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Abstract

This paper proposes a new class of nonparametric tests for the correct spec-

ification of models based on conditional moment restrictions, paying particular

attention to generalized propensity score models. The test procedure is based on

two different projection arguments, leading to test statistics that are suitable to

setups with many covariates, and are (asymptotically) invariant to the estimation

method used to estimate the nuisance parameters. We show that our proposed tests

are able to detect a broad class of local alternatives converging to the null at the

usual parametric rate and illustrate its attractive power properties via simulations.

We also extend our proposal to test parametric or semiparametric single-index-type

models.
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1 Introduction

One of the primary goals of many scientific fields is to quantify the effect of an exposure,

policy, or treatment on outcomes of interest. When the assignment to treatment is

not randomized, groups with different levels of the treatment variable usually differ in

important ways other than the observed treatment. Because these differences are many

times associated with the outcome variable, ascertaining the causal effect of the treatment

requires more sophisticated statistical tools than a simple comparison of means. It is in

this setting that the propensity score and its multi-valued generalizations have been shown

to be among the most widely used tools for causal inference; see, e.g., Imbens and Rubin

(2015), Linden et al. (2016) and Lopez and Gutman (2017).

Although statistical procedures that build on the propensity score and its generaliza-

tions (henceforth GPS) are popular, a main concern of these methods is that the GPS

is usually unknown, and therefore has to be estimated. Given the availability of many

pre-treatment covariates and limited sample size, researchers usually adopt parametric

models for the GPS. Such a common practice raises the important issue of model mis-

specifications. Indeed, as illustrated by Busso et al. (2014) and Linden et al. (2016),

model misspecifications can lead to misleading treatment effect estimates. Thus, in prac-

tice, assessing if your parametric putative model for the GPS is correctly specified is

recommended.

In this paper, we propose new goodness-of-fit tests for models based on conditional

moment restrictions. Although our tests can be used more generally, we pay particular

attention to testing whether a GPS model is correctly specified. The main distinguishing

feature of our tests is that they combine two different projections. The first projection

is a dimension-reduction device that allows us to handle situations with many covariates

(Escanciano, 2006). The second projection is used to make the test asymptotically in-

variant to the estimation method used to estimate the nuisance parameters (Neyman,

1959; Bickel et al., 2006; Escanciano and Goh, 2014; Sant’Anna and Song, 2019). As a

result of this second projection, we can consider a wider range of estimators for nuisance

parameters and implement a fairly simple bootstrap procedure that works for discrete

responses, continuous responses, or a mixture of both.

This paper is the first to combine the two aforementioned projections. Escanciano

(2006)’s test, although robust to dimensionality, is not robust to the estimation of nui-

sance parameters. A potential drawback of the test of Escanciano (2006) is that its

implementation relies on the wild bootstrap, and it is not directly applicable when the

response variables are discrete or mixed, which is the case in GPS models. On the other

hand, the test of Escanciano and Goh (2014), although robust to the estimation of nui-

sance parameters, is not robust to the presence of many covariates. The test of Sant’Anna

and Song (2019), although also constructed to be robust to many covariates and invari-
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ant to the estimation of nuisance parameters, only tests for an implication of the null

hypothesis, not for the null hypothesis itself. Furthermore, it is only justified for binary

choice models. By contrast, our proposed tests are based on testing the null hypothesis

itself, are robust to both the dimensionality of covariates and the estimation of nuisance

parameters, and can be directly used for generic outcome models.

Overall, our proposed tests enjoy several attractive features. They (a) do not severely

suffer from the “curse of dimensionality” when we have many covariates; (b) are data-

driven and do not require tuning parameters such as bandwidths; (c) do not require

estimators to be n1/2-asymptotically linear, with n the sample size; and (d) are able to

detect a broad class of local alternatives converging to the null at the parametric rate.

In order to facilitate its practical implementation, we obtain closed-form expressions for

our test statistics and show that critical values can be computed with the assistance

of an easy-to-use multiplier-type bootstrap. To the best of our knowledge, no other

(specification) test available in the literature enjoys all these attractive properties (e.g.,

Escanciano, 2006, Mora and Moro-Egido, 2008, Shaikh et al., 2009, Escanciano and Goh,

2014, Garćıa-Portugués et al., 2014, Iwasawa, 2015, Zhu et al., 2017, Sant’Anna and Song,

2019, Domı́nguez and Lobato (2020), and Kim et al., 2020). The results of Monte Carlo

simulations indicate that these attractive properties translate to tests with excellent finite

sample properties, even when the dimension of covariates is relatively large.

We also consider extensions of our basic setup to other more complex frameworks.

