` o
`

h´υc
˘

. (C.12)
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Analogously, for pd, tq P S´

E
”

|pmd,tpxq ´md,tpxq|2
ı

“

∣∣∣ErGporqd,t pW,xqs
∣∣∣2 ` n´1Var

”

G
porq
d,t pW,xq

ı

` ps.o.q,

where

ErGporqd,t pW,xqs “ e1Nq ,1Σor
d,tpxq

´1 ErHpbd,tqXpXjqId,tξ
or
d,tpxq

rKorpX;x, bd,t, ϑd,tqs

“
bq`1
d,t

pq ` 1q!
e1Nq ,1pQqpxcqfXpxqq

´1
!

Mq,q`1pxcqm
pq`1q
d,t pxqfXpxq

`
ÿ

zdPXdzxd

ÿ

j“o,u

ϑd,t,jIjpxd, zdq pmd,tpxq ´md,tpxc, zdqqMq,0pxcqfXpxc, zdq

,

.

-

` o
´

bq`1
d,t ` ϑd,t,o ` ϑd,t,u

¯

“
bq`1
d,t

pq ` 1q!

´

e1Nq ,1Qqpxcq
´1Mq,q`1pxcqm

pq`1q
d,t pxq

¯

`
ÿ

zdPXdzxd

ÿ

j“o,u

fXpxc, zdq

fXpxq
ϑjIjpxd, zdqe

1
Nq ,1Qqpxcq

´1Mq,0pxcq pmd,tpxq ´md,tpxc, zdqq

` o
´

bq`1
d,t ` ϑd,t,o ` ϑd,t,u

¯

,

“Bord,tpx, bd,t, ϑd,tq ` o
´

bq`1
d,t ` ϑd,t,o ` ϑd,t,u

¯

, (C.13)

and

Var
”

G
porq
d,t pW,xq

ı

“b´υcd,t e
1
Nq ,1Σor

d,tpxq
´1 ErHpbd,tqXpXjqId,tpY ´md,tpXqq

2

`Hpbd,tqXpXjq
1
rKorpX;x, bd,t, ϑd,tq

2sΣor
d,tpxq

´1eNq ,1 ` o
`

b´υc
˘

“b´υcd,t e
1
Nq ,1pQqpxcqfXpxqq

´1
`

σ2
d,tpxqTqpxcqfXpxq

˘

pQqpxcqfXpxqq
´1 ` o

`

b´υc
˘

“b´υcd,t fXpxq
´1σ2

d,tpxqe
1
Nq ,1Qqpxcq

´1TqpxcqQqpxcq
´1eNq ,1 ` o

`

b´υc
˘

“Vord,tpx, bd,t, ϑd,tq ` o
`

b´υc
˘

. (C.14)

Now, we define

ph:, λ:, tb:d,t, ϑ
:

d,tupd,tqPS´q “ pn
1{p2p`υc`2qh, n2{p2p`υc`2qλ, tn1{p2q`υc`2qbd,t, n

2{p2q`υc`2qϑd,tupd,tqPS´q.

It follows from (C.11)-(C.14) and standard analysis that

χph, λ, tbd,t, ϑd,tupd,tqPS´q

“n´2pp`1q{p2p`υc`2q

ż

X

!∥∥Bpspx, h:, λ:q∥∥2
` trpVpspx, h:, λ:qq

)

ωpspxqdx

` o
`

hp`1 ` λo ` λu ` h
´υc

˘

` n´2pq`1q{p2q`υc`2q
ÿ

pd,tqPS´

ż

X

!

Bord,tpx, b
:

d,t, ϑ
:

d,tq
2 ` Vord,tpx, b

:

d,t, ϑ
:

d,tq

)

ωord,tpxqdx

` o

¨

˝

ÿ

pd,tqPS´

!

bq`1
d,t ` ϑd,t,o ` ϑd,t,u ` b

´υc
d,t

)

˛

‚,

uniformly over r0, δns12. Since χ˚ is separable in ph, λq and ptbd,t, ϑd,tupd,tqPS´q, and its constrained min-
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imizer is well-defined, unique, and finite under Assumption C.1, the proof is completed by minimizing
χ with respect to ph:, λ:, tb:d,t, ϑ

