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Abstract

This paper investigates efficient Difference-in-Differences (DiD) and Event Study (ES) esti-
mation using short panel data sets within the heterogeneous treatment effect framework, free
from parametric functional form assumptions and allowing for variation in treatment timing.
We provide an equivalent characterization of the DiD potential outcome model using sequen-
tial conditional moment restrictions on observables, which shows that the DiD identification
assumptions typically imply nonparametric overidentification restrictions. We derive the semi-
parametric efficient influence function (EIF) in closed form for DiD and ES causal parameters
under commonly imposed parallel trends assumptions. The EIF is automatically Neyman or-
thogonal and yields the smallest variance among all asymptotically normal, regular estimators
of the DiD and ES parameters. Leveraging the EIF, we propose simple-to-compute efficient
estimators. Our results highlight how to optimally explore different pre-treatment periods and
comparison groups to obtain the tightest (asymptotic) confidence intervals, offering practical
tools for improving inference in modern DiD and ES applications even in small samples. Cali-
brated simulations and an empirical application demonstrate substantial precision gains of our
efficient estimators in finite samples.
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1 Introduction
Difference-in-Differences (DiD) and Event Study (ES) designs are among the most widely used em-
pirical strategies in economics and related fields. For instance, recent data indicates that over 30%
of 2024 NBER applied microeconomics working papers mention DiD or ES—more than any other
causal inference method,1 and their popularity is also rapidly expanding in empirical macroeconomics
and finance (Goldsmith-Pinkham, 2024). Although recent methodological advances have improved
the robustness of DiD estimators to treatment effect heterogeneity,2 several empirically relevant
econometric questions remain underexplored.

First, modern DiD and ES estimators are designed to accommodate rich treatment effect het-
erogeneity using short panel data. Unfortunately, most of them can have wide confidence intervals
in applications with limited sample size.3 Whether the flexibility of modern DiD necessarily entails
a meaningful loss in power compared to more restrictive estimators, such as two-way fixed effects
(TWFE), remains an open question. Second, most heterogeneity-robust DiD implementations in
short panels implicitly weight all pre-treatment periods equally or discard them entirely. These as-
sumptions are generally unsupported by theory, data or subject-specific knowledge, and often yield
imprecise estimators. Third, although it has become a common empirical practice to report several
DiD and ES estimators,4 there is limited formal guidance on how to compare them, especially so
when applied researchers are unwilling to impose strong, arbitrary restrictions on temporal depen-
dence or treatment effect heterogeneity. Sometimes, even basic questions such as whether different
DiD estimators target the same causal parameters or if they rely on similar identification assumptions
can be difficult to answer.

In this paper, we address these challenges by developing a unified framework for semiparametri-
cally efficient estimation of DiD and ES causal parameters under point-identification assumptions—
namely, parallel trends and no anticipation. We allow for several commonly-used DiD designs,
including designs with a single treatment date and staggered treatment adoption, when covariates
may or may not be important for identification. In particular, we (a) characterize the DiD potential
outcome model in terms of equivalent restrictions on the joint distribution of observables, (b) derive
the semiparametric efficient influence functions (EIF) for DiD and ES parameters and the efficient
(i.e., smallest) variance bounds, (c) provide closed-form root-n asymptotically normal and efficient
estimators as well as consistent estimators of the variances, and (d) show that semiparametric effi-
ciency requires non-uniform weighting of pre-treatment periods and untreated cohorts. In addition,
we highlight that the gains in efficiency/power can be empirically relevant in finite samples, even in
designs without variation in treatment timing and covariates.

1The NBER data used in Goldsmith-Pinkham (2024) is up to May 2024.
2See Roth, Sant’Anna, Bilinski and Poe (2023), de Chaisemartin and D’Haultfœuille (2023) and Baker, Callaway,

Cunningham, Goodman-Bacon and Sant’Anna (2025) for recent reviews of DiD advances and a DiD practitioner’s
guide. See also Baker, Larcker and Wang (2022) for an overview with application in finance.

3See, e.g., Chiu, Lan, Liu and Xu (2023), Weiss (2024), and Lal (2025) for a discussion.
4See, e.g., Braghieri, Levy and Makarin (2022), Hansen and Wingender (2023), Arold (2024), and Mast (2024).
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We start by providing an observationally equivalent characterization of the DiD potential outcome
identification assumptions in terms of restrictions on the joint distribution of observables. This
characterization links modern DiD designs to econometric models of sequential conditional moment
restrictions with unknown functions of observables (Ai and Chen, 2012). It clarifies the informational
content embedded in modern DiD identification assumptions, and enables our subsequent derivation
of the semiparametric efficiency results for DiD models. Importantly, we show that DiD models
are typically nonparametrically overidentified in the sense of Chen and Santos (2018). To the best
of our knowledge, this is the first result to establish such nonparametric overidentification in a
causal inference setting without imposing parametric or semiparametric functional-form restrictions
on nuisance components.

Next, we derive the semiparametric efficient influence functions for DiD and ES parameters in
closed-forms, under various parallel trends assumptions commonly employed in the DiD literature,
including settings with and without variation in treatment timing and cases where parallel trends
hold only after conditioning on observed covariates. By definition, an EIF for a causal parameter has
mean zero and its second moment is the semiparametric efficient variance bound, which is the small-
est asymptotic variance across all possible root-n consistent and asymptotically normal estimators
under the DiD design identification conditions. Moreover, we provide closed-form estimators based
on the EIFs to achieve the efficient variance bounds. To our knowledge, these are the first semipara-
metric efficiency results in DiD setups with multiple periods and without parametric functional-form
assumptions. Importantly, these efficiency results only explore the DiD identification conditions
and do not involve additional hard-to-justify restrictions on treatment effect heterogeneity (e.g.,
homoskedasticity) or the serial correlation of the outcomes.

Our efficient estimators for the DiD and ES are computed using sample EIFs, which are automat-
ically Neyman orthogonal moments.5 The efficient estimators aggregate over multiple comparison
groups and pre-treatment periods using analytically derived optimal weights that are proportional
to the (conditional) covariances of outcome changes.

According to our semiparametric efficient variance bounds, DiD and ES estimators that treat
all pre-treatment periods and comparison groups as equally informative or only use a particular
comparison group and the last pre-treatment period as baseline, are generally inefficient, even in
setups with a single treatment date. To achieve semiparametric efficiency, it is important to take into
account that different untreated groups and pre-treatment periods are not equally informative, and
that the best way to aggregate these information to gain precision involves constructing weights that
depend on (conditional) covariance terms related to the outcome changes from different pre-treatment
periods tpre to a given post-treatment period tpost and different comparison groups. We introduce
visualization tools that clarify how different baseline periods and comparison groups contribute to the

5For nonparametrically overidentified models (Chen and Santos, 2018), not all Neyman orthogonal moment-based
doubly robust causal estimators are semiparametric efficient. Only the ones corresponding to the EIFs are semipara-
metric efficient.
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estimator’s efficiency, illustrating the structure implied by the semiparametric theory. Importantly,
we stress that the geometry of these weights arises from our semiparametric efficiency results.6

Our new semiparametric efficient variance bounds offer a rigorous benchmark for evaluating a
broad class of DiD and ES estimators, including TWFE and those developed by de Chaisemartin
and D’Haultfœuille (2020), Callaway and Sant’Anna (2021), Sun and Abraham (2021), Borusyak,
Jaravel and Spiess (2024), Wooldridge (2021), Gardner (2021), among others. Our proposed EIF-
based estimators attain the efficient bounds, thereby dominating the existing estimators in terms of
asymptotic efficiency. Simulation studies confirm the theoretical rankings.

We illustrate the practical relevance of our framework through empirically calibrated simula-
tions and a real-data application. Our simulations build on DiD designs from Arkhangelsky et al.
(2021) (for single-treatment) and Baker et al. (2022) (for staggered-adoption), calibrated to CPS
and Compustat data, respectively. In both settings, our semiparametric efficient estimators deliver
markedly lower root mean square error and narrower confidence intervals than alternative popular
DiD estimators—often exceeding 40% gains in precision, with no loss in bias performance. We further
revisit Dobkin, Finkelstein, Kluender and Notowidigdo (2018)’s real-data analysis of hospitalization
and out-of-pocket medical expenses, using the data compiled by Sun and Abraham (2021). In this
application, alternative estimators would often require sample sizes at least 30% larger to achieve
precision comparable to ours. These findings reinforce the central insight of the paper: aligning
estimation strategies with the informational structure of the DiD model identification assumptions
can yield substantial improvements in precision across a range of DiD settings.

The rest of the paper is as follows. Section 2 formally introduces the general DiD designs and
the parameters of interest. Section 3 derives the semiparametric EIFs and the efficient variance
bounds. Section 4 proposes our semiparametric efficient estimation. Sections 5 and 6 present the
simulation studies and real-data application, respectively. Section 7 concludes with discussions of
future extensions. Appendix A introduces Hausman-type as well as incremental Sargan tests for
the overidentification restrictions. Appendix B extends the semiparametric efficiency results to an
instrumented DiD setting. Appendix C presents the proofs of the theoretical results.

Related Literature: This paper contributes to the popular DiD literature that accommodates
treatment effect heterogeneity (see the references mentioned above). We provide the first semipara-
metric efficiency bounds for DiD and ES estimators in settings with multiple periods and varying
forms of the parallel trends assumption, including covariate-conditional and staggered adoption de-
signs. There are some recent work on efficient estimation under some extra conditions in DiD litera-
ture. Relative to Sant’Anna and Zhao (2020), who studies a just-identified two-period, two-group DiD
model, we generalize to more empirically relevant overidentified settings with multiple periods and
staggered adoption. In contrast to Borusyak et al. (2024), Wooldridge (2021), and Harmon (2023),

6For large n and large T panel data with single treatment date design, Arkhangelsky, Athey, Hirshberg, Imbens
and Wager (2021) synthetic DiD exploits information from pre-treatment periods via a researcher-specified weighting
criterion. Their weight is not for semiparametric efficiency consideration, however. See Remark 3.1 for details.
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our efficiency results do not rely on auxiliary assumptions such as functional form, homoskedasticity,
absence of serial correlation, or other time-series dependence restrictions. These assumptions are
convenient but typically hard to justify on theoretical or empirical grounds, particularly in settings
with heterogeneous treatment effects and dynamic responses.

Our semiparametric efficiency result builds on Ai and Chen (2012), as we characterize the DiD
potential outcome model in terms of sequential conditional moment restrictions with unknown func-
tions of observables.7 Without conditioning variables, the DiD potential outcome model can be
equivalently transformed into Hansen’s overidentified unconditional generalized moment restrictions
(Hansen, 1982), and the semiparametric efficient variance bound of Chamberlain (1987) would also
be applicable. Even in the case without covariates, our closed-form EIF expressions lead to simpler
estimation procedure and provide new insights into how an efficient DiD estimator should weight
different pre-treatment and comparison groups—to the best of our knowledge, these insights are new
to the literature.

2 Framework, causal parameters, and estimands
We start by describing our general setup. We consider a setting with T periods indexed by t P T “

t1, 2, . . . , T u. At any given time t ą 1, units can start receiving a binary treatment, and different
units can start receiving treatment at different points. We focus on setups where treatment is an
absorbing state, so once a unit is treated, it remains treated until t “ T . Let Di,t be an indicator for
whether unit i is treated by period t and let Gi “ mintt : Di,t “ 1u be a “group” variable (or cohort)
that indicates the first period at which unit i has received treatment. If unit i does not receive
treatment by t “ T , we set Gi “ 8 and refer to these units as “never treated”. Since treatment is
an absorbing state, Di,t “ 1 for all t ě Gi. Let G denote the support of G and let Gtrt “ Gzt8u

be the support of G among “eventually-treated” units. Without loss of generality, we assume that
a “never-treated” group always exists. If all units are eventually treated, we drop all the data from
when the last cohort is treated, so the last-treated cohort becomes the “never-treated” cohort, and T
here denotes the number of available periods in the subset of the data that we will use in our analysis.
Finally, we also assume that a vector of pre-treatment covariates Xi, whose support is denoted by
X Ď Rd is available. Throughout the paper, we adopt a “large-n, fixed-T” short panel data regime,
as is typical in most DiD setups.

In this paper, we adopt the Neyman-Rubin potential outcome framework, indexing each potential
outcome by the entire treatment path. Let 0s and 1s denote s-dimensional vectors of zeros and ones,
respectively. We denote the potential outcome of unit i in period t if they were first treated at
time g by Yi,tp0g´1,1T´g`1q, and denote by Yi,tp0T q their “never-treated” potential outcome. To
simplify notation, we can explore that treatment is an absorbing state and index potential outcomes

7Chamberlain (1992) and Ai and Chen (2003) contain unknown functions of observables, but without sequential
moments.

4



by treatment starting time: Yi,tpgq “ Yi,tp0g´1,1T´g`1q and Yi,tp8q “ Yi,tp0T q. In practice, though,
we observe Yi,t “

ř

gPG 1tGi “ guYi,tpgq, where 1tAu is the indicator function that takes value one if
A is true, and zero otherwise. Henceforth, we write Gg “ 1tG “ gu.

We assume that we observe a random sample of pYt“1, . . . , Yt“T , X
1, Gq1.

Assumption S (Random Sampling). tpYi,t“1, . . . , Yi,t“T , X
1
i, Giq

1uni“1 is a random sample from
pYt“1, . . . , Yt“T , X

1, Gq1.

We also impose overlap assumptions to avoid “extrapolation” and ensure that our identification
arguments are nonparametrically valid.

Assumption O (Overlap). For each g P G, ErGg|Xs P p0, 1q almost surely (a.s.).

We maintain the following no-anticipation condition throughout the paper.

Assumption NA (No-anticipation). For every g P Gtrt, and every pre-treatment periods t ă g,
ErYi,tpgq|G “ g,Xs “ ErYi,tp8q|G “ g,Xs almost surely.

Assumption NA states that, on average, units do not change their behavior before treatment
starts, which essentially requires that the eventually treated units do not anticipate the treatment
taking place. If treatment is announced in advance and units are expected to change their behavior
due to it, this assumption suggests that researchers define the treatment date as the time of treatment
announcements and not the time of treatment take-up. See Malani and Reif (2015) for a discussion.

2.1 Causal parameters of interest

Many counterfactuals may be of interest in our context with potential variation in treatment timing.
One particular family of causal parameters that have been popular in empirical work is the ATT pg, tq

defined by

ATT pg, tq :“ E rYt pgq ´ Yt p8q |G “ gs , for t ě g. (2.1)

Note that ATT pg, tq measures the Average Treatment Effect at time t of starting treatment at time g
versus not starting it, among the units that indeed started treatment at time g. Let CATT pg, t,Xq :“

E rYtpgq ´ Ytp8q|G “ g,Xs denote the conditional ATT pg, tq given covariates X.
In setups with a unique treatment date, there is a single treated group, G “ g with g ‰ 8, so

tracking ATT pg, tq over time for this treated group provides a measure of how treatment effects
evolve with elapsed treatment time. This is usually referred to as event studies. With multiple
groups defined by their treatment timing, ATT pg, tq still provides information about treatment
effect dynamics for each treated cohort g P Gtrt. However, in such cases, researchers often want to
summarize the average causal effects using weighted averages of ATT pg, tq among units that started
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treatment e periods ago, with e ě 0. A natural aggregation uses the size of each treated cohort as
weights, leading to the event study parameter that we denote by ESpeq,

ESpeq :“ E
“

ATT pG,G ` eq
ˇ

ˇG ` e P r2, T s
‰

“
ÿ

gPGtrt

PpG “ g|G ` e P r2, T sqATT pg, g ` eq. (2.2)

One may also want to further aggregate the event study coefficients to recover a scalar summary
measure. Let E denote the support of post-treatment event time E “ t ´ G, t ě G, and let NE

denote its cardinality. Then,

ESavg :“
1

NE

ÿ

ePE
ESpeq, (2.3)

provides a simple average of all post-treatment event study coefficients.
Under Assumptions S, O and NA only, one cannot identify ATT pg, tq for the post-treatment

periods t ě g, as ErYtp8q|G “ gs is not observed or identified. DiD procedure tackles this problem by
restricting the evolution of average untreated potential outcomes across the treated and comparison
groups, a parallel trends (PT) assumption. Depending on the treatment timing and covariates,
different versions of PT assumptions have been imposed in the literature. We discuss these below.