For instance, practitioners routinely use parametric GPS models that incorporate index

restrictions. Single-index models are popular with binary or ordered multinomial treat-

ments. With more general unordered, multinomial choice models, practitioners often use

multiple-index models such as multinomial logit/probit. If such specifications were to be

rejected by our omnibus tests, it would not be clear if it is due to violations of the index

restriction, the parametric distributional assumption, or both. We extend our proposal to

test index models to shed light on these concerns. Using our double-projection arguments,

we propose a test for a parametric index model against semiparametric alternatives that

maintain the index restrictions (directional test). We also extend our framework to test

a single-index GPS model with an unknown link function against general nonparametric

alternatives. We highlight that our double-projection procedure can eliminate the para-

metric-type estimation effect in this semiparametric setup, though it does not eliminate

the nonparametric-type effect coming from estimating the link function. This additional

complication suggests that one should use a different, much more demanding multiplier-

bootstrap procedure to compute critical values. Although we discuss such challenges, we

believe that a detailed solution to these issues is beyond the scope of this paper, and we

leave it for future research.

The rest of this article is organized as follows. In Section 2, we present the test-

ing framework and introduce our proposed double-projection specification tests. The
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asymptotic properties of our tests are established in Section 3, with the asymptotic null

distribution derived in Section 3.1 and the asymptotic power properties studied in Section

3.2. In Section 4, we present a detailed description of an easy-to-implement multiplier-

bootstrap procedure to compute critical values. In Section 5, we extend our testing

procedure to test index-type models; Section 5.1 tests a parametric index model against

a nonparametric alternative, Section 5.2 tests a parametric index model against a semi-

parametric alternative, and Section 5.3 tests a semiparametric single-index model against

a nonparametric alternative. We then illustrate the usefulness of our tests through an

empirical application in Section 6. Section 7 concludes. Mathematical proofs and Monte

Carlo simulation results are gathered in an online supplementary appendix.1

2 Specification tests based on double projections

2.1 Setup and motivation

In this paper, we seek to test hypotheses of the type of

H0 : P (E [e(t; θ0)|X] = 0) = 1 for some θ0 ∈ Θ ⊂ Rdθ and all t ∈ T , (2.1)

against

H1 : P (E [e(t; θ)|X] = 0) < 1 for any θ ∈ Θ ⊂ Rdθ and/or some t ∈ T , (2.2)

where e(t; θ) is a generalized error term indexed by t ∈ T ⊂ N, and θ ∈ Θ ⊂ Rdθ , with

Θ a compact space with dθ ≥ 1 a given positive integer. For notational simplicity, we

suppress the dependence on t in θ and related quantities. Clearly, the null hypothesis H0

is composite. Our main goal is to propose tests of H0 against H1 that are robust to the

presence of many covariates2 and the estimation of nuisance parameter θ0.

Although our framework is general, it is worth motivating within a popular and em-

pirically relevant causal inference setup. For a generic d1 × d2 matrix A, A⊤ denotes the

transpose of A. Let J ∈ N be a given finite positive integer. Let (X⊤, T, Y )⊤ be a random

vector in a (dx + 2)-dimensional Euclidean space, where X ∈ X ⊆ Rdx is an observable

dx × 1 vector of covariates with dx ∈ N, T ∈ T ⊆{0, 1, . . . , J} is the treatment random

variable, Y =
∑T

t=0 1 (T = t)Y (t) ∈ Y ⊆ R is the observed outcome, and Y (t) denotes

the potential outcome when T is externally set to t. For the sake of simplicity, let’s focus

1 Appendix is available at psantanna.com/files/GPS_Appendix.pdf

2 In this paper, “many covariates” means that the dimension dx of the covariates X is allowed to be
large but finite. For the derivation of our asymptotic results, we restrict dx to be fixed.
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on average causal effects of the form

β(t, s) ≡ E [Y (t)− Y (s)] , (2.3)

the average causal effect of exposing units to treatment t rather than treatment s. We

can also cover quantile treatment effects and/or treatment effects for the treated subpop-

ulation (Lee, 2018, Ao et al., 2019).

Imbens (2000) shows that, if assignment to treatment T is weakly unconfounded given

the pre-treatment variables X, β(t, s) in (2.3) is identified by the following weighting

estimands:

β(t, s) = E
[
Y 1 (T = t)

pt (X)

]
− E

[
Y 1 (T = s)

ps (X)

]
, (2.4)

where pt (x) ≡ P (T = t|X = x) = E [1 (T = t) |X = x] is the unknown GPS. To estimate

β(t, s) using (2.4), researchers usually assume a parametric model qt (x, θt) for pt (x),

where qt(x, θt) : X × Θt 7→ [0, 1] denotes a family of parametric functions known up

to the finite-dimensional parameter vector θt. By construction,
∑J

j=0 qj(x, θj) = 1. For

example, when treatments are multi-valued, qualitatively distinct, and without a logical

ordering, a popular specification for qt (x, θt) is the multinomial logit model3 (e.g., Imbens,

2000),

qt (X, θt) =
exp (X ′θt)

1 +
∑J

j=1 exp (X
′θj)

, t ∈ {1, . . . , J} . (2.5)

The parameter vector {θt, t ∈ T } can be estimated using the maximum likelihood

approach. Researchers can then estimate β(t, s) through the inverse probability weighting

(IPW) approach.