:

d,tupd,tqPS´q and recalling the definition of pho, λo, tbod,t, ϑ
o
d,tupd,tqPS´q. �

C.3 Plug-in estimators

When employing the frequency method (i.e., λ “ ϑd,t “ 0), a straightforward plug-in rule can
be used to determine the bandwidths ph, tbd,tupd,tqPS´q. Notably, local polynomial estimators with an
odd degree of fit are adaptive to boundaries, implying that the convergence rate of bias and variance
remains constant regardless of the location of x. By solving Equation (C.10) and applying Theorem
C.1, the following results are obtained

h˚ “

¨

˚

˝

ş
∥∥∥%bp,1pxcqgpp`1q

´ pxqIpxq
∥∥∥2
ωpspxqdx

ş

tr
`

Ipxq%vppxcq
˘

{fXpxq ¨ ωpspxqdx

2pp` 1qn

υc tpp` 1q!u2

˛

‹

‚

´1{p2p`υc`2q

,

b˚d,t “

¨

˚

˝

ş
∥∥∥%bq,1pxcqmpq`1q

d,t pxq
∥∥∥2
ωord,tpxqdx

ş

%vqpxcq{fXpxq ¨ ω
or
d,tpxqdx

2pq ` 1qn

υc tpq ` 1q!u2

˛

‹

‚

´1{p2q`υc`2q

, for pd, tq P S´.

These bandwidths, however, are infeasible due to the presence of unknown quantities related to the
derivatives of the nuisance functions and local Fisher information. To estimate the optimal bandwidths,
preliminary approximations of these quantities are necessary. An additional challenge arises from the
complicated dependence of the plug-in bandwidths on the location of x (through %b and %v). One
possible solution is to substitute the values evaluated at a boundary point with those associated with
interior points. This replacement has a negligible impact on the consistency of the optimal bandwidth
in general. The bandwidth selection process can be outlined in the following algorithm:

Algorithm C.1 1. Let Xo collect all the unique values of tXiu
n
i“1. Construct standard kernel

estimates of covariate density with mixed data, pfXpxq, for x P Xo, following, e.g., Racine and Li
(2004).

2. Use a polynomial multinomial logit regression of order ` “ p ` 2 to get preliminary estimates
Ĭpxq, ğpp`1q

´ pxq, ğ
pp`2q
´ pxq, for x P Xo. Run polynomial regressions of order ` “ q ` 2 to obtain

m̆
pq`1q
d,t pxq and m̆

pq`2q
d,t pxq, for x P Xo.

3. Compute preliminary bandwidths

h̆ “

¨

˚

˚

˝

En
„∥∥∥%bp,1ğpp`1q

´ pXqĬpXq
∥∥∥2


%vp En
”

pf´1
X pXq tr

´

ĬpXq
¯ı

2pp` 1qn

υ tpp` 1q!u2

˛

‹

‹

‚

´1{p2p`υ`2q

,

b̆d,t “

¨

˚

˚

˝

En
„∥∥∥%bq,1m̆pq`1q

d,t pXq
∥∥∥2


%vq En
”

pf´1
X pXq

ı

2pq ` 1qn

υ tpq ` 1q!u2

˛

‹

‹

‚

´1{p2q`υ`2q

,

h̃ “

¨

˚

˚

˝

En
„∥∥∥%bp`1ğ

pp`2q
´ pXq

∥∥∥2


En
”

pf´1
X pXq tr

´

ĬpXq´1 b %vp`1

¯ı

2n

υp2p` 3qrpp` 2q!s

˛

‹

‹

‚

´1{p2p`υ`4q

,
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b̃d,t “

¨

˚

˚

˝

En
„∥∥∥%bq`1m̆

pq`2q
d,t pXq

∥∥∥2


En
”∥∥∥ pf´1

X pXq%vq`1

∥∥∥ı 2n

υp2q ` 3qrpq ` 2q!s

˛

‹

‹

‚

´1{p2q`υ`4q

,

where we omitted the dependence of %b and %v on xc to signify that the boundary ef-
fect is disregarded. Furthermore, in the preceding equations, %bj “ I 1Nj ,j

Q´1
j Mj,j`1, %vj “

I 1Nj ,j
Q´1
j TjQ

´1
j INj ,j, and INj ,j is a Nj ˆ nj matrix consisting of the last nj columns of the

Nj ˆNj identity matrix.