2.2 Parallel trends and DiD estimands

Two natural types of (conditional) PT have been adopted in the literature: one that effectively
restricts trends of Ytp8q only in post-treatment periods and uses never-treated units as the relevant
comparison group, and one that restricts trends of Ytp8q in both pre and post-treatment periods,
and allow researchers to use any untreated group as a comparison group. We formally state these
two PT assumptions below by allowing them to hold only after conditioning on covariates X, i.e., by
allowing for covariate-specific trends. If covariates are unavailable or do not play an important role,
one can take X “ 1 a.s. as a special case to resort to an unconditional DiD analysis.

Assumption PT-Post (Parallel Trends in the post-treatment periods for all treated groups). For
each t P t2, . . . , T u and g P Gtrt such that t ě g,

ErYtp8q ´ Yt´1p8q|G “ g,Xs “ ErYtp8q ´ Yt´1p8q|G “ 8, Xs a.s.

Assumption PT-All (Parallel Trends for all groups and periods). For each t P t2, . . . , T u and
pg, g1q P Gtrt ˆ G,

ErYtp8q ´ Yt´1p8q|G “ g,Xs “ ErYtp8q ´ Yt´1p8q|G “ g1, Xs a.s.

Assumption PT-Post only imposes PT in the post-treatment periods, t ě g, and imposes that,
conditional on covariates, the average untreated potential outcome evolution of any treated group g P

Gtrt and the never-treated group is the same. This assumption has been effectively used by Callaway
and Sant’Anna (2021) and Sun and Abraham (2021) when constructing DiD estimators using never-
treated units as the comparison group. In setups with a single treatment date without covariates,
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this is the assumption implicitly used in TWFE event study regressions (Jacobson, LaLonde and
Sullivan, 1993)

Yi,t “ αt ` ηi `
ÿ

e‰´1

1rEi,t “ esβe ` εi,t, (2.4)

where Yi,t is the outcome for unit i period t, αt and ηi are time and unit fixed effects often described
as capturing time-invariant or common time-varying shocks, Ei,t “ t ´ Gi is the time relative to
treatment (event-time), εi,t is an idiosyncratic error term. The summation runs over all possible
values of Ei,t among eventually-treated units except for event-time ´1.

Under Assumption PT-Post (and Assumptions S, O, NA), the ATT pg, tq’s are identified as

ATT pg, tq “ ErYt ´ Yg´1|G “ gs ´ ErErYt ´ Yg´1|G “ 8, Xs|G “ gs. (2.5)

In this case, tpre “ g ´ 1 is the only reliable baseline period because the PT condition does not
necessarily hold for the pre-treatment periods. In addition, Assumption PT-Post prevents one from
using untreated groups other than the never-treated as the comparison group. In such cases, even if
more data on pre-treatment outcomes are available, or the relative size of the never-treated units is
small compared to other untreated groups, this information cannot be used to improve the precision
of DiD and ES estimators. But this raises the questions: When is PT plausible in post-treatment
periods but not in pre-treatment periods? When does economic theory suggest we can only use a
specific untreated group as a valid comparison group? The answers to these questions are probably
application-dependent. But if we want to leverage more data to potentially get more informative
inferences, we must strengthen Assumption PT-Post, leading us to Assumption PT-All.

Assumption PT-All states that, conditional on covariates, the average untreated potential out-
come follows the same path in all treatment groups and periods. It is perhaps the most popular identi-
fication assumption used in the literature, as invoked by de Chaisemartin and D’Haultfœuille (2020),
Sun and Abraham (2021), Gardner (2021), Marcus and Sant’Anna (2021), Borusyak et al. (2024),
and Harmon (2023) in the unconditional form, and Callaway and Sant’Anna (2021), Wooldridge
(2021), and Lee and Wooldridge (2023) in the conditional form. In setups with a single treatment
date and no covariates, this assumption is arguably the one that justifies using a “static” TWFE
regression specification

Yi,t “ αt ` ηi ` βDi,t ` εi,t, (2.6)

where β “ ESavg is the parameter of interest. Unlike Assumption PT-Post, Assumption PT-All
imposes a parallel pre-trends condition across all time periods.

As Assumption PT-All allows one to use different pre-treatments as baseline periods and leverage
different sets of untreated units as a comparison group, the setup becomes much richer. The following
lemma highlights how to combine comparison groups and pre-treatment periods to identify the
ATT pg, tq’s, hinting that the DiD model becomes overidentified. Let Hg,t “ tpg1, tpre, t

1
preq P G ˆ T ˆ

T : g ą t1pre, g
1 ą maxttpre, t

1
preuu.

Lemma 2.1. Let Assumptions S, O, NA, and PT-All hold. Then, for every group pg, g1q P Gtrt ˆGtrt
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and time periods pt, tpre, t
1
preq P T ˆ T ˆ T such that t ě g, g ą t1pre, and g1 ą maxttpre, t

1
preu, with

probability one,

CATT pg, t,Xq “ ErYt ´ Yt1
pre |G “ g,Xs

looooooooooooomooooooooooooon

:“mg,t,t1pre
pXq

´
`

ErYt ´ Ytpre |G “ 8, Xs
loooooooooooooomoooooooooooooon

:“m8,t,tpre pXq

`ErYtpre ´ Yt1
pre |G “ g1, Xs

looooooooooooooomooooooooooooooon

:“mg1,tpre,t1pre
pXq

˘

, (2.7)

and, as a consequence,

ATT pg, tq “ E
“

Yt ´ Yt1
pre

ˇ

ˇG “ g
‰

´ E
“ `

m8,t,tprepXq ` mg1,tpre,t1
prepXq

˘ ˇ

ˇG “ g
‰

. (2.8)

More generally, for any covariate-specific weights watt(g,t)
g1,tpre,t1

pre
pXq summing to one, we have that

ATT pg, tq “ E
„

ÿ

pg1,tpre,t1
preqPHg,t

w
att(g,t)
g1,tpre,t1

pre
pXq

“

mg,t,t1
prepXq ´

`

m8,t,tprepXq ` mg1,tpre,t1
prepXq

˘‰

ˇ

ˇ

ˇ

ˇ

G “ g

ȷ

.

Lemma 2.1 leverages several restrictions on the indexes worth explaining. First, the restriction
t ě g means we identify ATT pg, tq’s in group g post-treatment periods. The restriction g ą t1pre

suggests using any of the group’s g pre-treatment period as a baseline, while the restriction g1 ą

maxttpre, t
1
preu means that we are using the eventually treated cohort g1 that is treated after periods

tpre, t
1
pre as part of our effective comparison group. Interestingly, these restrictions allow tpre to be

a post-treatment period for group g, as long as it is a pre-treatment period for cohort g1. Figure 1
illustrates why this is possible in our setup using a stylized example with four groups and ten time
periods—essentially, when parallel trends hold in all pre-treatment periods, one can “subtract back”
some “excessive” corrections using the never-treated units.

Figure 1: Illustration of how we can use tpre in post-treatment period for group g

2 3 4 5 6 7 8 9 10time: 1

t1
pre “ 1 t “ 5 tpre “ 7

G “ g1 “ 8

G “ 8

ATT p3, 5q using t1
pre “ 1, tpre “ 7, and with G P t8, 8u as comparison group

G “ 3

G “ 5

G “ 8

G “ 8

“Active”
Comparison
Group

“Active”
Treated
Group

Notes: Illustrative example of a setup with 10 time periods and four different treatment groups, where one is interested in learning about
ATT p3, 5q. Dark blue means units are treated (post-treatment periods), while light blue denotes pre-treatment periods. The hashed area
denotes the “active” comparison group. The illustration highlights that one can use a combination of two not-yet-treated cohorts, G “ 8
and G “ 8, as a comparison group, as well as leverage t1

pre “ 1 and tpre “ 7 as “baseline periods”. Using a post-treatment tpre “ 7 as
a baseline period is possible because the never-treated comparison group bridges this back to pre-treatment periods, since parallel trends
hold in all periods for all groups.

Overall, Lemma 2.1 indicates that one can use any group g’s pre-treatment period as a baseline,
combine never-treated units with any not-yet-treated cohort g1 ą g to form comparison groups, and
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use pre-treatment data for eventually-treated cohort g1 when identifying an ATT pg, tq. In practice,
there are infinitely many ways one can combine these to identify the ATT pg, tq’s. In practice, however,
one very relevant question is how to combine these different estimands to asymptotically obtain the
most precise DiD estimator for the ATT pg, tq’s, or to obtain the most precise event study parameters
ESpeq as defined in (2.2)? We discuss these points in the next section.

Remark 2.1. As Lemma 2.1 indicates, any covariate-specific weights watt(g,t)
g1,tpre,t1

pre
pXq summing to one

can be used to identify a ATT pg, tq. That is, the result in Lemma 2.1 allows for non-convex weights.
Different from the DiD literature that discusses limitations of simple two-way fixed effects specifica-
tions (Goodman-Bacon, 2021, Borusyak et al., 2024, de Chaisemartin and D’Haultfœuille, 2020, Sun
and Abraham, 2021), non-convex weights are not a concern in our context. Under the identifications
in Lemma 2.1, the DiD model is overidentified, and (2.7) is homogeneous across baseline periods and
comparison groups. Thus, issues related to an estimand not being weakly causal (Blandhol, Bonney,
Mogstad and Torgovitsky, 2022) due to negative weights are not binding in our context.

3 Semiparametric Efficiency Bound for DiD and ES
In this Section, we derive the semiparametric efficiency bound for the ATT pg, tq’s under Assump-
tion PT-Post and under Assumption PT-All. We also provide analogous results for the event study
parameters ESpeq, e ě 0. These semiparametric efficiency bounds characterize the lowest possible
asymptotic variance attainable by any regular, asymptotically linear estimator given the identifica-
tion assumptions. Based on the efficient influence function, we derive closed-form expressions for
estimands that can be used to construct efficient estimators under minimal smoothness assumptions.
These results provide a benchmark for evaluating the asymptotic efficiency of existing DiD and ES
estimators in the literature.

To build intuition, we first focus on the canonical case of a single treatment date. This simpler
setting provides a transparent view of the key ideas and allows us to isolate the informational content
of each pre-treatment period. We then generalize the results to the more complex case of staggered
treatment timing. When covariates are uninformative for identification, the results further simplify
to the unconditional DiD setup by setting X “ 1.

3.1 DiD setups with a single treatment date

Consider the setting with a single treatment date, resulting in two groups: treated (G “ g) and
never-treated (G “ 8). In this case, the event study parameters ESpeq are equivalent to ATT pg, tq’s
with t “ g`e. We proceed under either Assumption PT-Post or Assumption PT-All, noting that the
former is a special case of the latter. With two groups, we have G8 “ 1´Gg and p8pXq “ 1´pgpXq,
with pgpXq “ ErGg|Xs being the propensity score, i.e., the probability of belonging to the treated
group given covariates X.
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Under Assumptions S, O, NA, and PT-All, Lemma 2.1 implies that for any post-treatment period
t ě g, any pre-treatment period tpre P t1, . . . , g ´ 1u, and any weight watt(g,t)

tpre p¨q summing to one,

ATT pg, tq “ E
“

Yt ´ Ytpre

ˇ

ˇG “ g
‰

´ ErE
“

Yt ´ Ytpre

ˇ

ˇG “ 8, Xs
ˇ

ˇG “ g
‰

“ E
„ g´1

ÿ

tpre“1

w
att(g,t)
tpre pXq

“

mg,t,tprepXq ´ m8,t,tprepXq
‰

ˇ

ˇ

ˇ

ˇ

G “ g

ȷ

.

This expression shows how information from multiple pre-treatment periods can be used to identify
our target parameters, but it does not yet indicate how to weigh each period to gain precision. To
this end, the next step is to characterize all the information content in our identification assump-
tions. In the next lemma, we establish an equivalent representation of our identification assumptions
that impose restrictions on potential outcomes using sequential conditional moment restrictions on
observable variables.

Lemma 3.1 (Moment-restrictions for overidentified DiD with single treatment time).
Suppose there are only two treatment groups, such that G P G “ tg,8u, with g ě 2. The family of
probability distributions of pYt“1 ¨ ¨ ¨ , Yt“T , X

1, Gq satisfying Assumptions S, O, NA, and PT-All are
observationally equivalent to the family of probability distributions of pYt“1 ¨ ¨ ¨ , Yt“T , X

1, Gq satisfying
Assumptions S, O, and the following set of moment restrictions: for all t P tg, . . . , T u, with probability
one,

ErGgpATT pg, tq ´ CATT pg, t,Xqqs “ 0,

E

«

CATT pg, t,Xq ´
GgpYt ´ Yg´1q

pgpXq
`
G8pYt ´ Yg´1q

p8pXq

ˇ

ˇ

ˇ

ˇ

ˇ

X

ff

“ 0,

E

«

GgpYtpre ´ Y1q

pgpXq
´
G8pYtpre ´ Y1q

p8pXq

ˇ

ˇ

ˇ

ˇ

ˇ

X

ff

“ 0, for all 2 ď tpre ď g ´ 1,

ErGg ´ pgpXq|Xs “ 0.

Lemma 3.1 lays the groundwork for deriving the efficient influence function and the semiparamet-
ric efficiency bound. Beyond that, it succinctly presents all the identifying power of our identification
assumptions and highlights that one can construct many different DiD estimators based on it: it is
just a matter of choosing an estimation method suitable for moment restrictions. Examples include
(two-step) generalized methods of moments (GMM; see, e.g., Hansen, 1982, Ackerberg, Chen, Hahn
and Liao, 2014), generalized empirical likelihood (Newey and Smith, 2004), and minimum distance
estimators (Ai and Chen, 2003, 2007, 2012).

A natural question is whether the choice of the estimation procedure matters in terms of asymp-
totic efficiency. As discussed in the previous section, the DiD model characterized in Lemma 3.1 is
overidentified in the sense of Chen and Santos (2018). As such, not every nonparametric estimation
procedure is asymptotically semiparametrically efficient, implying that it is relevant to characterize
the minimum asymptotic variance for any regular, asymptotic linear (RAL) DiD estimator, and to
consider estimators that achieve this bound.
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Although different efficiency tools are available in the literature, many of them are not suitable
for our DiD model in Lemma 3.1. For instance, the DiD model in Lemma 3.1 is based on sequential
conditional moment restrictions with unknown nonparametric functions, making the efficiency results
in Chamberlain (1992) and Ai and Chen (2003) not directly applicable. In addition, note that
the conditional average treatment effects among the treated units in period t in our DiD model,
CATT pg, t,Xq, is given by

CATT pg, t,Xq “ E
“

Yt ´ Ytpre |G “ g,X
‰

´ E
“

Yt ´ Ytpre |G “ 8, X
‰

for any 1 ď tpre ď g ´ 1.

This suggests that our first-step nuisance function is overidentified, making the efficiency results of
Ackerberg et al. (2014) based on two-step GMM unsuitable for our context. On the other hand, we
can build on Ai and Chen (2012), as their models are well-suited to our setup. Nonetheless, applying
their results still requires substantial additional work: we need to first solve a calculus variations
problem and then unravel several nested matrix inversions before arriving at the concise expression
provided in Theorems 3.1 and 3.2.