Given the widespread empirical practice of adopting parametric models for the GPS,

a natural concern is potential model misspecifications. In particular, if the working model

qt (x, θt) for the GPS pt (x) is misspecified, causal effects estimators such as the inverse

probability weighted estimator are in general biased and policy recommendations based

on them can be highly misleading (e.g., Linden et al., 2016). To assess whether this is

the case, one can frame this as a specification test for qt (x, θt) that fits into our testing

framework by simply setting e(t; θ) to be the parametrically specified generalized error

under the null for every t ∈ T , i.e., e(t; θ) ≡ 1(T = t)− qt(X, θ).

For motivational and concreteness sake, we take e(t; θ) as the generalized error of the

propensity score model as mentioned above in the rest of the paper, though we can handle

much more general models. See, e.g., Remark 1 for additional details.

3 One limitation with the multinomial logit model is the independence of irrelevant alternatives (IIA)
assumption imposed by it. One alternative to avoid the IIA assumption is the multinomial probit
model. But if J ≥ 2, multinomial probit model meets practical obstacles as it involves computing
(J + 1)-dimensional integrals.
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2.2 Our proposed test

The characterization of H0 and H1 in (2.1) and (2.2), respectively, makes explicit that

we are interested in testing conditional moment restrictions (González-Manteiga and

Crujeiras, 2013). As argued by Escanciano (2006), (2.1) can be equivalently characterized

as

H0 : R
pro
t (β, u; θ0) = 0 almost everywhere (a.e.)

(
β⊤, u

)⊤ ∈ Πpro,

for some θ0 ∈ Θ ⊂ Rdθ and all t ∈ T , (2.6)

where

Rpro
t (β, u; θ) ≡ E

[
e(t; θ)1

(
X⊤β ≤ u

)]
,

and Πpro ≡ Sdx×R denotes the projected space, with R = [−∞,∞] the extended real line

and Sdx the unit ball in Rdx , i.e., Sdx =
{
β ∈ Rdx : ||β|| = 1

}
with ||A|| =

[
tr
(
AA⊤)]1/2

denoting the Euclidean norm for a generic matrix A.

Although one can find alternative characterizations of H0, see, e.g., Bierens (1982),

Stute (1997), and Dominguez and Lobato (2004), our main motivations for expressing

H0 as in (2.6) are that (i) Rpro
t (β, u; θ0) is based on unconditional moment restrictions,

implying that we can avoid the use of tuning parameters such as bandwidths when es-

timating Rpro
t (β, u; θ0); and (ii) Rpro

t (β, u; θ0) depends on covariates only through the

one-dimensional projection X⊤β, greatly reducing the dimensionality of the problem. In-

deed, this dimension-reduction device has been proven valuable in various contexts that

need to deal with many covariates; see, e.g., Escanciano (2006), Garćıa-Portugués et al.

(2014), Sun et al. (2017), Zhu et al. (2017), and Kim et al. (2020); for an overview, see

Guo and Zhu (2017). However, it is worth mentioning that (2.6) involves not only a

single process Rpro
t (β, u; θ0) as is commonly the case in the specification testing literature

(see Escanciano, 2008 for an exception), but J different processes Rpro
t (β, u; θ0) associated

with the J different treatment levels t.

From (2.6), one natural way to proceed is to compute the generalized residual marked

empirical process based on the projections 1
(
X⊤β ≤ u

)
,

Rpro
n,t (β, u; θ̂n) =

1√
n

n∑
i=1

ei(t; θ̂n)1(X
⊤
i β ≤ u),

(
β⊤, u

)⊤ ∈ Πpro,

where θ̂n is any
√
n-consistent estimator for θ0, say the maximum likelihood estimator,

and ei(t; θ̂n) ≡ 1(Ti = t) − qt(Xi, θ̂n), i = 1, . . . , n, are the parametrically specified

generalized residuals under the null H0. Then, one can use continuous functionals of

Rpro
n,t (β, u; θ̂n) to measure its distance from zero and assess if H0 is rejected or not.