4. Run a local polynomial logistic regression of order ` “ p ` 1, with bandwidth h̃, to obtain
pg
pp`1q
´ pxq. For each pd, tq P S´, run a local polynomial regression of order ` “ q ` 1, using

bandwidth pbd,t, to get pm
pq`1q
d,t pxq, for x P Xo.

5. Run a local polynomial logistic regression of order ` “ p, with bandwidth h̆, to obtain pIpxq, for
x P Xo.

6. Compute the optimal bandwidth ph and pbd,t, following

ph “

¨

˚

˚

˝

En
„∥∥∥%bp,1pgpp`1q

´ pXqpIpXq
∥∥∥2


%vp En
”

pf´1
X pXq tr

´

pIpXq
¯ı

2pp` 1qn

υ tpp` 1q!u2

˛

‹

‹

‚

´1{p2p`υ`2q

,

pbd,t “

¨

˚

˚

˝

En
„∥∥∥%bq,1 pmpq`1q

d,t pXq
∥∥∥2


%vq En
”

pf´1
X pXq

ı

2pq ` 1qn

υ tpq ` 1q!u2

˛

‹

‹

‚

´1{p2q`υ`2q

.

C.4 Cluster-robust inference: bootstrap procedures

In this section, we introduce two bootstrap procedures that are suitable for cluster-robust inference.
The first algorithm uses a multiplier-bootstrap method to compute studentized and cluster-robust stan-
dard errors. This method has been previously described in Kline and Santos (2012) and Callaway, Li
and Oka (2018). The second procedure is a bootstrap Hausman-type test, which provides bootstrapped
p-values.

Let V n
i“1 be a sequence of i.i.d. random variables with zero mean and unit variance, which is

independent of the original sample. One example is i.i.d. Bernoulli random variables with P pV “

v0q “ 1´v0{
?

5 and P pV “ 1´v0q “ v0{
?

5, where v0 “ p
?

5`1q{2, as suggested by Mammen (1993).
Now, given a generic ATT estimator, pτ , and an estimator of its influence function, pηp¨q, we compute
the clustered standard errors as follows:

Algorithm C.2 1. In iteration b, draw a realization of Vb for each cluster. All observations within
the same cluster share the same value of Vb.

2. Calculate a bootstrap estimate for ATT as

pτ˚b “ pτ ` EnrVb ¨ pηpW qs.
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Form a bootstrap draw of the limiting distribution as

pR˚b “
?
n ppτ˚b ´ pτq .

3. Repeat Steps 1-2 B times.

4. Calculate the bootstrapped standard error, σ̂˚, as the bootstrap interquartile range normalized
by the interquartile range of the standard normal distribution: σ̂˚ “ pq0.75p pRq´q0.25p pRqq{pz0.75´

z0.25q, where qpp pRq is the p-th sample quantile of the pRb in the B draws, and zp is the p-th quantile
of the standard normal distribution.

Given the two DR DID estimators, pτdr based on (3.1), pτsz based on (4.1), and their respective linear
expansions, pηdrp¨q given in (3.11) and pηszp¨q given in (4.3), we conduct a cluster-robust Hausman-type
test as follows

Algorithm C.3 1. Calculate the Hausman test statistic, Tn, following (4.2).

2. In iteration b, generate a realization of Vb for each cluster. Observations within the same cluster
share the same value of Vb.

3. Calculate bootstrap estimates of the ATT as

pτ˚j,b “ pτj ` EnrVb ¨ pηjpW qs,

V̂ ˚b “ EnrVb ¨ ppηeff pW q ´ pηszpW qq
2s.

Form a bootstrap test statistic, T ˚b , as

T ˚b “ n
`

pτ˚dr,b ´ pτ˚sz,b
˘2
{V̂ ˚b .

4. Repeat Steps 1-2 B times.

5. Calculate the bootstrapped p-value, p˚, as the proportion of the bootstrap test statistics, tT ˚b u
B
b“1,

that are greater than or equal to Tn.
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