In what follows, we present our semiparametric efficiency result under Assumption PT-All, and
then present as a special case the semiparametric efficiency under Assumption PT-Post. Let πg “

ErGgs denote the population proportion of treated units, and denote the group-specific conditional
expectations of the evolution of outcomes from period tpre to period t by

mg,t,tprepXq :“ ErYt ´ Ytpre |G “ g,Xs. (3.1)

Let 1 denote a column vector of ones with the appropriate length varying according to the context.
Let W “ pYt“1, . . . , Yt“T , X

1, Ggq denote the available random variables, and

rYg,t,tpre “
1

πg

ˆ

Gg ´
pgpXq

p8pXq
G8

˙

pYt ´ Ytpre ´ m8,t,tprepXqq. (3.2)

For 1 ď tpre ď g ´ 1, let

IFattpg,tq
tpre “ rYg,t,tpre ´

Gg

πg
ATT pg, tq, (3.3)

and denote the g ´ 1 column vector that stacks of these g ´ 1 influence functions by IFattpg,tq “

pIFattpg,tq
1 , IFattpg,tq

2 , ¨ ¨ ¨ , IFattpg,tq
g´1 q1. Finally, denote the pg ´ 1q ˆ pg ´ 1q conditional covariance matrix

of IFattpg,tq as VgtpXq “ CovpIFattpg,tq|Xq, and let V ˚
gtpXq be a matrix of the same dimension as VgtpXq

with the pj, kq-th element being
1

pgpXq
CovpYt ´ Yj, Yt ´ Yk|G “ g,Xq `

1

1 ´ pgpXq
CovpYt ´ Yj, Yt ´ Yk|G “ 8, Xq. (3.4)

Theorem 3.1. Suppose there are only two treatment groups, such that G P G “ tg,8u, with g ě 2.
Under Assumptions S, O, NA and PT-All, the efficient influence function of a ATT pg, tq, t ě g is
given by

EIFattpg,tq “
11VgtpXq´1

11VgtpXq´11
IFattpg,tq “

11V ˚
gtpXq´1

11V ˚
gtpXq´11

IFattpg,tq.

Assuming that the second moment of the efficient influence function is finite, the semiparametric
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efficiency bound for any regular, asymptotically linear estimator for the ATT pg, tq is given by

Veff “
1

π2
g

˜

ErGgpCATT pg, t,Xq ´ ATT pg, tqq2s ` E

«

pgpXq2|V ˚
gtpXq|

řg´1
j,j1“1p´1qj`j1

|V ˚
gt,jj1pXq|

ff¸

,

where V ˚
gt,jj1 denotes the minor matrix obtained by removing the jth row and j1th column of V ˚

gt.8

In the proof of Theorem 3.1, we show that including one post-treatment at a time and focusing
on one ATT pg, tq at a time leads to the same efficiency bound as including all post-treatments and
estimating all ATT pg, tq’s. The main advantage of working with one ATT pg, tq at a time is that it
avoids dealing with a much larger variance-covariance matrix, which would preclude us from getting
more intuition about efficiently aggregating each pre-treatment period. When it comes to estimation,
this simpler characterization will allow us to avoid dealing with a much larger number of conditional
moment restrictions that would lead to more computationally challenging procedures. Moreover, as
a side result, this characterization allows us to present the semiparametric efficiency bound for the
just-identified DiD setup when one imposes Assumption PT-Post instead of Assumption PT-All in
Corollary 3.1 as a corollary of Theorem 3.1.

Corollary 3.1. Suppose there are only two treatment groups, such that G P G “ tg,8u,
with g ě 2. Under Assumptions S, O, NA and PT-Post, the efficient influence function of
a ATT pg, tq, t ě g, is equal to IFattpg,tq

g´1 , and the semiparametric efficiency bound reduces to

Veff,j-id “ E
„

´

rYg,t,g´1 ´
Gg

πg
ATT pg, tq

¯2
ȷ

.

Theorem 3.1 and Corollary 3.1 have several interesting implications. First, suppose we only use
the pre-treatment period tpre “ g ´ 1 as a baseline, so PT holds only for post-treatment periods
(Assumption PT-Post). Corollary 3.1 shows that the efficient influence function is IFg,t

g,g´1 under
Assumption PT-Post. This is effectively the same as dropping data from all periods but time t

(post-treatment) and time g ´ 1 (pre-treatment), transforming the multi-period DiD model into
a two-period DiD setup. Thus, under Assumption PT-Post, Corollary 3.1 can be understood as
generalizing the semiparametric efficiency bound result of Sant’Anna and Zhao (2020) from the
much simpler 2-group-2-period DiD setup to the multi-period DiD setup with a single treatment
date. Importantly, Corollary 3.1 highlights that pre-treatment data beyond the last pre-treatment
period cannot be used to improve asymptotic efficiency, which can be hard to motivate empirically.

When one can leverage multiple pre-treatment periods (Assumption PT-All), Theorem 3.1 high-
lights that the efficient influence function, in this case, is an optimally weighted average of all
influence functions based on different baseline periods, where the optimal set of weights is com-
puted by minimizing the conditional variance given X. Notably, the optimal way to aggregate pre-
treatment periods for estimating ATT pg, tq will generally differ from when estimating ATT pg, tpreq,
with tpre ‰ t, with weights generally being non-uniform across pre-treatment periods and covariate

8In the formula of the efficiency bound, we follow the convention in matrix theory to define the determinant of an
empty matrix to be one.
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strata. Of course, there are special cases where weighing all pre-treatment information equally is opti-
mal. This is the case when outcome changes are (conditionally) uncorrelated across periods for both
the treated and comparison group and have constant (conditional) variances across pre-treatment
periods for both treatment groups (Wooldridge, 2021, Borusyak et al., 2024). Outside this scenario,
it is hard to see a setup where equal weights for all pre-treatment periods are asymptotically optimal.
Our semiparametric efficiency results do not impose any of these strong, hard-to-empirically moti-
vate assumptions. As highlighted in Lemma 3.1, we do not impose additional restrictions beyond
the identification assumptions, therefore being able to capture much richer notions of heterogeneity.

The efficient weights in Theorem 3.1 also vary with covariates. This is intuitive, as the optimal way
to combine pre-treatment periods may vary across covariate strata. For instance, it can be that for a
particular partition of the covariate space, more recent pre-treatment periods are “more informative”,
while for another partition, it can be that all pre-treatment periods are equally informative. The
flexibility of the weights varying with X is meant to capture exactly this. It is also worth mentioning
that even when the covariance terms in (3.4) are trivial functions of X, a type of homoscedasticity
assumption within each treatment group, V ˚

gtpXq and, therefore, the optimal weights would still
generally depend on X via the propensity score pgpXq.9 Thus, Theorem 3.1 stresses the importance
of choosing covariate-specific weights to achieve semiparametric efficiency.

The efficient influence function in Theorem 3.1 also informs how one can construct DiD estimators
that achieve the semiparametric efficiency bound by effectively weighting different pre-treatment
periods. More specifically, we can leverage the fact that the efficient influence function has mean
zero to get the following DiD estimand:

ATT pg, tq “ E
„

11V ˚
gtpXq´1

11V ˚
gtpXq´11

rYg,t

ȷ

, (3.5)

where rYg,t “ prYg,t,1, . . . , rYg,t,g´1q
1 is a pg ´ 1q ˆ 1 column vector of transformed outcomes. Thus,

the DiD estimand ATT pg, tq uses a combination of pre-treatment periods as “effective” baselines,
where the weights for each of these pre-treatment periods are given by 11V ˚

gtpXq´1
L

1V ˚
gtpXq´11. This

expression highlights that, indeed, “more informative” baseline periods get weighted more than “less
informative” periods, where the relevant notion of “informativeness” is given by the inverse of V ˚

gtpXq

with elements defined in (3.4).

Remark 3.1. To our knowledge, the synthetic DiD procedure of Arkhangelsky et al. (2021) is
the only other panel-data method that weights pre-treatment periods in a non-uniform manner.
However, many important differences between our procedure and theirs are worth stressing. First,
and in contrast to Arkhangelsky et al. (2021), our non-uniform weights are solved in closed-form for
the semiparametric efficiency purpose. Second, our weights can vary with covariates, while covariates
play no major role in their synthetic DiD procedures. On the other hand, our results depend on the

9It may be the case that the ratio of conditional covariance and the propensity score in (3.4) is constant, even
when all these terms are not trivial functions of the covariates. Nonetheless, this seems like a knife-edge case requiring
a very specific covariance structure, which is unrealistic for most applications.
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plausibility of parallel trends, while synthetic DiD procedures can accommodate some deviations of
parallel trends. Finally, while we focus on setups with a fixed number of periods, Arkhangelsky et al.
(2021) inferential procedures are tailored for applications with a diverging number of pre-treatment
periods.

Remark 3.2. Researchers often want to summarize the average treatment effects across all periods
into a scalar parameter,

ESavg “
1

NE

ÿ

ePE
ESpeq.

It follows from Theorem 3.1 and the Delta method that one can form efficient estimators for ESavg

in this two-group DiD setup using

ESavg “
1

T ´ g ` 1

T
ÿ

t“g

E
„

11VgtpXq´1

11VgtpXq´11
rYg,t

ȷ

, (3.6)

with ATT pg, tq’s as defined in (3.5). As evident from (3.6), the efficient way to combine pre-treatment
information also varies with covariates, and it is unlikely to use a uniform weighting scheme in many
applications with any serial correlation.

Remark 3.3. From Lemma 3.1, Theorem 3.1, and Corollary 3.1, it is clear that our DiD model
is over-identified. A natural consequence of these results is that we can directly assess the validity
of the identification assumption via a Hausman-type test. One can also sequentially assess whether
using data from periods further away from the treatment date is warranted via incremental Sargan
tests. We discuss these testing procedures in Appendix A.

3.2 DiD setups with staggered treatment designs

We now extend our semiparametric efficiency bound results for ATT and ES estimators from the
previous section to the staggered setups and provide guidelines on the most precise RAL DiD and
ES estimators. We start studying the overidentified staggered DiD model for ATT pg, tq, and later
discuss the just-identified one as a special case. As we discuss below, the efficiency of ESpeq, e ě 0,
follows from the efficiency of ATT pg, tq’s and the Delta method.

As staggered treatment times imply the existence of multiple treatment groups, we now have
that G8 “ 1´

ř

gPGtrt
Gg and p8pXq “ 1´

ř

gPGtrt
pgpXq, with pgpXq “ ErGg|Xs being a generalized

propensity score, i.e., the probability of belonging to the group that is treated for the first time in
period g given covariates X.

The following lemma characterizes the information content of our staggered DiD identification
assumptions based on potential outcomes using sequential conditional moment restrictions on ob-
servable variables.

Lemma 3.2 (Moment-restrictions for overidentified staggered DiD).
The family of probability distributions of pYt“1 ¨ ¨ ¨ , Yt“T , X

1, Gq satisfying Assumptions S, O, NA, and
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PT-All are observational equivalent to the family of probability distributions of pYt“1 ¨ ¨ ¨ , Yt“T , X
1, Gq

satisfying Assumptions S, O and the following set of moment restrictions: for all g, g1 P Gtrt ˆ Gtrt

and post-treatment periods t P tg, . . . , T u, with probability one,

Erπg ´ Ggs “ 0,

ErGgpATT pg, tq ´ CATT pg, t,Xqqs “ 0,

E
„

CATT pg, t,Xq ´
GgpYt ´ Yg´1q

pgpXq
`
G8pYt ´ Yg´1q

p8pXq

ˇ

ˇ

ˇ
X

ȷ

“ 0,

E
„

Gg1pYtpre ´ Y1q

pg1pXq
´
G8pYtpre ´ Y1q

p8pXq

ˇ

ˇ

ˇ
X

ȷ

“ 0, for all 2 ď tpre ď g1 ´ 1, (3.7)

ErGg ´ pgpXq|Xs “ 0.

The first two (unconditional) sets of moment conditions in Lemma 3.2 define each cohort’s relative
size, πg, and the ATT pg, tq as a functional of the conditional ATT pg, tq. The third and fourth sets of
(conditional) moment restrictions define the conditional ATT pg, tq given covariates, CATT pg, t,Xq,
and the set of overidentification restrictions implied by our Assumptions S, O, NA, and PT-All. By
combining the third and fourth conditional moment restriction, it is clear that any pre-treatment
period tpre ă g and multiple comparison groups can be used to identify the CATT pg, t,Xq, and
therefore, the ATT pg, tq. This is what essentially rationalizes Lemma 2.1. The last set of conditional
moment restrictions defines the generalized propensity scores, pgpXq. Finally, also note that, from
Lemma 3.2, we can construct the event study parameters ESpeq, e ě 0, as

ESpeq “
ÿ

gPGtrt,e

πg
ř

gPGtrt,e
πg
ATT pg, g ` eq, (3.8)

where, for e ě 0, Gtrt,e “ tg P Gtrt : g` e ď T u denotes the set of eventually-treated groups that have
data for e-periods after treatment started.

Similarly to Lemma 3.1, Lemma 3.2 presents all the identifying power of our identification as-
sumptions in the staggered DiD setup and highlights that one can construct many different DiD
estimators based on it. The relevant question is how to fully explore the empirical content of the
moment conditions in Lemma 3.2 to form DiD and ES estimators with appealing semiparametric
efficiency guarantees. Here, in contrast to the setup in Lemma 3.1, we can use different pre-treatment
periods and different comparison groups when constructing DiD and ES estimators. Hence, the setup
is more interesting, though it also requires additional notation to characterize how the “most precise”
DiD and ES estimators should look.

Let the “generated outcome” for a given ATT pg, tq be defined as

rY
att(g,t)
g1,tpre

“
Gg

πg
pYt ´ Y1 ´ m8,t,tprepXq ´ mg1,tpre,1pXqq

´
pgpXq

p8pXq

G8

πg
pYt ´ Ytpre ´ m8,t,tprepXqq ´

pgpXq

pg1pXq

Gg1

πg
pYtpre ´ Y1 ´ mg1,tpre,1pXqq, (3.9)
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and, for g1 P Gtrt and 1 ď tpre ď g1 ´ 1, let

IFattpg,tq
g1,tpre

“ rY
att(g,t)
g1,tpre

`
Gg

πg
ATT pg, tq. (3.10)

Note that rY
att(g,t)
g1,tpre

uses data from the earliest pre-treatment and from tpre. It also leverages observa-
tions from the “never-treated” group G8 and from g1 as the comparison group. When g1 “ g, though,
it only uses data from G8 as a comparison group, and, therefore, (3.9) and (3.10) reduce to (3.2)
and (3.3), respectively.