Although natural, there are some potential drawbacks of using Rpro
n,t (β, u; θ̂n). For

instance, the underlying null limiting distribution of Rpro
n,t (β, u; θ̂n) depends on the esti-
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mator θ̂n. Indeed, the asymptotic null distribution of tests based on Rpro
n,t (β, u; θ̂n) will

depend on whether one estimates θ0 using maximum likelihood, nonlinear least squares,

or by the method of estimating equations, even though the underlying specification for

the null model is the same across these estimation methods. Perhaps more importantly,

as noted by Escanciano (2006), tests based on Rpro
n,t (β, u; θ̂n) also require that

√
n(θ̂n−θ0)

admits an asymptotically linear representation.4 Such a condition can be demanding,

especially when one wishes to use estimation methods that involve penalization (see, e.g.,

Knight and Fu, 2000 and Bühlmann and van de Geer, 2011). The fact that Rpro
n,t (β, u; θ̂n)

is not invariant to θ̂n also precludes an easy-to-implement multiplier bootstrap procedure

to obtain critical values. This is inconvenient, especially when the response variables

are discrete or mixed, since the wild bootstrap method requires regenerating dependent

variables and fails to mimic the original data structure.

Given these potential drawbacks, we follow an alternative route that leads to estimator-

invariant tests. More specifically, our proposed test statistics are continuous functionals

of the following generalized residual marked empirical process based on the double pro-

jections:

Rdpro
n,t (β, u; θ̂n) ≡

1√
n

n∑
i=1

ei(t; θ̂n)Pn,t1(X
⊤
i β ≤ u),

(
β⊤, u

)⊤ ∈ Πpro,

where the double-projected weight is

Pn,t1
(
X⊤

i β ≤ u
)
≡ 1

(
X⊤

i β ≤ u
)
− gt(Xi, θ̂n)

⊤∆−1
n,t(θ̂n)Gn,t(β, u; θ̂n), (2.7)

where, for each t ∈ T , gt(x, θ) ≡ ∂qt(x, θ)/∂θ, denotes the score function associated with

the parametric model qt(x, θ), and

∆n,t(θ̂n) =
1

n

n∑
i=1

gt(Xi, θ̂n)g
⊤
t (Xi, θ̂n) and Gn,t(β, u; θ̂n) =

1

n

n∑
i=1

gt(Xi, θ̂n)1
(
X⊤

i β ≤ u
)
.

We label Pn,t1
(
X⊤β ≤ u

)
as a double-projection because, as it is evident from (2.7),

it involves first using the projection proposed by Escanciano (2006), 1
(
X⊤β ≤ u

)
, and

then projecting 1
(
X⊤β ≤ u

)
onto the tangent space of the nuisance parameters (see,

e.g., Neyman, 1959, Escanciano and Goh, 2014, and Sant’Anna and Song, 2019). To

the best of our knowledge, this paper is the first to incorporate this double-projection

4 Throughout the paper, an estimator θ̂n is said to be root-n asymptotically linear if it satisfies the
following asymptotic expansion under H0:

√
n
(
θ̂n − θ0

)
=

1√
n

n∑
i=1

l(Ti, Xi, θ0) + op(1),

where l(·, ·, ·) is such that E[l(T,X, θ0)] = 0 and L(θ0) = E[l(T,X, θ0)l(T,X, θ0)
⊤] exists and is positive

definite. Note that different θ̂n may have different l(·, ·, ·).
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argument, which, in practice, translates to test statistics that are robust against the “curse

of dimensionality” and whose limiting null distributions are asymptotically invariant to

θ̂n. This latter property follows from the fact that, for each t ∈ T ,

E
[
gt(X, θ0)Pt1

(
X⊤β ≤ u

)]
≡ 0,

almost everywhere in
(
β⊤, u

)⊤ ∈ Πpro, where

Pt1
(
X⊤β ≤ u

)
≡ 1

(
X⊤β ≤ u

)
− gt(X, θ0)

⊤∆−1
t (θ0)Gt(β, u; θ0), (2.8)

with ∆t(θ) = E
[
gt(X, θ)gt(X, θ)⊤

]
and Gt(β, u; θ) = E

[
gt(X, θ)1

(
X⊤β ≤ u

)]
. Note also

that Rdpro
n,t (β, u; θ̂n) does not depend on tuning parameters such as bandwidths.

The intuition behind (2.8) is very simple. First of all, note that, for each t ∈ T ,(
β⊤, u

)⊤ ∈ Πpro, ∆−1
t (θ0)Gt (β, u; θ0) is the vector of linear projection coefficients of

regressing 1
(
X⊤β ≤ u

)
on the score function gt(X, θ0). Thus, it follows that

gt(X, θ0)
⊤∆−1

t (θ0)Gt (β, u; θ0)

is the best linear predictor of 1
(
X⊤β ≤ u

)
given gt(X, θ0), and that (2.8) is nothing more

than the associated projection error, which, by definition, is orthogonal to gt(X, θ0).