Next, we collect all noncollinear IFattpg,tq
g1,tpre

to characterize the “relevant” set of influence func-
tions to be used in the construction of the efficient influence function. For g “ g1, let IFattpg,tq

g “

pIFattpg,tq
g,1 , IFattpg,tq

g,2 , ¨ ¨ ¨ , IFattpg,tq
g,g´1 q1, while for each g1 ‰ g, we do not include the very first time period

and let IFattpg,tq
g1 “ pIFattpg,tq

g1,2 , IFattpg,tq
g1,3 , ¨ ¨ ¨ , IFattpg,tq

g1,g1´1q1. Denote the vector stacking all these vectors
together by IFattpg,tq

stg

IFattpg,tq
stg “ pIFattpg,tq,1

g1 , g1 P Gtrtq
1, (3.11)

and let its conditional covariance matrix be defined as ΩgtpXq “ CovpIFattpg,tq
stg |Xq. Let Ω˚

gtpXq be a
matrix of the same dimension as Ωgt with pj, kq-th element given by

1

pgpXq
CovpYt ´ Y1, Yt ´ Y1|G “ g,Xq `

1

p8pXq
CovpYt ´ Yt1

j
, Yt ´ Yt1

k
|G “ 8, Xq

´
1tg “ g1

ju

pgpXq
CovpYt ´ Y1, Yt1

j
´ Y1|G “ g,Xq ´

1tg “ g1
ku

pgpXq
CovpYt ´ Y1, Yt1

k
´ Y1|G “ g,Xq

`
1tgj “ g1

ku

pg1
j
pXq

CovpYt1
j

´ Y1, Yt1
k

´ Y1|G “ g1
j, Xq, (3.12)

where pg1
s, t

1
sq is the value that g1 and tpre takes in the s-th entry of IFattpg,tq

stg . Finally, let qg,e “ PpG “

g|G ` e P r2, T sq.
The next Theorem establishes the semiparametric efficiency bound for ATT pg, tq and ESpeq

parameters under PT-All and staggered treatment adoption. We present the semiparametric effi-
ciency bound for the just-identified DiD setup when one imposes Assumption PT-Post instead of
Assumption PT-All in Corollary 3.2.

Theorem 3.2. Suppose that treatment adoption is staggered over time. Under Assumptions S, O,
NA and PT-All, the efficient influence function of πg and ATT pg, tq, t ě g, are given by

EIFπg “ Gg ´ πg,

EIFattpg,tq
stg “

11ΩgtpXq´1

11ΩgtpXq´11
IFattpg,tq

stg “
11Ω˚

gtpXq´1

11Ω˚
gtpXq´11

IFattpg,tq
stg .

Consequently, the efficient influence function of a ESpeq, e ě 0, is given by

EIFespeq
stg “

ÿ

gPGtrt,e

˜

qg,eEIFattpg,g`eq
stg `

ATT pg, g ` eq
ř

g1PGtrt,e
πg1

˜

pGg ´ πgq ´ qg,e
ÿ

sPGtrt,e

pGs ´ πsq

¸¸

.

The semiparametric efficiency bounds are obtained as the second moments of the efficient influence
functions, assuming that these second moments are finite.
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Corollary 3.2. Suppose that treatment adoption is staggered over time. Under Assumptions S,
O, NA and PT-Post, the model for ATT pg, tq, t ě g, is nonparametrically just-identified, and the
efficient influence function of a ATT pg, tq, t ě g, is equal to IFattpg,tq

g,g´1 . In such cases, the efficient
influence function of a ESpeq, e ě 0, is given by

EIFespeq

j-id,stg “
ÿ

gPGtrt,e

˜

qg,eIFattpg,g`eq

g,g´1 `
ATT pg, g ` eq

ř

g1PGtrt,e
πg1

˜

pGg ´ πgq ´ qg,e
ÿ

sPGtrt,e

pGs ´ πsq

¸¸

.

Theorem 3.2 and Corollary 3.2 have some practical implications. First, when one is only willing
to assume parallel trends for post-treatment periods, as in Assumption PT-Post, Corollary 3.2 shows
that this is essentially the same problem as in the single treatment setup and that ATT pg, tq is
just-identified: one can only use g´ 1 period as baseline, and the never-treated group as comparison
group.

When one can leverage multiple pre-treatment periods as in Assumption PT-All, Theorem 3.2
highlights that the efficient influence function is an optimally weighted average of all influence func-
tions based on different baseline periods and different comparison groups. Theorem 3.2 also shows
that the optimal way to pool information across periods and comparison groups is likely to be
non-uniform, highlighting that not every comparison group and pre-treatment period has the same
“relevance” when it comes to inference. Importantly, these weights are allowed to vary with the
data-generating process and are derived as a consequence of our semiparametric efficiency consider-
ations. As no currently available staggered DiD and ES estimator shares these weighting schemes,
they do not generally achieve the semiparametric efficiency bound, suggesting that we can potentially
conduct more informative inferences.

Theorem 3.2 also provides a “blueprint” on how one can construct DiD and ES estimators that
enjoy attractive semiparametric efficiency asymptotic guarantees. Similarly to the single-treatment
date, we can explore the efficient influence function to get the following DiD ATT pg, tq estimands:

ATT pg, tq “ ATTstgpg, tq :“ E
„

11Ω˚
gtpXq´1

11Ω˚
gtpXq´11

rY att(g,t)
ȷ

, (3.13)

where rY att(g,t) is a column vector of all (non-collinear) generated outcomes rY
att(g,t)
g1,tpre

that leveraged
different pg1, tpreq pairs. The efficiency weights are given by 11Ω˚

gtpXq´1
L

1Ω˚
gtpXq´11. We recommend

plotting the expected value of these weights so that one can have a better understanding of how each
pre-treatment period and comparison group is leveraged for efficiency considerations. We do this in
our simulations and empirical application.

Based on (3.13), one can straightforwardly form estimands for event study parameters ESpeq, e ě

0, by plugging (3.13) into (3.8),

ESpeq “ ESstgpeq :“
ÿ

gPGtrt,e

πg
ř

gPGtrt,e
πg
ATTstgpg, g ` eq (3.14)

An analogous procedure follows for ESavg.

17



Remark 3.4 (Alternative Parallel Trends). In this section, we present semiparametric efficiency
results for two types of parallel trends: Assumption PT-Post that uses never-treated units as the
comparison group and does not restrict pre-treatment trends, and Assumption PT-All that imposes
parallel trends in all periods and across all groups. We view these two PT assumptions as the ends
of a spectrum, and we recognize that other types of parallel trend assumptions are also possible.
It is straightforward to adjust our results in Theorem 3.2 to cover those intermediate cases, too.
For instance, the PT assumption involving not-yet-treated units in Callaway and Sant’Anna (2021)
restricts pre-treatment trends only once the first group is treated at period gmin. In that particular
case, data from period t “ 1 until t “ gmin ´2 are not informative for any ATT pg, tq, so we could drop
them entirely from the analysis and apply Theorem 3.2 using the rest of the retained data. Gormley
and Matsa (2011), Deshpande and Li (2019), Fadlon and Nielsen (2021), Cengiz, Dube, Lindner and
Zipperer (2019), and Baker et al. (2022) discuss other parallel trends over a set of pre- and post-
treatment periods that allow one to different untreated cohorts as a comparison group. Effectively,
all one needs to do to cover these intermediate cases is to adjust the IFattpg,tq

stg in (3.11) only to include
moment equations that are justified by the given version of the parallel trends assumption.

4 Semiparametric efficient estimation and inference
In this section, we discuss how one can estimate and make inferences about the ATT pg, tq’s and
ESpeq’s by leveraging the EIF-based estimands in (3.13) and (3.14). The estimator and inference
procedures for DiD setups without covariates are straightforward, as they follow from standard plug-
in arguments and can be seen as a special case of our proposal. The results from DiD setups with a
single treatment time follow as special cases, too.

We first discuss estimation for ATT pg, tq’s. The EIF-based estimand ATTstgpg, tq in (3.13) nat-
urally suggests a two-step estimation procedure for ATT pg, tq’s, where one first estimate the nui-
sance parameters, mpXq :“ ppm8,t,t1

prepXq, t1pre ă tq, pmg1,t1
pre,1, g

1 P Gtrt, t
1
pre ă g1qq and pratiopXq :“

ppgpXq
L

pg1pXq, pg, g1q P G ˆ Gq, the conditional covariance matrix Ω˚
gtpXq (or ΩgtpXq), and then use

their fitted values to form a plug-in estimators fo ATT pg, tq based on (3.13).
When one uses parametric working models for the nuisance parameters, it is easy to show that the

resulting estimator is doubly robust in the sense that it remains consistent for the ATT pg, tq as long
as the working models for either (but not necessarily both) pratiopXq or mpXq are correctly specified,
regardless of the weighting scheme adopted; see, e.g., Sant’Anna and Zhao (2020, Theorem 1) and
Callaway and Sant’Anna (2021, Theorem 2).10 Inference, in this case, follows from delta-method
arguments.

10In our case, as our estimator averages across different working models for the propensity score and regression
adjustment for untreated units, it is possible to refine the notion of double robustness in the sense that our ATT pg, tq
estimator remains consistent if weighted averages of functionals of pratiopXq or of mpXq are consistently estimated.
As we advocate for an efficiency-oriented weighting scheme, we would not require it to hold for all possible weighted
averages (which would essentially require that mpXq or pratiopXq to be correctly specified).

18



In practice, however, parametric models may be too restrictive, and their misspecification can
still lead to asymptotic biases. Thus, in what follows, we describe a flexible nonparametric estimation
procedure that can leverage modern and traditional estimators for the nuisance functions.

First, recall that mpXq involves conditional expectations of changes in outcomes over time among
some untreated units, given covariates, i.e., it involves terms like mg1,t1

pre,tprepXq “ ErYt1
pre ´ Ytpre |G “

g1, Xs with g1 ą maxttpre, t
1
preu. This is nothing more than a nonparametric regression problem, and

we can use a variety of estimators for it, including sieve-based (Chen, 2007), kernel-based (Cattaneo,
Jansson and Ma, 2018), or recent machine learning methods such as random forests, lasso, ridge,
deep neural nets, boosted trees, and the ensemble of these methods (Chernozhukov, Chetverikov,
Demirer, Duflo, Hansen, Newey and Robins, 2018). Denote these estimators as pmpXq.

Analogously, pratiopXq involves terms like ratios of ErGg|Xs, and each of these conditional expec-
tations can also be estimated using these same estimation procedures.11 Note that modeling each
propensity score separately and then constructing their ratios can potentially lead to instabilities asso-
ciated with estimated propensity scores close to zero. As the propensity scores enter into ATTstgpg, tq

(3.13) in a ratio format, it suffices to directly estimate pgpXq{pg1pXq, which is not bounded between
zero and one, can be more flexibly modeled, and can lead to more stable procedures.

Towards this end, note that pgpXq{pg1pXq can be found as the unique solution to the minimization
problem:

pgpXq

pg1pXq
“ argmin

rg,g1

E

«

ˆ

rg,g1pXq ´
pgpXq

pg1pXq

˙2

pg1pXq

ff

“ argmin
rg,g1

E
“

rg,g1pXq2Gg1 ´ 2rg,g1pXqGg

‰

. (4.1)

This equivalence allows the use of E rrg,g1pXq2Gg1 ´ 2rg,g1pXqGgs as a (convex) loss function to es-
timate rg,g1pXq :“ pgpXq{pg1pXq, and different estimation procedures can be used. An easy-to-
implement estimator for rg,g1pXq is the sieve-based estimator prg,g1pXq “

´

ψKpXq1
pβK

¯

, where ψKpxq

is a K-dimensional vector of flexible transformations of the X such as (tensor products of) cubic
B-splines,

pβK “ argmin
βK

En

”

Gg1

`

ψKpXq1βK
˘2

´ 2Gg

`

ψKpXq1βK
˘

ı

, (4.2)

and we avoid indexing pβK and βK by pg, g1q to simplify the notation burden. The (pg, g1q-specific)
sieve index K can be selected using some information criteria as follows:

pK “ argmin
K

2En

„

Gg1

´

ψKpXq1
pβK

¯2

´ 2Gg

´

ψKpXq1
pβK

¯

ȷ

`
CnK

n
,

where the information criterion corresponds to the Akaike information criterion (AIC) when Cn “ 2,
or the Bayesian information criterion (BIC) when Cn “ logpnq. In the appendix, we show the
consistency of the estimator based on pK following Chen and Liao (2014). Similarly to (4.1), we can

11It is often desirable to impose that pgpXq is bounded between zero and one and choose estimators that respect
this constraint, such as multinomial series logit/probit and local multinomial logit/probit estimators. See, e.g., Chen
(2007) for a discussion of likelihood-based sieve estimators, and Staniswalis (1989) for kernel-based ones.

19



estimate sg1 :“ 1{pg1pXq by solving the empirical analog of the minimization problem

sg1pXq “ argmin
ag

E
“

agpXq2Gg ´ 2agpXq
‰

.

For instance, one can use sieve-estimators analogous to (4.2) for this task.
To estimate the conditional covariance terms of Ω˚

gt as defined in (3.12), we propose using a
Nadaraya-Watson-type estimator based on kernel smoothing. Let Ker be a kernel function on
the covariates space and h ą 0 a bandwidth. Denote Khp¨q “ Kerp¨{hq{h. For x “ Xi, we use
yCovpYt ´ Ytpre , Yt ´ Yt1

pre |G “ g1, X “ xq as an estimator for each the covariance terms CovpYt ´

Ytpre , Yt ´ Yt1
pre |G “ g1, X “ xq, where yCovpYt ´ Ytpre , Yt ´ Yt1

pre |G “ g1, X “ xq is define as
ř

i1:Gi1 “g1 KhpXi1 ´ xqpYi1,t ´ Yi1,tpre ´ pmg1,t,tprepXi1qqpYi1,t ´ Yi1,t1
pre ´ pmg1,t,t1

prepXi1qq
ř

i1:Gi1 “g1 KhpXi1 ´ xq
.

Based on these estimators for the propensity score ratios and the conditional covariance terms, we
estimate Ω˚

gt by pΩ˚
gt with each pj, kq-th element given by the plug-in estimators of (3.12).

Based on these estimators for the nuisance functions and weights, we can estimate ATT pg, tq

by12

zATT stgpg, tq “ En

«

11
pΩ˚
gtpXq´1

11
pΩ˚
gtpXq´11

p

rY
att(g,t)

stg

ff

, (4.3)

where p

rY
att(g,t)

stg the estimated analog of rY
att(g,t)

stg , with each p

rY
att(g,t)
g1,tpre

given by

p

rY
att(g,t)
g1,tpre

“
Gg

pπg
pYt ´ Y1 ´ pm8,t,tprepXq ´ pmg1,tpre,1pXqq

´ prg,8pXq
G8

pπg
pYt ´ Ytpre ´ pm8,t,tprepXqq ´ prg,g1pXq

Gg1

pπg
pYtpre ´ Y1 ´ pmg1,tpre,1pXqq

¯

, (4.4)

and pπg “ EnrGgs.
The estimator for the event study parameter is

xESpeq “
ÿ

gPGtrt

pπg
ř

g1PGtrt,e
pπg1

zATT stgpg, g ` eq. (4.5)

The following theorem establishes the large sample properties of our proposed DiD and ES esti-
mators, and highlights that they achieve the semiparametric efficiency bound.

Theorem 4.1. Let Assumptions O, NA and PT-All and the regularity conditions listed in Assumption
C.1 in the Appendix hold. Then, our proposed nonparametric estimator for zATT stgpg, tq is consistent,
asymptotically normal, and achieves the semiparametric efficiency bound, i.e., as n Ñ 8,

?
np zATT stgpg, tq ´ ATT pg, tqq “

1
?
n

n
ÿ

i“1

11
pΩ˚
gtpXiq

´1

11
pΩ˚
gtpXiq

´11
IFattpg,tq

stg pWiq ` opp1q

d
Ñ Np0, Veffq,

with Veff “ Var
ˆ

11
pΩ˚
gtpXq´1

11
pΩ˚
gtpXq´11

IFattpg,tq
stg pW qq

˙

being the semiparametric efficiency bound in Theorem 3.2.

12It is straightforward to consider variants of our estimator using sample-splitting arguments, too.
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Consequently, xESpeq is also asymptotically normal and semiparametrically efficient.

Theorem 4.1 provides the pointwise asymptotic normality results for each pg, tq pair, with t ě g.
In practice, researchers are often interested in making inferences about multiple groups and periods
to better understand treatment effect dynamics and heterogeneity. In such cases, to avoid multiple-
testing problems, it is recommended to construct simultaneous confidence bands. We omit the details
of this procedure as it is standard.13 To compute standard errors, one can leverage a multiplier
bootstrap procedure or take the square root of the average of the estimated EIF squared divided by
the sample size.

Remark 4.1. Although the results in Theorem 4.1 focus on the large sample properties of our
efficient DiD estimators, zATT stgpg, tq, in its proof, we also establish consistency and asymptotically
normality for related estimators for the ATT pg, tq’s that replaces the estimators for the efficient
weights 11

pΩ˚
gtpXq´1

L

11
pΩ˚
gtpXq´11 with any consistent estimator for any weights wpxq that sum up

to one for each covariate value x. Interestingly, we do not need to require rate conditions for these
weights, allowing one to use many different weights as discussed in Lemma 2.1.

Remark 4.2. As our proposed estimators are based on efficient influence functions, they satisfy the
Neyman orthogonality condition by construction. This implies that it is relatively straightforward
to use modern machine learning estimators for the nuisance parameter without incurring a loss of
asymptotic semiparametric efficiency in large samples.14

4.1 Efficient estimation when covariates are not present

When Assumptions NA and PT-All hold unconditionally, the efficiency results can be simplified by
dropping X from the conditioning set. This leads to an even simpler construction of the efficient
estimator. In particular, (3.13) reduces to

ATT pg, tq “
11pΩ˚

gtq
´1

11pΩ˚
gtq

´11
rY att(g,t),

where each entry rY
att(g,t)
g1,tpre

of rY att(g,t) is given by

rY
att(g,t)
g1,tpre

“ ErYt ´ Y1|G “ gs ´ pErYt ´ Ytpre |G “ 8s ` ErYtpre ´ Y1|G “ g1sq.

The covariance matrix Ω˚
gt has pj, kq-th element given by

1

πg
CovpYt ´ Y1, Yt ´ Y1|G “ gq `

1

π8

CovpYt ´ Yt1
j
, Yt ´ Yt1

k
|G “ 8q

´
1tg “ g1

ju

πg
CovpYt ´ Y1, Yt1

j
´ Y1|G “ gq ´

1tg “ g1
ku

πg
CovpYt ´ Y1, Yt1

k
´ Y1|G “ gq

13See, e.g., Theorems 2 and 3, Algorithm 1, and Corollaries 1 and 2 in Callaway and Sant’Anna (2021).
14Many machine learning procedures involve Neyman orthogonal moments with sample-splitting, which can lead

to a loss of precision in DiD and ES estimation in small samples. This phenomenon is not unique to DiD; see, e.g.,
Chen, Chen and Tamer (2023) for a discussion.
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`
1tgj “ g1

ku

πg1
j

CovpYt1
j

´ Y1, Yt1
k

´ Y1|G “ g1
jq,

where the indices pg1
s, t

1
sq are as defined in (3.12).

In estimation, one can replace the expectations and covariances for each group with the cor-
responding within-group sample means and sample covariances. This procedure does not involve
choosing tuning parameters or estimating conditional expectations.

When covariates are absent, the efficient GMM estimator also attains the semiparametric effi-
ciency bound. Our DiD and ES estimators match that efficiency yet are substantially simpler to
compute: they are available in closed form, whereas the optimal GMM approach entails solving
a high-dimensional optimization problem that is often not practical. In addition, the construc-
tion of our efficient estimator provides new insights about how to weigh different pre-treatment
and comparison groups to achieve efficiency—it is only a matter of analyzing the efficient weights
11pΩ˚

gtq
´1

L

11pΩ˚
gtq

´11.

5 Monte Carlo simulations
So far, we have motivated and established that our efficient DiD and ES estimators have attractive
efficiency properties that allow researchers to get more precise inference procedures. In this section,
we aim to see how these properties play out in realistic empirical settings. We build on Arkhangel-
sky et al. (2021) and Baker et al. (2022) and consider two sets of simulation studies calibrated to
datasets people have used for DiD. The first set of simulations builds on Arkhangelsky et al. (2021).
It considers a single treatment date and leverages Current Population Survey (CPS) data for con-
structing a variety of outcomes and treatment assignments for a panel of US states. The second set
of simulations builds on Baker et al. (2022). It explores Compustat data to calibrate outcomes and
treatment assignments in staggered treatment setups with treatment timing varying across states.
To simplify exposure and match the simulation designs in Arkhangelsky et al. (2021) and Baker et
al. (2022), covariates play no important role in these Monte Carlo setups.

In our first set of simulations, we consider ESavg as in (2.3) as the parameter of interest and
compare our efficient DiD plug-in estimator based on (3.6) (EDiD), traditional OLS-based TWFE
estimator for β based on (2.6) (TWFE), average of post-treatment event-study TWFE estimators
βe based on (2.4) (DTWFE), and the Arkhangelsky et al. (2021) Synthetic DiD estimator (SDiD).
We note that the DTWFE estimator would be the efficient estimator if parallel trends were to hold
only in post-treatment periods.15

In our second set of simulations, we also consider ESavg as in (2.3) as the parameter of interest
and compare our efficient (plug-in) estimator xESavg based on (4.5) (EDiD), the average of post-

15In this non-staggered setup, the OLS estimate of β based on (2.6) coincides with the post-treatment average
of the event-studies coefficients of the estimators proposed by Wooldridge (2021), Gardner (2021), and Borusyak et
al. (2024). Similarly, the post-treatment average of the OLS estimates of βe in (2.4) coincides with Callaway and
Sant’Anna (2021), Sun and Abraham (2021), and de Chaisemartin and D’Haultfœuille (2020) estimators.
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treatment event-study estimates based on (i) Callaway and Sant’Anna (2021) and Sun and Abraham
(2021) DiD estimators using the “never-treated” as a comparison group (CS-SA), (ii) Callaway and
Sant’Anna (2021) and de Chaisemartin and D’Haultfœuille (2020) DiD estimators using the “not-
yet-treated” as a comparison group (CS-dCDH), and (iii) Wooldridge (2021), Gardner (2021), and
Borusyak et al. (2024) “imputation” estimators (BJS-G-W). We do not include staggered synthetic
DiD estimators in the comparison as we are not aware of a paper describing and establishing the
statistical properties of synthetic DiD estimators for ESavg. In this exercise, we note that the CS-SA
estimator would be the efficient one if parallel trends were to hold only for post-treatment periods
and the never-treated group was the only valid comparison group.

We compare all these estimators regarding bias, root-mean-squared-error (RMSE) relative to our
efficient DiD estimator, 95% empirical coverage, and 95% confidence interval length relative to our
efficient DiD. We consider analytical and bootstrapped standard errors for coverage and length of
confidence intervals but use the Gaussian critical values. For each data generating process (DGP),
we consider 1,000 Monte Carlo experiments, and for each experiment, we use 300 bootstrap draws.16

5.1 Simulations based on CPS with single treatment date

Our first set of simulations builds on Arkhangelsky et al. (2021) and explores CPS data to construct
an empirically motivated data-generating process. We differ from Arkhangelsky et al. (2021) in some
aspects: (i) we consider heterogeneous treatment effects across units; (ii) consistent with our DiD
regime with “large n” and fixed T , we consider short panels with T “ 7—four pre-treatment and
three post-treatment periods; (iii) we do not limit the maximum number of treated units in a given
simulation; and (iv) all our outcomes are measured in log to avoid violating support restrictions in
the simulation. Apart from these differences, the construction of our data-generating process follows
from Arkhangelsky et al. (2021), which we describe below for completeness.

As in Arkhangelsky et al. (2021), we start designing our simulations using data on wages for
women with positive wages in the March outgoing rotation groups in the CPS from 1979 to 2018.
We then take logs and average the observations by state-year cells, leaving us with aggregate data
from 50 states in 40 years. This will serve as the baseline dataset for our simulation designs.

Next, we consider a baseline specification for our untreated potential outcomes, Yi,tp8q. We
consider the same interactive fixed-effects specification as Arkhangelsky et al. (2021),

Yi,tp8q “ γiυt ` εi,t, (5.1)

with γi and υt being 4-dimensional vectors of latent unit and time factors, and εi,t being a mean-zero
Gaussian error term that follows an ARp2q process. This specification does not impose a two-way
fixed effects structure on Yi,tp8q and allows for correlation over times within each state; accounting
for serial correlation is very important when conducting valid inference using DiD and other panel

16For Synthetic DiD, Arkhangelsky et al. (2021) have not proposed a plug-in analytical standard error. As such,
we do not report plug-in analytical standard errors from it.
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data methods, see, e.g., Wooldridge (2003) and Bertrand, Duflo and Mullainathan (2004).
To construct a realistic set of simulations, we use the CPS aggregated data to estimate the γi’s,

υt’s, and the variance-covariance matrix of the error terms. In matrix notation, the interactive
fixed-effects model (5.1) is given by Y p8q “ L ` E, where L “ ΓΥ1, and we estimate L as

L :“ argmin
L:rankpLq“4

ÿ

i,t

pY ˚
i,t ´ Li,tq

2,

where Y ˚
i,t is the log wage in state i in year t in the CPS data. To help with interpretation, we

decompose L as unit-and-time fixed effects, F , and an interactive term M , with

Fi,t “ αt ` ηi “
1

T

T
ÿ

l“1

Li,l `
1

N

N
ÿ

j“1

Lj,t ´
1

NT

NˆT
ÿ

i,t

Li,t

Mi,t “ Li,t ´ Fi,t.

We estimate the variance-covariance matrix of the residuals εi,t by fitting an AR(2) model to the
residuals of Y ˚

i,t ´Li,t, and then compute the implied variance-covariance matrix of the error term for
state i, Σ. Like Arkhangelsky et al. (2021), we assume that the error terms are independent across
units and Σ is constant across states.

Next, we describe the treatment assignment process. In this set of simulations, units can start
treatment in t “ 2009, so we only have two groups: Gi “ 2009 (treated units) and Gi “ 8 (untreated
units). To simulate whether a state is treated, we follow Arkhangelsky et al. (2021) and consider the
treatment status Di,t “ 1tt ě 2009u1tGi “ 2009u with

1tGi “ 2009u „ Bernoulli pπiq,

πi “ P pGi “ 2009|ηi,Miq “
exppϕηηi ` ϕMMiq

1 ` exppϕηηi ` ϕMMiq
.

We choose ϕη and ϕM as the coefficient estimates from a logistic regression of an observed binary
characteristic of the state i on ηi and Mi.17 We consider three different characteristics relating
treatment groups to minimum wage laws (part of our baseline specification), abortion rights, and
gun control laws. We also consider a completely random treatment assignment. Unlike Arkhangelsky
et al. (2021), though, we do not restrict the maximum number of treated units; only the minimum
number of treated units to be two.18

Based on these parameters, we simulate untreated and treated potential outcomes Yi,tp8q and
Yi,tp2009q as

Yi,tp8q “ αt ` ηi ` Mi,t ` εi,t (5.2)
Yi,tp2009q “ Yi,tp8q ` τi1tt ě 2009u (5.3)

where εi “ pεi,t“1, . . . , εi,t“T q1 have a multivariate Gaussian distribution with mean zero and variance
17These “unit factors” are the first four left singular vectors from single value decomposition of the outcome Y , as

described in Arkhangelsky et al. (2021).
18If we have less than two treated states in a simulation, we randomly select ten out of the 50 states to be treated

completely at random. This is similar to Arkhangelsky et al. (2021), though their minimum number of treated states
was one.
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Σ, and τi have a Gaussian distribution with mean zero and variance one. Note that we have a
heterogeneous treatment effects model as the treatment effect varies across states. This differs from
Arkhangelsky et al. (2021), who sets τi “ 0 for all states. However, we stress that ATT p2009, tq “ 0

for all periods. The observed outcomes for unit i in time t are Yi,t “ 1tGi “ 2009uYi,tp2009q`1tGi “

8uYi,tp8q. To respect our DiD setup with “large n and fixed T”, we restrict T “ 7 and keep data
from t “ 2005 until t “ 2011.

Note that we do not impose that the parallel trends assumption holds exactly across periods. If
this assumption is violated, we should see a bias in estimates that rely on this assumption, namely
our efficient DiD estimator and the DTWFE in (2.4). If parallel trends in post-treatment periods is
violated, we should also see a bias in the TWFE estimates based on (2.6).

Like Arkhangelsky et al. (2021), we consider different choices of treatment assignment and out-
come variables. In addition, we also consider settings where we drop different components of the data
generating process for the outcome, such as assuming that the error terms are serially independent
(“No Corr”), that there is no interactive component M (“No M”), no additive two-way fixed effects
(“No F”), or there is L (“Only noise”).19 For the alternative outcome variables, we consider log of
hours worked and log of unemployment rate; Arkhangelsky et al. (2021) consider these variables in
levels, but that leads to some negative values during the simulation for these variables, violating
their natural support restriction.

Finally, we consider two setups. We simulate data from the 50 states and seven periods for the
first one. In this case, we expect that inference procedures based on asymptotic approximations
may be challenging given the limited (effective) sample size of 50. In the second setup, we increase
the number of cross-sectional units by drawing with replacement 200 states (each with its own error
term, treatment assignment, and treatment effect). Here, we expect inference procedures based on
asymptotic approximations to be better than in the setup with n “ 50, though we acknowledge that
n “ 200 is still reasonably small.

Tables 1 present the bias and relative RMSE of the four different estimators for ESavg when
n “ 50 and n “ 200. At a high level, we have found that all estimators are (nearly) unbiased
when n “ 50 and that the bias becomes even smaller when n “ 200. This suggests that, in these
DGPs, the assumption that parallel trends hold in all periods is a good approximation. In terms of
RMSE, however, there is a significant variation across estimators, with our efficient DiD estimator
performing the best in nearly all DGPs, with Synthetic DiD coming as second, and the DTWFE
estimator based on (2.4) being the least precise. The result for DTWFE is expected, though, as this
estimator does not leverage data from any pre-treatment period other than t “ 2008; all the other
estimators leverage three additional pre-treatment periods. It is also important to stress the large
RMSE gains that our efficient DiD estimator enjoys compared to the synthetic DiD estimator. For

19We omit results for DGPs in which there is no error term (“No noise”). We do it because the RMSE and the length
of 95% confidence interval for our efficient estimators are close to zero, making it hard to report relative performance
measures.
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Table 1: Simulation results for CPS data: Relative RMSE and Bias

Relative RMSE Bias (ˆ10)
Sample size EDiD TWFE DTWFE SDiD EDiD TWFE DTWFE SDiD

1. Baseline 50 1 3.57 12.46 1.53 0.01 0.60 2.58 0.00
200 1 2.32 3.37 1.95 0.00 -0.01 0.00 0.00

Outcome Model
2. No corr 50 1 3.52 12.33 1.45 0.02 0.59 2.46 0.00

200 1 2.27 3.33 1.95 -0.01 0.00 -0.01 0.00
3. No M 50 1 3.67 13.04 1.49 -0.02 0.61 2.45 0.03

200 1 2.17 3.00 1.68 -0.01 0.02 0.00 0.01
4. No F 50 1 1.47 1.88 1.42 0.00 -0.02 -0.04 -0.02

200 1 1.64 2.18 1.63 0.00 0.00 -0.01 0.00
5. Only noise 50 1 1.26 1.67 1.25 0.02 -0.02 -0.01 -0.01

200 1 1.47 1.87 1.48 0.00 -0.01 -0.01 -0.01

Treatment Assignment
6. Gun law 50 1 7.27 18.23 4.67 0.00 -0.08 -0.23 -0.11

200 1 8.70 12.94 6.05 0.00 0.03 0.02 0.02
7. Abortion 50 1 6.99 17.19 4.77 -0.01 0.55 1.75 0.33

200 1 8.04 12.64 5.23 0.00 -0.01 -0.05 0.00
8. Random 50 1 4.13 15.30 1.53 -0.01 -0.07 -0.22 0.01

200 1 2.56 3.74 2.17 0.00 0.01 0.00 0.01
Outcome Variable
9. Ln Hours 50 1 1.01 1.92 0.95 -0.34 0.12 1.53 0.02

200 1 1.24 1.95 1.21 0.01 0.05 0.02 0.07
10. Ln U-rate 50 1 0.82 1.44 0.82 0.73 -0.24 -0.36 -0.26

200 1 1.03 1.53 1.01 0.03 0.00 0.01 0.00

Notes: Simulation results for CPS data based on 1,000 Monte Carlo experiments. The DGP is summarized in Section 5. The baseline
case uses state minimum wage laws to simulate treatment assignment and generates outcomes using the DGPs described in Section 5.
In subsequent settings, we omit parts of the DGP (rows 2–5), consider different distributions for the treatment variable (rows 6-8), and
different distributions for the outcome variable (rows 9-10). The dataset has 7 times periods and either n “ 50 or n “ 200. Relative
RMSE is reported using our efficient DiD estimator as benchmark. All results for bias are multiplied by 10 for readability.

instance, when n “ 50, the RMSE of the synthetic DiD estimator is nearly 60% larger than that
of our efficient DiD estimator in the baseline model. When treatment assignment is based on gun
laws or abortion rights, their RMSE is approximately 5 times larger than ours when n “ 50, and
this difference grows further when n “ 200. On the other hand, we notice that when the outcome
of interest is the log unemployment rate, the synthetic DiD and the TWFE estimators have smaller
RMSE than our efficient estimator. However, this difference reduces when n “ 200.