This orthogonality condition exploited by the double-projection procedure has im-

portant consequences. For example, under some weak regularity conditions, uniformly in(
β⊤, u

)⊤ ∈ Πpro,

Rdpro
n,t (β, u; θ̂n) =

1√
n

n∑
i=1

ei(t; θ0)Pt1(X
⊤
i β ≤ u) + op(1), (2.9)

for each t ∈ T ; see the proof of Theorem 3.1 in the next section. As so, Rdpro
n,t (β, u; θ̂n)

is asymptotically invariant to the choice of the estimator θ̂n, which, in turn, facilitates

a simple multiplier bootstrap method to simulate critical values of test statistics based

on Rdpro
n,t (β, u; θ̂n). Indeed, given that we can “ignore” estimation effects when computing

Rdpro
n,t (β, u; θ̂n), all we need to do is “perturbate” the residuals e(t; θ̂n); see Section 4 for

details. Here, it is worth stressing that this is only feasible due to the usage of the sec-

ond projection. Without it, we would need to either rule out discrete/mixed outcomes,

and/or further impose that
√
n(θ̂n − θ0) admits an asymptotically linear representation.

Even in these cases, different estimators usually have different asymptotically linear rep-

resentations, leading to different multiplier bootstraps with potentially different testing

results. Of course, (2.9) allows us to avoid these problems.

In order to operationalize our testing procedure, we need to choose a norm to measure

the distance of Rdpro
n,t (β, u; θ̂n) from zero. We propose using the popular Cramér–von Mises
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(CvM thereafter)-type test statistic

CvMdpro
n =

∑
t∈T

an(t)

∫
Πpro

(
Rdpro

n,t (β, u; θ̂n)
)2

Fn,β(du) dβ, (2.10)

where, for each t, an(t) is a pre-specified (potentially random) non-negative weighting

function, Fn,β(u) = n−1
∑n

i=1 1
(
X⊤

i β ≤ u
)
is the empirical distribution function of the

one-dimensional projected regressors
{
X⊤

i β
}n
i=1

for any fixed projected direction β ∈ Sdx ,

and dβ is the rescaled uniform density on the unit sphere Sdx .

We reject the null H0 in favor of the alternative H1 whenever CvMdpro
n in (2.10) is

“overly” large. For the sake of practical convenience, in the empirical application in

Section 6 and Monte Carlo simulations in the online supplementary appendix, we use the

constant weight an(t) ≡ 1 for all t ∈ T , though other sensible data-driven choices are

feasible, e.g., an(t) = n−1
∑n

i=1 1(Ti = t). Due to space constraint, we do not intend to

search for the optimal weight that yields the highest power.

At this stage, one may wonder why we have chosen to use a CvM -type instead of

a Kolmogorov–Sminov-type test statistic. The reason is computational: as we show

below in Lemma 2.1, (2.10) can be written in a closed-form expression and does not rely

on any numerical integration method. Furthermore, one does not need to compute a

different projection for each
(
β⊤, u

)⊤ ∈ Πpro, which is arguably a “natural” step if one

were to take Neyman (1959)’s “debiasing” proposal literally. A direct consequence of

these attractive computational features is that (2.10) can be easily implemented even

with many covariates and many treatment levels. In addition, the closed-form expression

given in Lemma 2.1 can readily be used to calculate the multiplier bootstrapped version

of our CvM test statistic in Section 4.

Lemma 2.1 Let CvMdpro
n be defined in (2.10) with Sdx the dx-dimensional unit sphere.

Then, we have

CvMdpro
n =

∑
t∈T

an(t)
1

n2

n∑
i=1

n∑
j=1

n∑
r=1

eproi (t; θ̂n)e
pro
j (t; θ̂n)Aijr, (2.11)

with

eproi (t; θ̂n) = ei(t; θ̂n)− gtXi, θ̂n)
⊤∆−1

n,t(θ̂n)
1

n

n∑
s=1

gt(Xs, θ̂n)es(t; θ̂n), i = 1, . . . , n, (2.12)

and

Aijr =

∫
Sdx

1
(
X⊤

i β ≤ X⊤
r β
)
1
(
X⊤

j β ≤ X⊤
r β
)
dβ = A

(0)
ijr

πdx/2−1

Γ (dx/2)
,
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where Γ (·) is the gamma function, arccos is theinverse cosine function, and

A
(0)
ijr =


2π, if Xi = Xr = Xj,

π, if Xi = Xj, or Xi = Xr, or Xj = Xr,∣∣∣∣∣π − arccos

(
(Xi −Xr)

⊤ (Xj −Xr)

∥Xi −Xr∥ ∥Xj −Xr∥

)∣∣∣∣∣ , otherwise.