Table 2 present the empirical coverage of 95% confidence intervals for ESavg when n “ 50 and
when n “ 200. We consider both nonparametric clustered-bootstrapped standard errors and an-
alytical standard errors. Our simulation results show that using bootstrapped standard errors to
construct confidence intervals yields very good coverage properties for all estimators across all con-
sidered DGPs, even in the challenging setup with n “ 50. On the other hand, our results also reveal
that inference based on analytical standard errors with our efficient DiD estimator is anticonservative
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Table 2: Simulation results for CPS data: Coverage

Bootstrap Analytical
Sample size EDiD TWFE DTWFE SDiD EDiD TWFE DTWFE SDiD

1. Baseline 50 0.94 0.92 0.93 0.93 0.80 0.92 0.92 -
200 0.96 0.97 0.97 0.97 0.94 0.98 0.97 -

Outcome Model
2. No corr 50 0.92 0.94 0.94 0.93 0.80 0.93 0.92 -

200 0.93 0.97 0.97 0.96 0.93 0.97 0.97 -
3. No M 50 0.94 0.93 0.93 0.94 0.82 0.92 0.92 -

200 0.93 0.97 0.97 0.96 0.91 0.96 0.97 -
4. No F 50 0.94 0.94 0.94 0.95 0.82 0.94 0.92 -

200 0.95 0.95 0.96 0.96 0.94 0.95 0.96 -
5. Only noise 50 0.93 0.93 0.92 0.95 0.79 0.92 0.90 -

200 0.94 0.95 0.95 0.95 0.93 0.94 0.95 -

Treatment Assignment
6. Gun law 50 0.95 0.94 0.94 0.97 0.94 0.94 0.94 -

200 0.94 0.96 0.96 0.97 0.94 0.96 0.96 -
7. Abortion 50 0.94 0.92 0.91 0.93 0.92 0.93 0.91 -

200 0.95 0.98 0.98 0.97 0.95 0.97 0.98 -
8. Random 50 0.94 0.94 0.94 0.98 0.93 0.94 0.94 -

200 0.95 0.93 0.93 0.94 0.95 0.94 0.93 -
Outcome Variable
9. Ln Hours 50 0.93 0.94 0.93 0.95 0.77 0.94 0.92 -

200 0.94 0.95 0.96 0.96 0.93 0.95 0.95 -
10. Ln U-rate 50 0.93 0.91 0.92 0.92 0.79 0.90 0.91 -

200 0.95 0.94 0.95 0.95 0.92 0.94 0.94 -

Notes: Simulation results for CPS data based on 1,000 Monte Carlo experiments. The DGP is summarized in Section 5. The dataset has
7 times periods and either n “ 50 or n “ 200. “Bootstrap” results use 300 nonparametric clustered bootstrap replications to compute
bootstrapped clustered standard errors for all methods. “Analytical” results use asymptotic approximations for computing standard er-
rors for all methods but synthetic DiD, as analytical standard errors are not available. All the other details are the same as in Table 1.

when n “ 50, though the results improve when n “ 200. Thus, in setups with very limited sample
sizes, we recommend using cluster bootstrap standard errors.

Finally, Table 3 presents the length of 95% confidence intervals for all the estimators, using
bootstrap and analytical standard errors. Since it is only reasonable to compare the length of
confidence intervals across methods that control size, we focus our attention on the bootstrap results.
Here, we note that our efficient DiD estimator tends to have substantially shorter confidence intervals
than other available DiD estimators. For instance, in the baseline DGP, the bootstrapped confidence
interval for the synthetic DiD estimator is more than 40% larger than our efficient DiD estimator
when n “ 50, and approximately two times larger than our efficient DiD estimator when n “ 200;
these gains are even larger when compared to TWFE and DTWFE estimators. When treatment
assignment is based on gun laws across states, the length of bootstrapped confidence intervals of all
other considered estimators is more than four times larger than those based on our efficient estimator.
We reach a qualitatively similar conclusion when using abortion rights as treatment. On the other
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hand, when the outcome of interest is the log unemployment rate, we note that bootstrap inference
using synthetic DiD or traditional TWFE estimators is more precise than our efficient DiD estimator.
However, this difference shrinks when n “ 200.

Table 3: Simulation results for CPS data: Relative length of confidence interval

Bootstrap Analytical
Sample size EDiD TWFE DTWFE SDiD EDiD TWFE DTWFE SDiD

1. Baseline 50 1.00 3.63 12.58 1.43 1.00 5.44 18.40 -
200 1.00 2.46 3.60 2.08 1.00 2.65 3.86 -

Outcome Model
2. No corr 50 1.00 3.67 12.78 1.36 1.00 5.46 18.57 -

200 1.00 2.47 3.58 2.11 1.00 2.67 3.85 -
3. No M 50 1.00 3.56 12.90 1.32 1.00 5.32 18.83 -

200 1.00 2.33 3.39 1.84 1.00 2.52 3.64 -
4. No F 50 1.00 1.42 1.85 1.44 1.00 2.14 2.72 -

200 1.00 1.58 2.18 1.57 1.00 1.71 2.35 -
5. Only noise 50 1.00 1.15 1.55 1.23 1.00 1.74 2.28 -

200 1.00 1.31 1.74 1.34 1.00 1.41 1.87 -

Treatment Assignment
6. Gun law 50 1.00 6.41 16.94 4.33 1.00 7.00 18.12 -

200 1.00 8.86 13.18 5.92 1.00 8.99 13.33 -
7. Abortion 50 1.00 6.40 16.44 3.84 1.00 7.14 18.00 -

200 1.00 8.53 13.30 5.44 1.00 8.76 13.53 -
8. Random 50 1.00 3.93 14.71 2.13 1.00 4.31 15.71 -

200 1.00 2.36 3.49 2.03 1.00 2.40 3.53 -
Outcome Variable
9. Ln Hours 50 1.00 1.05 2.01 1.03 1.00 1.58 2.95 -

200 1.00 1.37 2.07 1.33 1.00 1.48 2.21 -
10. Ln U-rate 50 1.00 0.75 1.34 0.79 1.00 1.13 1.98 -

200 1.00 0.99 1.51 0.99 1.00 1.07 1.62 -

Notes: Simulation results for CPS data based on 1,000 Monte Carlo experiments. The data generating process is summarized in Sec-
tion 5. The dataset has 7 times periods and either n “ 50 or n “ 200. “Bootstrap” results use 300 nonparametric clustered bootstrap
replications to compute bootstrapped clustered standard errors for all methods. “Analytical” results use asymptotic approximations
for computing standard errors for all methods but synthetic DiD, as analytical standard errors are not available. Length of Confidence
intervals are measured relative to our efficient DiD estimator. All the other details are the same as in Table 1.

In practice, we anticipate that empirical researchers may also be interested in better under-
standing the contribution of each DiD component that uses a different pre-treatment period as a
baseline period. In other words, one may be interested in understanding the “contribution” of each
pre-treatment period to form efficient estimators. Figure 2 plots this in a heatmap-style for four
different DGPs, using a single simulation draw. As evident from this, the optimal way to aggregate
pre-treatment periods to gain efficiency varies with the DGP, and the further it deviates from uni-
form weights, the higher the gains are compared to TWFE. This highlights that, in general, we can
substantially improve upon TWFE.

Another point worth stressing is related to negative efficiency weights. In our context, negative
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Figure 2: Contribution of pre-treatment periods for the Efficient DiD estimator for ESavg
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Notes: The figure displays the contribution of each pre-treatment period when constructing the efficient DiD estimator for ESavg based
on a single draw of the data-generating process. Sample size n “ 50 and T “ 7, with four pre-treatment periods and three post-treatment
periods. The weight color scale is the same across all sub-figures except Figure 2c.

efficiency weights do not lead to concerns related to treatment effect sign preservation as discussed
in Goodman-Bacon (2021), Borusyak et al. (2024), and de Chaisemartin and D’Haultfœuille (2020),
for example. The reason for this is that our overidentification conditions imply that the ATT pg, tq’s
are homogeneous across baseline periods, allowing us to potentially non-convex sums across different
baseline periods. As illustrated in Figure 2c and backed up by the results in Tables 1 and 3, this
should not be interpreted as a concern. Negative efficiency weights arise simply as a consequence of
the dependence structure of the changes in outcome in treatment and comparison groups, and de
facto leveraging them can lead to substantial gains in precision, as illustrated in DGP 6.

Altogether, these simulation results highlight the excellent finite sample properties of our efficient
DiD estimator in realistic DGPs: they tend to have much smaller RMSE and shorter confidence
intervals than other available estimators. Importantly, the gains in precision can be very substantial.

5.2 Simulations based on Compustat with staggered treatment

Our second set of simulations builds on Baker et al. (2022) and considers DGPs with staggered
treatment adoption calibrated to Compustat panel data. We differ from Baker et al. (2022) in some
aspects: (i) consistent with our DiD framework with “large n” and fixed T , we consider a setup
with n “ 400 firms and follow them for T “ 11 years; (ii) we consider that error terms are serially
correlated with varying autocorrelation parameter ρ to allow for richer outcome dynamics and assess
its impact of the performance of different estimators; (iii) we follows a one-step treatment assignment
in which firms are assigned to different cohorts. Apart from these differences, the construction of our
data-generating process follows that of Baker et al. (2022), which allows for three treatment dates,
with all units eventually being treated, and treatment effects evolving dynamically with heterogeneous
trends. We describe the DGPs below for completeness.
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As in Baker et al. (2022), we begin with a sample of all firms in Compustat over the 36-year period
from 1980 to 2015 that are U.S. incorporated, non-financial, and contain at least five observations.
This leaves us with a sample of 12,020 different firms. Using this unbalanced panel, we compute
returns on assets (ROA) and then decompose it into year fixed effects, firm/unit fixed effects, and
residuals:

tpηiu
12,020
i“1 , tpαtu

36
t“1, tpεi,tu

176,622
i,t“1 , from ROAi,t “ ηi ` αt ` εi,t.

The empirical (marginal) distribution of these terms serves as the benchmark distribution in our
Monte Carlo simulations. We consider three possible treatment dates, G “ 5, G “ 8, and G “ 11,
with each firm randomly assigned to each treatment group with probability 1{3.

Based on these features, we simulate potential outcomes Yi,tp5q, Yi,tp8q, Yi,tp11q, and Yi,tp8q as

Yi,tp8q “ rαt ` rηi ` rεi,t (5.4)
Yi,tp5q “ Yi,tp8q ` 0.5 ˆ σROA1tt ě 5u pt ´ 5 ` 1q (5.5)
Yi,tp8q “ Yi,tp8q ` 0.3 ˆ σROA1tt ě 8u pt ´ 8 ` 1q (5.6)
Yi,tp11q “ Yi,tp8q ` 0.1 ˆ σROA1tt ě 11u pt ´ 11 ` 1q , (5.7)

where rηi and rαt are drawn from the empirical distribution of tpηiu
12,020
i“1 and tpαtu

36
t“1, respectively,

rεi,t “ ρrεi,t´1 ` rui,t, with rui,t being drawn from the empirical distribution of tpεi,tu
176,622
it“1 , and σROA

refers to the sample standard deviation of ROA (0.309). To assess the impact of serial correlation
on our results, we consider ρ P t´1.1,´1,´0.5, 0, 0.5, 1, 1.1u.

The observed outcomes are given by Yi,t “
ř

gPt5,8,11u Yi,tpgq ˆ 1tGi “ gu. As we consider a setup
where all units are eventually treated, we are unable to identify average treatment effects in period
t “ 11. Therefore, we effectively drop the data from the last period (t “ 11), and cohort G “ 11 acts
as ”never-treated” units. In our setup, we have that ATT p5, tq “ 0.154pt ´ 4q for t “ 5 . . . , 10, and
ATT p8, tq “ 0.093pt ´ 7q for t “ 8, 9, 10. As a consequence, we have that for e “ 0, 1, . . . , 5, ESpeq

is equal to 0.123, 0.247, 0.370, 0.617, 0.772, and 0.926, respectively, and ESavg “ 0.509.
Table 4 presents the bias and relative RMSE of the four different estimators for ESavg. As

expected, all estimators are unbiased. However, in terms of RMSE, there is a good amount of
variation across estimators depending on the residual serial correlation. In all scenarios, our proposed
efficient DiD estimator yields the lowest RMSE, which supports our theoretical results. When the
errors are spherical (ρ “ 0q, our efficient estimator performs very similarly to BJS-G-W. This is
aligned with the efficiency results derived under these additional assumptions on the error term
in Borusyak et al. (2024) and Wooldridge (2021). Outside this specific setup, though, the BJS-G-
W estimator has no efficiency guarantees. Outside of our efficient estimators, our simulations also
suggest that it is generally not possible to rank other estimators in terms of efficiency, as their
performance depends on the specific DGP.

Table 5 presents the empirical coverage of 95% confidence intervals for ESavg. All estimators
display correct coverage across all considered DGPs. In terms of inferential precision measured by
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Table 4: Simulation results for Compustat data: Relative RMSE and Bias

Relative RMSE Bias (ˆ10)
EDiD BJS-G-W CS-SA CS-dCDH EDiD BJS-G-W CS-SA CS-dCDH

ρ “ 0 1 1.01 1.61 1.55 0.00 0.00 0.00 0.00
ρ “ 0.5 1 1.04 1.26 1.22 -0.01 -0.01 0.00 0.00
ρ “ 1 1 1.18 1.08 1.04 0.00 0.01 0.01 0.01
ρ “ 1.1 1 1.47 1.23 1.18 -0.03 -0.02 -0.02 -0.02
ρ “ ´0.5 1 1.04 2.31 2.20 0.00 0.00 0.00 0.00
ρ “ ´1 1 1.58 3.22 3.37 0.00 0.00 0.00 0.00
ρ “ ´1.1 1 2.23 3.37 3.77 0.00 0.00 0.00 -0.01

Notes: Simulation results for Compustat data based on 1,000 Monte Carlo experiments. The DGP is summarized
in Section 5. In all setups, we randomly draw 400 firms and follow them for 11 periods. The baseline case has error
terms that are randomly drawn from the residual distribution as described in Section 5. In subsequent settings, we
consider error terms with different degrees of serial correlation. The parameter of interest is ESavg. Relative RMSE
is reported using our efficient DiD estimator as a benchmark. All results for bias are multiplied by 10 for readability.

Table 5: Simulation results for Compustat data: Coverage and relative length of confidence interval

Coverage Rel Length of CI
EDiD BJS-G-W CS-SA CS-dCDH EDiD BJS-G-W CS-SA CS-dCDH

ρ “ 0 0.93 0.93 0.94 0.94 1 1.01 1.62 1.55
ρ “ 0.5 0.95 0.95 0.95 0.95 1 1.05 1.27 1.23
ρ “ 1 0.94 0.96 0.95 0.95 1 1.24 1.11 1.07
ρ “ 1.1 0.94 0.96 0.95 0.95 1 1.54 1.27 1.22
ρ “ ´0.5 0.93 0.93 0.94 0.95 1 1.04 2.35 2.25
ρ “ ´1 0.93 0.94 0.95 0.95 1 1.64 3.33 3.48
ρ “ ´1.1 0.95 0.95 0.94 0.94 1 2.22 3.38 3.78

Notes: Simulation results for Compustat data based on 1,000 Monte Carlo experiments. The DGP is summarized
in Section 5. In all setups, we randomly draw 400 firms and follow them for 11 periods. The baseline case has error
terms that are randomly drawn from the residual distribution as described in Section 5. In subsequent settings, we
consider error terms with different degrees of serial correlation. The parameter of interest is ESavg. Coverage is
computed using empirical coverage associated with 95% confidence intervals based on asymptotic approximations
(analytical standard errors). Relative length of confidence intervals are reported using our efficient DiD estimator
as benchmark.

the length of the 95% confidence intervals, the results once again highlight the practical gains of
using our efficient DiD estimator. The relative size of these gains varies with the degree of serial
correlation in the data, as expected and consistent with our theoretical results.

As we discussed before, an appealing feature of our proposal is that we can visualize the contri-
bution of the treatment group, the effective comparison group, and the pre-treatment period used
as baseline for the construction of our efficient DiD estimator for ESavg. Figure 3 plots this in a
heatmap-style for three different DGPs, using a single simulation draw. Overall, we can see that
the treatment group G “ 5 “contributes more” to the xESavg, which is again expected, as this group
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Figure 3: Contribution of treatment and comparison groups, and pre-treatment periods for the
Efficient DiD estimator for ESavg
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Notes: The figure displays the contribution of each pre-treatment period, comparison group, and treatment group when constructing the
efficient DiD estimator for ESavg based on a single draw of the data-generating process. Sample size n “ 400 and T “ 11, and staggered
treatment adoption. The weight color scale varies across DGPs.

has six available post-treatment periods; group G “ 8 has only three. Across DGPs, we can also see
that the efficient weights vary across comparison groups and pre-treatment periods. When there is
no serial correlation, most of the weights come from when G “ g1 “ 5, indicating that the efficient
estimator is leveraging the “never-treated” units as a leading comparison group. In this case, we can
also see that all pre-treatment periods have similar weighting schemes, again highlighting the appeal
of exploring various pre-treatment periods as a baseline. When the error term follows a unit root
process, we observe that the efficient estimator allocates almost all the weights to the last available
pre-treatment periods, and earlier pre-treatment periods are less important for efficiency considera-
tions. When the errors are negatively serially correlated with ρ “ ´1, we see that the weights are
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differently spread than in the previous case. Overall, these heatmap plots illustrate that the opti-
mal way to aggregate information across treatment groups, comparison groups, and pre-treatment
periods varies from DGP to DGP, and being able to (asymptotically) achieve the semiparametric
efficiency bound without needing to know these additional features of the data can be very attractive.
Similarly to the setup with a single treatment date, negative efficiency weights provide no reason
to be concerned about bias in our context. These efficiency weights appear as a consequence of
the semiparametric efficiency results, and leveraging their structure can lead to practical gains in
precision.

6 Empirical Illustration
We illustrate how our efficient DiD and ES estimators can be used by estimating the effect of hos-
pitalization on out-of-pocket medical spending using publicly available survey data from the Health
and Retirement Study (HRS) from the replication package of Dobkin et al. (2018). Like Dobkin et
al. (2018), we explore the variation in the timing of hospitalization observed in the HRS to estimate
the different treatment effects of interest. Dobkin et al. (2018) analyzes many other outcomes of
interest and also leverage (not publicly available) hospitalization data linked to credit reports.

To conduct our illustrative analysis, we follow the same sample selection steps used by Sun
and Abraham (2021), who also revisited Dobkin et al. (2018). The sample selection closely follows
Dobkin et al. (2018), and restricts attention to non-pregnancy-related hospital admissions and to
adults who are hospitalized at ages 50-59. Like Sun and Abraham (2021), we restrict our analysis to
a subsample of individuals who appear throughout waves 7-11 (approximately spanning 2004-2012),
so we maintain a balanced panel with 652 individuals in 5 waves, t “ 7, . . . , 11. Given the data
construction, all individuals in the sample are hospitalized by t “ 11, but were not hospitalized in
wave t “ 7. Thus, as we do not have a valid comparison group for wave t “ 11, we also drop data
from that period.

Overall, we have 4 treatment groups: individuals (first) hospitalized in t “ 8 (Gi “ 8, 252 indi-
viduals), t “ 9, (Gi “ 9, 176 individuals), t “ 10 (Gi “ 10, 163 individuals), and those hospitalized
in t “ 11 (Gi “ 8, 65 individuals). Note that as we are only using data up to wave 10, we can
re-label the units treated in wave t “ 11 as the “never-treated” group, so we match our notation.

As discussed in detail in Sun and Abraham (2021), (unconditional) parallel trends (in all periods
and groups) and no-anticipation assumptions are plausible in this setting, and one should a priori
expect that the effect of hospitalization is heterogeneous across individuals and periods. Figure 4
plots the evolution of the average out-of-pocket medical spending across all treatment groups, and
also provides suggestive evidence in favor of the plausibility of parallel trends assumptions across all
periods and groups. Thus, the “heterogeneous robust” DiD and ES estimators for staggered treatment
adoption proposed by de Chaisemartin and D’Haultfœuille (2020), Callaway and Sant’Anna (2021),
Sun and Abraham (2021), Gardner (2021), Wooldridge (2021), and Borusyak et al. (2024) are well-
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motivated. When parallel trends is plausible across all periods and groups, we should expect all
modern DiD estimators to provide similar point estimates.

Figure 4: Evolution of average out-of-pocket medical spending across different treatment groups
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Notes: Plot of evolutions of average out-of-pocket medical spending across four cohorts defined by the time they were first hospitalized. The
waves of the first hospitalizations are displayed in dashed vertical lines. For each cohort, points before the vertical lines are pre-treatment
periods, and after the dashed vertical lines are post-treatment periods. We use the same balanced panel data as Sun and Abraham (2021).

In this context, we are interested in different treatment effect parameters. As we discussed before,
a natural starting point is to analyze the six different post-treatment ATT pg, tq’s that measure the
evolution of ATTs since hospitalization for each group. For instance, ATT p8, 8q would give the
average treatment effect of hospitalization on out-of-pocket medical spending in time t “ 8, among
individuals in group g “ 8, i.e., those who were hospitalized in time 8; ATT p8, 9q and ATT p8, 10q

would provide the average treatment effect for these same individuals but in periods t “ 9 (one year
after hospitalization) and t “ 10 (two years after hospitalization). The interpretation of the other
ATT pg, tq’s is analogous. We may also want to summarize all these different ATT pg, tq’s into more
aggregated summary measures to ease interpretations and potentially gain precision. A natural way
to summarize the effects is to look at the event-study parameters ESpeq as in (2.2)—which provides
an average treatment effect by length of treatment exposure e—and their averages, ESavg, as in (2.3).

Table 6 reports the estimates of all these target parameters and displays their standard errors
clustered at individual level in parenthesis. We report estimates using different methods: our efficient
DiD procedure (EDiD), the DiD estimator of Callaway and Sant’Anna (2021) and Sun and Abraham
(2021) that uses the never-treated units as the comparison group (CS-SA), the one of Callaway and
Sant’Anna (2021) and de Chaisemartin and D’Haultfœuille (2020) that uses the not-yet-treated units
as the comparison group (CS-dCDH), and the imputation DiD estimator of Borusyak et al. (2024),
Gardner (2021), and Wooldridge (2021) (BJS-G-W). Several overall patterns arise. First, note that
the point estimates for each target parameter are similar across all the different DiD estimators.
This is expected, as parallel trends across all periods and groups and no-anticipation are plausible
in this application. We also note that instantaneous treatment effects tend to be larger than later
effects, across all cohorts; for instance, estimates of ATT p8, 8q tend to be larger than ATT p8, 9q

and ATT p8, 10q, and ATT p9, 9q larger than ATT p9, 10q. This is well captured in the event-study
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Table 6: Estimates for the effect of hospitalization on out-of-pocket medical spending

Estimator ATT p8, 8q ATT p8, 9q ATT p8, 10q ATT p9, 9q ATT p9, 10q ATT p10, 10q ESp0q ESp1q ESp2q ESavg

EDiD 3072 1112 1038 3063 90 2908 3024 692 1038 1585
(806) (637) (817) (690) (641) (894) (486) (471) (816) (521)

CS-SA 2826 825 800 3031 107 3092 2960 530 800 1430
(1035) (909) (1008) (702) (651) (995) (539) (585) (1008) (647)

CS-dCDH 3029 1248 800 3324 107 3092 3134 779 800 1571
(913) (861) (1008) (959) (651) (995) (536) (570) (1008) (566)

BJS-G-W 3029 1285 1021 3239 77 2758 3017 788 1021 1609
(916) (767) (851) (862) (729) (957) (555) (587) (851) (582)

Notes: This table reports four different sets of estimates for the dynamic effects of hospitalization on out-of-pocket medical spending. Each column
is a different target parameter related to ATT pg, tq, ESpeq or ESavg. Standard errors clustered at the individual level are reported in parentheses.
The sample includes observations from wave t “ 7 to t “ 10, for 652 individuals. We leverage data from Dobkin et al. (2018) and follow the same
sample construction steps as Sun and Abraham (2021).

estimates, ESp0q, ESp1q, and ESp2q, indicating that the effect of hospitalization on out-of-pocket
medical spending is mostly transitory. This is in line with the findings in Dobkin et al. (2018).

Another overall pattern that emerges from the results in Table 6 relates to the inference precision
of these estimators, as measured by their standard deviations. In line with our theoretical results, our
efficient DiD estimators have the smallest standard errors across all target parameters. Outside our
efficient DiD procedure, though, no other estimator uniformly dominates the remaining ones in terms
of length of confidence intervals. In fact, CS-SA, CS-dCDH, and BJS-G-W take turns into leading
to the second most precise estimator across target parameters, with CS-SA being “second best” for
ATT p9, 9q and ATT p9, 10q, CS-dCDH coming second for ATT p8, 8q, ATT p9, 10q, ESp0q, ESp1q, and
ESavg, and BJS-G-W for ATT p8, 9q, ATT p8, 10q, ATT p10, 10q, and ESp2q. This highlights that
relying on additional assumptions, such as homoskedasticity and restrictions on serial correlation, to
justify efficiency gains may be practically hard. Our proposed efficient DiD estimator does not rely
on these conditions and, in fact, delivers more precise inference procedures.

Table 7: Relative efficiency of estimators for the effect of hospitalization on medical spending

Estimator ATT p8, 8q ATT p8, 9q ATT p8, 10q ATT p9, 9q ATT p9, 10q ATT p10, 10q ESp0q ESp1q ESp2q ESavg

EDiD 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

CS-SA 1.65 2.04 1.52 1.04 1.03 1.24 1.23 1.54 1.52 1.54

CS-dCDH 1.28 1.83 1.52 1.93 1.03 1.24 1.21 1.46 1.52 1.18

BJS-G-W 1.29 1.45 1.09 1.56 1.29 1.15 1.30 1.55 1.09 1.25

Notes: This table reports the estimated asymptotic relative efficiency (ARE) of four different sets of estimates for the dynamic effects of hospi-
talization on out-of-pocket medical spending, with our efficient DiD estimator as the benchmark. Each column provides the ARE for a different
target parameter related to ATT pg, tq, ESpeq or ESavg. The ARE is computed as the square of the ratio of standard errors of the DiD estimator
relatitve to the standard error of our efficient DiD estimator from Table 6.

But one may wonder: do these efficiency gains matter in practice? To answer this practically
relevant question, we display in Table 7 estimates of the asymptotic relative efficiency (ARE) of our
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proposed efficient DiD estimator with respect to the other available DiD estimators.20 Heuristically
speaking, the ARE provides a relative measure of sample size needed for other DiD estimators to
achieve the same precision as our efficient DiD estimator. The results in Table 7 highlight that the
gains in ARE of our efficient DiD estimator tend to be large. For example, for ATT p8, 8q, CS-SA,
CS-dCDH, and BJS-G-W DiD estimators would respectively need a sample size with 65%, 28%, and
29% more hospitalized individuals than our EDiD estimator to achieve the same precision as EDiD.
For ATT p8, 9q, the gains are even larger, with CS-SA, CS-dCDH, and BJS-G-W DiD requiring 104%,
83%, and 45% more hospitalized individuals than our EDiD estimator to equalize precision. These
ARE gains remain large for the event-study coefficients, and their average.

Figure 5: Contribution of comparison groups and pre-treatment periods for the Efficient DiD esti-
mator for ATT pg, tq’s
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Notes: Weights attached to different ATT pg, tq estimators that leverage different comparison groups and baseline periods in our application.
The weights sum up to one in each row and arise as a consequence of our semiparametric efficient results in Theorem 3.2.

To gain further insights into how our efficient DiD and ES estimators achieve efficiency gains,
in Figure 5 we report the weights attached to the different (effective) comparison groups and pre-
treatment periods for each ATT pg, tq of interest. Overall, there are four different (non-collinear)
p

rY
att(g,t)
g1,tpre

as defined in (4.4) that one can use to estimate each ATT pg, tq, and the weights attached to
them sum up to one, i.e., the weights in Figure 5 sum up to one in each row. If we were to weigh
each of these uniformly, each of them would have a 0.25 weight. In practice, we can see that our
efficient DiD estimators never use these uniform weights, and, in fact, these weights vary according

20For any parameter η of a distribution F , and for estimators pη1 and pη2 approximately N pη, V1{nq and N pη, V2{nq,
respectively, the asymptotic relative efficiency of pη2 with respect to pη1 is given by V1{V2; see, e.g., Section 8.2 in
van der Vaart (1998).
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to the parameter of interest. This, by itself, highlights the appeal of our procedure to “adapt” to
these different scenarios with the researcher needing to take a stand on additional hard-to-justify
assumptions.

It is also interesting to analyze these weights separately. We start with ATT p8, 8q. For this
parameter, the efficient estimator puts weights of 0.29 on the DiD estimator that uses only the
never-treated (in our case, cohort treated in wave 11) as a comparison group (G “ g1 “ 5q, 0.54 on
the DiD estimator that only uses cohort G “ 9 as a comparison group (g1 “ 9, t1 “ 8q, and 0.03
on the DiD estimator that uses cohort G “ 10 as the comparison group. Both of these use period
t “ 7 as the baseline. Interestingly, the efficient DiD estimator for ATT p8, 8q puts 0.13 weight on
the DiD estimator that uses “never-treated” and G “ 10 cohort as comparison group and leverages
the first period as pre-treatment periods as well as tpre “ 9, illustrating the “bridging” phenomenon
discussed in the stylized example in Figure 1. Here, note that tpre “ 9 is a post-period for G “ 5 but
a pre-treatment period for group G “ 10. The flexibility of our efficient DiD estimator to leverage
this additional information from the data leads to the efficiency gains highlighted in Table 7.