It is interesting to note that eproi (t; θ̂n) for i = 1, . . . , n in (2.12) are simply the ordi-

nary least squares residuals from regressing ei(t; θ̂n) on gt(Xi, θ̂n). Lemma 2.1 yields an

explicit formula for our double-projected test statistic CvMdpro
n . It builds on Escanciano

(2006) and Garćıa-Portugués et al. (2014), who derived expressions for the CvM -type

functionals of “single-projected” empirical processes akin to Rpro
n,t (β, u; θ̂n). In fact, it can

be shown that the CvM test statistic based on Rpro
n,t (β, u; θ̂n) has the following closed-form

expression:

CvMpro
n =

∑
t∈T

an(t)

∫
Πpro

(
Rpro

n,t (β, u; θ̂n)
)2

Fn,β(du) dβ

=
∑
t∈T

an(t)
1

n2

n∑
i=1

n∑
j=1

n∑
r=1

ei(t; θ̂n)ej(t; θ̂n)Aijr,

which is robust to the dimensionality dx of X but not robust to the choice of estimator

θ̂n. With the introduction of the second projection, we are able to obtain a CvM test

statistic that is robust to both dimensionality dx and estimator θ̂n.

Just like in Escanciano (2006) and Garćıa-Portugués et al. (2014), Aijr represents the

surface area of particular spherical regions depending on whether X’s are the same across

observations: it is the whole sphere Sdx when Xi = Xr = Xj, a hemisphere of Sdx when

Xi = Xj or Xi = Xr or Xi = Xr (but not all X’s are the same), or a spherical wedge

of width angle given by the third entry of A
(0)
ijr. Thus, as discussed in Escanciano (2006)

and Garćıa-Portugués et al. (2014), we can express Aijr = A
(0)
ijr π

dx/2−1
/
Γ (dx/2), as in

Lemma 2.1 above.

In connection with the expression of CvMpro
n , what is new in Lemma 2.1 is that,

instead of computing infinitely many projected residuals, one for each
(
β⊤, u

)⊤ ∈ Πpro as

it is suggested by (2.7), it suffices to use the sequence of projected parametric residuals{
eproi (t; θ̂n), i = 1, . . . n, t ∈ T

}
as defined in (2.12), which do not depend on the projec-

tion direction β. Note that the construction of eproi (t; θ̂n) and its intuitive interpretation

are only possible with the help of the second projection.

9



3 Asymptotic results

3.1 Asymptotic null distribution

In this section, we formally investigate the limiting behavior of double-projected gener-

alized residual marked empirical process Rdpro
n,t (β, u; θ̂n) under the null hypothesis H0 in

(2.1) and consequently that of the test statistic CvMdpro
n based on it.

First, let us denote by FX(·) the cumulative distribution function (CDF) of covariates

X. Also, let Ψpro(du, dβ) = Fβ(du)dβ. Recall that pt(x) = P(T = t|X = x) for every

t ∈ T are the true but unknown GPS.5 We list all the relevant regularity conditions as

follows.

Assumption 3.1 The random sample
{(

X⊤
i , Ti

)⊤
, i = 1 . . . n

}
consists of a sequence of

independent and identically distributed random vectors from (X⊤, T )⊤.

Assumption 3.2 For each t ∈ T ⊆ N, the propensity score model qt(X, θ) is known

up to the finite-dimensional parameter θ, and is twice continuously differentiable in a

neighborhood Θ0 of θ0 with Θ0 ⊂ Θ. The score function gt(X, θ) = ∂qt(X, θ)/∂θ satisfies

that there exists a FX(·)-integrable function M(·) such that supθ∈Θ0
||gt(·, θ)|| ≤ M(·).

Assumption 3.3 (i) The parameter space Θ is a compact subset of Rdθ ; (ii) the true pa-

rameter θ0 belongs to the interior of Θ; and (iii) the estimator θ̂n satisfies that
∣∣∣∣∣∣θ̂n − θ0

∣∣∣∣∣∣ =
Op(n

−1/2) under H0, and
∣∣∣∣∣∣θ̂n − θ∗

∣∣∣∣∣∣ = op(1) under H1 for some θ∗ in the parameter space

Θ.

Assumption 3.4 The integrating function Ψpro(·) is absolutely continuous with respect

to the Lebesgue measure on Πpro.

Assumptions 3.1-3.4 are standard in the specification testing literature; see, e.g., Es-

canciano (2006). Note that we only require the root-n consistency of θ̂n in Assumption

3.3(iii) rather than θ̂n being root-n asymptotically linear as required by Escanciano (2006,

Assumption A3(b)).

To present our asymptotic results, henceforth, we adopt the following notation. For

a generic set G, let l∞ (G) be the Banach space of all uniformly bounded real functions

on G, equipped with the uniform metric ∥f∥G ≡ supz∈G |f (z)|. We study the weak

convergence of Rdpro
n,t (β, u; θ̂n) and its related processes as elements of l∞ (Πpro), where

Πpro ≡ Sdx × [−∞,∞] with Sdx the unit ball in Rdx . Let “=⇒” denote weak convergence

on (l∞ (Πpro) ,B∞) in the sense of J. Hoffmann–Jϕrgensen, where B∞ denotes the corre-

sponding Borel σ-algebra - see e.g. Definition 1.3.3 in van der Vaart and Wellner (1996).

5 One can alternatively denote pt(x) as the true but unknown model underlying a conditional moment
restriction; see Remark 1.
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Then it is shown that under the null Rdpro
n,t (·, ·; θ̂n) =⇒ Rdpro

∞,t , a centered Gaussian process

with its covariance structure defined in Theorem 3.1.

The true generalized error is defined as ε(t) = 1(T = t) − pt(X), which satisfies

E[ε(t)|X] = 0 almost surely (a.s.) for each t ∈ T regardless of whether the null hypothesis

is true. We state formally the asymptotic null behavior of our test statistic CvMdpro
n in

the following theorem.

Theorem 3.1 Suppose Assumptions 3.1-3.4 hold. Then, under the null hypothesis H0 in

(2.1), for any sequence an(t) = a(t) + op (1), with a(t) > 0 and 0 <
∑

t∈T a(t) ≤ C < ∞,

we have that

CvMdpro
n

d−→ CvMdpro
∞ ≡

∑
t∈T

a(t)

∫
Πpro

(
Rdpro

∞,t (β, u)
)2

Ψpro (du, dβ) ,

where Rdpro
∞,t is a Gaussian process with mean zero and covariance structure

Kdpro
t ((β, u) , (β′, u′)) = E

[
σ2
t (X)Pt1

(
X⊤β ≤ u

)
Pt1

(
X⊤β′ ≤ u′)] , (3.1)

where σ2
t (X) = E [ε2(t)|X] = pt(X) (1− pt(X)) = qt(X, θ0) (1− qt(X, θ0)) is the condi-

tional variance function of generalized error ε(t) given X under the null.

To prove Theorem 3.1, we first show that the asymptotic null behavior ofRdpro
n,t (β, u; θ̂n)

does not depend on θ̂n. Based on this result, we combine the weak convergence of the

doubly-projected empirical process Rdpro
n,t with the continuous mapping theorem (see, e.g.,

van der Vaart and Wellner, 1996, Theorem 1.3.6) to derive the asymptotic distribution

of our proposed Cramér–von Mises test statistic CvMdpro
n under the null H0.

3.2 Asymptotic power

In this section, we study the asymptotic power properties of the CvMdpro
n test statistic

based on Rdpro
n,t (β, u; θ̂n) under the fixed (i.e., global) alternative and a certain sequence

of local alternatives converging to the null H0 at the usual parametric rate. We first

consider the fixed alternative hypothesis H1 in (2.2).

Theorem 3.2 Suppose Assumptions 3.1-3.4 hold. Then, under the fixed alternative

hypothesis H1 in (2.2), for any sequence an(t) = a(t) + op (1), with a(t) > 0 and

0 <
∑

t∈T a(t) ≤ C < ∞, we have that

CvMdpro
n

n

p−→
∑
t∈T

a(t)

∫
Πpro

(
E
[
(pt (X)− qt (X, θ∗))Pt1

(
X⊤β ≤ u

)])2
Ψpro (du, dβ) .

It follows from Theorem 3.2 that, under the fixed alternative alternative H1, as long

as the unconditional expectation

E
[
(pt (X)− qt (X, θ∗))Pt1

(
X⊤β ≤ u

)]
̸= 0
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for some (β⊤, u)⊤ and for some treatment level t ∈ T , CvMdpro
n will diverge to positive in-

finity at the n rate, indicating that CvMdpro
n is able to detect such a fixed alternative with

probability tending to one. On the other hand, CvMdpro
n might not be consistent against

all fixed alternative hypotheses in (2.2) if E
[
(pt (X)− qt (X, θ∗))Pt1

(
X⊤β ≤ u

)]
= 0 for

every t ∈ T . Specifically, the test statistic cannot distinguish those alternatives such

that, for every t ∈ T , the difference between pt(X) and qt(X, θ∗) is collinear to the score

function gt(X, θ∗) associated with qt(X, θ∗). However, we do not think this type of al-

ternative is of main empirical concern. If one were concerned with this, one could use

alternative testing procedures such as Stute (1997), Escanciano (2006), and Domı́nguez

and Lobato (2020).