For cohort G “ 8 in period t “ 9, we note that the efficient DiD estimator weights the DiD
estimator based on never-treated units (i.e., the CS-SA estimator) by 0.30, the DiD estimator that
leverages never-treated and G “ 9 as comparison groups by 0.49 (0.48), and the DiD estimator
that leverages only G “ 10 as a comparison group by 0.25. An interpretation for the weights for
ATT p8, 10q is analogous. For ATT p9, 9q and ATT p9, 10q, note that the efficient DiD estimator puts
nearly 0.90 weight on the CS-SA DiD estimator, explaining why its performance is similar to theirs
(but better than the other alternative DiD estimators). For ATT p10, 10q, our efficient estimator
put 0.58 weight on the CS-SA estimator, 0.04, and 0.19 weight on the DiD estimator that uses
never-treated as comparison and period eight and seven as baseline period, respectively, and the
remaining 0.20 weight on the DiD estimator that combines never-treated and the cohort treated in
wave 9 as comparison groups and use first two periods as baseline periods. Together, these flexible
weighting schemes demonstrate that our efficient DiD estimators are flexible and capable of extracting
information from the data to provide the gains in precision that our theoretical results indicate.

We conclude the session by discussing how one can use our results to assess the stability of our
results. In Figure 6, we plot our efficient ES estimators with their 95% confidence intervals in blue,
and in gray, we plot all possible event-study estimators that attach unit weight to the different
ATT pg, tq estimators in Figure 5 that uses a particular pg1, tpreq pair. For ESp0q, that are 64 possible
estimators (4ˆ4ˆ4) that leverage different combinations of ATT p8, 8q, ATT p9, 9q, and ATT p10, 10q.
For ESp1q, we have 16 possible estimators, and for ESp2q, we have four possible estimators. As you
can see in Figure 6, all these different combinations lead to very stable event-study estimators,
indicating the plausibility of Assumption PT-All in our context. Figure 6 can be interpreted as an
adaptation of the specification curve analysis (Simonsohn, Simmons and Nelson, 2020) to our DiD
context.
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Figure 6: Assessing the stability of our event-study estimators
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Notes: The plot displays our efficient event study estimators for event time zero, one, and two, and their 95% confidence intervals computed
using analytical standard errors in blue. In gray, we display all possible event-study estimators that attach unit weight to the different
ATT pg, tq estimators in Figure 5 that uses a particular pg1, tpreq pair. For ESp0q, that are 64 possible estimators (4 ˆ 4 ˆ 4) that leverage
different combinations of ATT p8, 8q, ATT p9, 9q, and ATT p10, 10q. For ESp1q, we have 16 possible estimators, and for ESp2q, we have four
possible estimators.

7 Conclusion
Empirical researchers routinely face a variety of alternative DiD and ES estimators to choose from.
Existing approaches often overlook the fact that different pre-treatment periods and comparison
groups may have varying identification power, leading them to treat all pre-treatment periods as
equally informative or to use only the last pre-treatment period as a baseline. The semiparametric
efficiency framework developed in this paper provides a principled approach to leveraging informa-
tion from the pre-treatment period to form DiD and ES estimators with minimum variance under
the maintained identification assumptions, while remaining agnostic to parametric functional form
or parametric error structure. As our simulations and empirical illustration demonstrate, the gains
in precision can be substantial, addressing the concern that heterogeneous robust DiD estimators
may not be informative compared to more traditional estimators that assume treatment effect het-
erogeneity away.

In practice, practitioners may want to assess if there is any statistical evidence against using
any pre-treatment period as the baseline in their DiD/ES procedure, or against using any specific
available comparison group (when treatment is staggered). We present in Appendix A how to
construct Hausman-type tests for overidentification specification test of DiD models, or how to
construct alternative estimators that aim to trade off bias and variance (Armstrong, Kline and Sun,
2024). We also discuss visualization schemes to informally quantify the sensitivity of the results
concerning the usage of different pre-treatment baseline periods, and different comparison groups, or
to “eyeball” the magnitude of potential model violations.

Our framework opens avenues for several extensions. It would be useful to study semiparametric
efficient estimation for nonlinear DiD-type setups such as the Changes-in-Changes model (Athey and
Imbens, 2006), setups where treatment can turn on and off over multiple periods (de Chaisemartin
and D’Haultfœuille, 2020, 2024), and setups with unbalanced panel or repeated cross-sections (Call-
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away and Sant’Anna, 2021)—in this latter case, we expect new sources of overidentification related
to event-study weights. Finally, it is important to stress that all results derived in this paper lever-
aged the large-n, fixed-T panel data regime, as parallel trends are more likely to be satisfied when
the number of periods is small. In setups where parallel trends are not plausible, we recommend
that researchers use alternative estimators that do not rely on parallel trends assumptions, e.g.,
Arkhangelsky et al. (2021), Viviano and Bradic (2021), and Imbens and Viviano (2023). Developing
semiparametric efficient estimators in such frameworks is left for future research.

References
Ackerberg, Daniel, Xiaohong Chen, Jinyong Hahn, and Zhipeng Liao, “Asymptotic Efficiency of

Semiparametric Two-step GMM,” The Review of Economic Studies, 2014, 81 (3), 919–943.
Ai, Chunrong and Xiaohong Chen, “Efficient estimation of models with conditional moment restrictions

containin unknown functions,” Econometrica, 2003, 71 (6), 1795–1843.
and , “Estimation of possibly misspecified semiparametric conditional moment restriction models with

different conditioning variables,” Journal of Econometrics, 2007, 141 (1), 5–43.
and , “The semiparametric efficiency bound for models of sequential moment restrictions containing

unknown functions,” Journal of Econometrics, 2012, 170 (2), 442–457.
Arkhangelsky, Dmitry, Susan Athey, David A. Hirshberg, Guido W. Imbens, and Stefan

Wager, “Synthetic Difference-in-Differences,” American Economic Review, 2021, 111 (12), 4088–4118.
Armstrong, Timothy B., Patrick Kline, and Liyang Sun, “Adapting to Misspecification,”

arXiv:2305.14265v4, 2024.
Arold, Benjamin W, “Evolution vs. Creationism in the Classroom: The Lasting Effects of Science Edu-

cation,” The Quarterly Journal of Economics, 2024, p. qjae019.
Athey, Susan and Guido W. Imbens, “Identification and Inference in Nonlinear Difference-in-Differences

Models,” Econometrica, 2006, 74 (2), 431–497.
Baker, Andrew, Brantly Callaway, Scott Cunningham, Andrew Goodman-Bacon, and Pedro

H. C. Sant’Anna, “Difference-in-Differences Designs: A Practitioner’s Guide,” arXiv:2503.13323, 2025.
, David F. Larcker, and Charles C. Y. Wang, “How much should we trust staggered difference-in-
differences estimates?,” Journal of Financial Economics, 2022, 144 (2), 370–395.

Bertrand, Marianne, Esther Duflo, and Sendhil Mullainathan, “How Much Should We Trust
Differences-In-Differences Estimates?,” The Quarterly Journal of Economics, 2004, 119 (1), 249–275.

Blandhol, Christine, John Bonney, Magne Mogstad, and Alexander Torgovitsky, “When is TSLS
Actually LATE?,” Working Paper 29709, National Bureau of Economic Research August 2022.

Borusyak, Kirill, Xavier Jaravel, and Jann Spiess, “Revisiting Event Study Designs: Robust and
Efficient Estimation,” Review of Economic Studies, 2024, 91 (6), 3253–3285.

Braghieri, Luca, Ro’ee Levy, and Alexey Makarin, “Social Media and Mental Health,” American
Economic Review, 2022, 112 (11), 3660–93.

39



Callaway, Brantly and Pedro H. C. Sant’Anna, “Difference-in-Differences with multiple time periods,”
Journal of Econometrics, 2021, 225 (2), 200–230.

Cattaneo, Matias D, Michael Jansson, and Xinwei Ma, “On the effect of bias estimation on coverage
accuracy in nonparametric inference,” Journal of the American Statistical Association, 2018, 113 (522),
767–779.

Cengiz, Doruk, Arindrajit Dube, Attila Lindner, and Ben Zipperer, “The Effect of Minimum
Wages on Low-Wage Jobs,” The Quarterly Journal of Economics, 2019, 134 (3), 1405–1454.

Chamberlain, Gary, “Asymptotic efficiency in estimation with conditional moment restrictions,” Journal
of Econometrics, 1987, 34 (3).
, “Efficiency bounds for semiparametric regression,” Econometrica, 1992, 60 (3), 567–596.

Chen, Jiafeng, Xiaohong Chen, and Elie Tamer, “Efficient estimation of average derivatives in NPIV
models: Simulation comparisons of neural network estimators,” Journal of Econometrics, 2023, 235 (2),
1848–1875.

Chen, Xiaohong, “Large Sample Sieve Estimation of Semi-Nonparametric Models,” in James J. Heckman
and Edward E. Leamer, eds., Handbook of Econometrics, Vol. 6B, Amsterdam: Elsevier, 2007, chapter 76,
pp. 5549–5632.
and Andres Santos, “Overidentification in Regular Models,” Econometrica, 2018, 86 (5).
and Zhipeng Liao, “Sieve inference on irregular parameters,” Journal of Econometrics, 2014, 182 (1),

70–86.
Chernozhukov, Victor, Denis Chetverikov, Mert Demirer, Esther Duflo, Christian Hansen,

Whitney Newey, and James Robins, “Double/debiased machine learning for treatment and structural
parameters,” The Econometrics Journal, 2018, 21 (1), C1––C68.

Chiu, Albert, Xingchen Lan, Ziyi Liu, and Yiqing Xu, “What To Do (and Not to Do) with Causal
Panel Analysis under Parallel Trends: Lessons from A Large Reanalysis Study,” Working Paper, 2023.

de Chaisemartin, Clément and Xavier D’Haultfœuille, “Two-Way Fixed Effects Estimators with
Heterogeneous Treatment Effects,” American Economic Review, 2020, 110 (9), 2964–2996.
and , “Two-way fixed effects and differences-in-differences with heterogeneous treatment effects: a

survey,” Econometrics Journal, 2023, 26 (3), C1––C30.
and , “Difference-in-Differences Estimators of Intertemporal Treatment Effects,” The Review of Eco-

nomics and Statistics, 2024, Forthcoming, 1–45.
Deshpande, Manasi and Yue Li, “Who Is Screened Out? Application Costs and the Targeting of

Disability Programs,” American Economic Journal: Economic Policy, 2019, 11 (4), 213–248.
Dobkin, Carlos, Amy Finkelstein, Raymond Kluender, and Matthew J. Notowidigdo, “The

economic consequences of hospital admissions,” American Economic Review, 2018, 108 (2), 308–352.
Fadlon, Itzik and Torben Heien Nielsen, “Family Labor Supply Responses to Severe Health Shocks:

Evidence from Danish Administrative Records†,” American Economic Journal: Applied Economics, 2021,
13 (3), 1–30.

Gardner, John, “Two-stage differences in differences,” Working Paper, 2021.
Goldsmith-Pinkham, Paul, “Tracking the Credibility Revolution across Fields,” arXiv:2405.20604, 2024.

40



Goodman-Bacon, Andrew, “Difference-in-differences with variation in treatment timing,” Journal of
Econometrics, 2021, 225 (2), 254–277.

Gormley, Todd A. and David A. Matsa, “Growing Out of Trouble? Corporate Responses to Liability
Risk,” Review of Financial Studies, 2011, 24 (8), 2781–2821.

Hansen, Casper Worm and Asger Mose Wingender, “National and Global Impacts of Genetically
Modified Crops,” American Economic Review: Insights, June 2023, 5 (2), 224–40.

Hansen, Lars Peter, “Large Sample Properties of Generalized Method of Moments Estimators,” Econo-
metrica, 1982, 50 (4), 1029–1054.

Harmon, Nikolaj A., “Difference-in-Differences and Efficient Estimation of Treatment Effects,” Working
Paper, 2023.

Imbens, Guido W. and Davide Viviano, “Identification and Inference for Synthetic Controls with
Confounding,” arXiv:2312.00955, 2023.

Jacobson, Louis S., Robert J. LaLonde, and Daniel G. Sullivan, “Earnings losses of displaced
workers,” American Economic Review, 1993, 83 (4), 685–709.

Lal, Apoorva, “When can we get away with using the two-way fixed effects regression?,” arXiv:2503.05125
[econ.EM], 2025.

Lee, Soo Jeong and Jeffrey M. Wooldridge, “A Simple Transformation Approach to Difference-in-
Differences Estimation for Panel Data,” Working Paper, 2023. Available at SSRN: http://dx.doi.org/
10.2139/ssrn.4516518.

Malani, Anup and Julian Reif, “Interpreting pre-trends as anticipation: Impact on estimated treatment
effects from tort reform,” Journal of Public Economics, 2015, 124, 1–17.

Marcus, Michelle and Pedro H. C. Sant’Anna, “The role of parallel trends in event study settings:
An application to environmental economics,” Journal of the Association of Environmental and Resource
Economists, 2021, 8 (2), 235–275.

Mast, Evan, “Warding off Development: Local Control, Housing Supply, and NIMBYs,” The Review of
Economics and Statistics, 2024, 106 (3), 671–680.

Newey, Whitney K. and Richard J. Smith, “Higher order properties of GMM and generalized empirical
likelihood estimators,” Econometrica, 2004, 72 (1), 219–255.

Roth, Jonathan, Pedro H. C. Sant’Anna, Alyssa Bilinski, and John Poe, “What’s Trending in
Difference-in-Differences? A Synthesis of the Recent Econometrics Literature,” Journal of Econometrics,
2023, 235 (2), 2218–2244.

Sant’Anna, Pedro H. C. and Jun Zhao, “Doubly robust difference-in-differences estimators,” Journal
of Econometrics, 2020, 219 (1), 101–122.

Simonsohn, Uri, Joseph P. Simmons, and Leif D. Nelson, “Specification curve analysis,” Nature
Human Behaviour, 2020, 4, 1208–1214.

Staniswalis, Joan G, “The kernel estimate of a regression function in likelihood-based models,” Journal
of the American Statistical Association, 1989, 84 (405), 276–283.

Sun, Liyang and Sarah Abraham, “Estimating dynamic treatment effects in event studies with hetero-
geneous treatment effects,” Journal of Econometrics, 2021, 225 (2), 175–199.

41

http://dx.doi.org/10.2139/ssrn.4516518
http://dx.doi.org/10.2139/ssrn.4516518


van der Vaart, Aad W., Asymptotic Statistics, Cambridge: Cambridge University Press, 1998.
Viviano, Davide and Jelena Bradic, “Dynamic covariate balancing: estimating treatment effects over

time,” June 2021. arXiv:2103.01280 [econ, math, stat].
Weiss, Amanda, “How Much Should We Trust Modern Difference-in-differences Estimates?,” OSF

Preprints, 2024.
Wooldridge, Jeffrey M, “Cluster-Sample Methods in Applied Econometrics,” American Economic Review

P&P, 2003, 93 (2), 133–138.
, “Two-Way Fixed Effects, the Two-Way Mundlak Regression, and Difference-in-Differences Estimators,”
Working Paper, 2021, pp. 1–89.

42


	Introduction
	Framework, causal parameters, and estimands
	Causal parameters of interest
	Parallel trends and DiD estimands

	Semiparametric Efficiency Bound for DiD and ES
	DiD setups with a single treatment date
	DiD setups with staggered treatment designs

	Semiparametric efficient estimation and inference
	Efficient estimation when covariates are not present

	Monte Carlo simulations
	Simulations based on CPS with single treatment date
	Simulations based on Compustat with staggered treatment

	Empirical Illustration
	Conclusion