We now proceed to consider the asymptotic local power properties of our proposed

test statistic. Toward this end, we study the asymptotic distribution of Rdpro
n,t (β, u; θ̂n)

under a certain sequence of Pitman-type local alternatives converging to the null at a

parametric rate. In particular, we consider the data-generating process for the sequence

of local alternatives given by

H1,n : P
[
pt(X) = qt(X, θ0) +

rt(X)√
n

]
= 1 for some θ0 ∈ Θ ∈ Rdθ and all t ∈ T , (3.2)

where, for each t ∈ T , the direction of departure from H0 is given by function rt(X)

(potentially different for each t), which is assumed to be FX(·)-integrable with zero mean

and satisfy P (rt(X) = 0) < 1.

Theorem 3.3 Suppose Assumptions 3.1-3.4 hold. Then, under the sequence of local

alternatives H1,n in (3.2), for any sequence an(t) = a(t) + op (1), with a(t) > 0 and

0 <
∑

t∈T a(t) ≤ C < ∞, we have that

CvMdpro
n

d−→ CvMdpro
1,∞ ≡

∑
t∈T

a(t)

∫
Πpro

(
Rdpro

∞,t (β, u) + δt (β, u)
)2

Ψpro (du, dβ) ,

where Rdpro
∞,t is the same Gaussian process as defined in Theorem 3.1, and δt is a deter-

ministic shift function given by

δt(β, u) = E
[
rt (X)Pt1

(
X⊤β ≤ u

)]
.

An immediate consequence of Theorem 3.3 is that whenever there exists some t ∈ T
such that the deterministic shift function δt (β, u) ̸= 0 for at least some (β⊤, u)⊤ ∈ Πpro

with a positive Lebesgue measure, our proposed Cramér–von Mises test statistic will have

non-trivial power against local alternatives of the form (3.2). A pathological situation in

which our test will only have trivial local power against such local alternatives is when

rt(X) is a linear combination of score function gt(X, θ0) for every treatment level t ∈ T ,

i.e., rt(X) = ν⊤gt(X, θ0) a.s. for some nonzero vector ν. In such a case, the limiting
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distribution of CvMdpro
n under H0 and H1,n is the same so that H1,n cannot be detected.

However, such a specific class of local alternatives is arguably of limited practical interest.

4 A multiplier bootstrap procedure

Since the limiting null distribution of our test statistic CvMdpro
n is non-pivotal, we pro-

pose a simple-to-implement multiplier bootstrap procedure to obtain the bootstrapped

p-values or critical values and show its asymptotic validity. Below is its implementation:

1. For each t ∈ T , i = 1, . . . n, generate e∗i (t; θ̂n) = Vi ei(t; θ̂n), where {Vi, i = 1, . . . , n}
is a sequence of independent and identically distributed random variables with mean

zero, variance one, and finite third moment; e.g., Rademacher random variables

with P (V = −1) = P (V = 1) = 1/2 (Liu, 1988) or Bernoulli random variable

with P (V = 1− κ) = κ/
√
5 and P (V = κ) = 1 − κ/

√
5, where κ =

(√
5 + 1

)
/2

(Mammen, 1993).

2. Compute

(
CvMdpro,∗

n

)b
=
∑
t∈T

an(t)
1

n2

n∑
i=1

n∑
j=1

n∑
r=1

epro,∗i (t; θ̂n)e
pro,∗
j (t; θ̂n)Aijr, (4.1)

where

epro,∗i (t; θ̂n) = e∗i (t; θ̂n)− g⊤t (Xi, θ̂n)∆
−1
n,t(θ̂n)

1

n

n∑
s=1

gt(Xs, θ̂n)e
∗
s(t; θ̂n), i = 1, . . . , n.

(4.2)

3. Repeat Steps 1 and 2 B times, and collect
{(

CvMdpro,∗
n

)b
, b = 1 . . . , B

}
.

4. Obtain the (1− α) quantile of
{(

CvMdpro,∗
n

)b
, b = 1 . . . , B

}
, c∗n,α, and set it as the

critical value for the test with significance level α, for 0 < α < 1.

5. Reject the null hypothesis H0 in (2.1) if CvMdpro
n is greater than the critical value

c∗n,α, and fail to reject (2.1) otherwise.

Note that epro,∗i (t; θ̂n) for i = 1, . . . , n in (4.2) are simply the ordinary least squares

residuals from regressing e∗i (t; θ̂n) on gt(Xi, θ̂n) that do not depend on the projection

direction β. As such, epro,∗i (t; θ̂n) are nothing but the bootstrap counterparts of eproi (t; θ̂n)

in (2.12).

The multiplier bootstrapped test statistic CvMdpro,∗
n has attractive theoretical and

empirical properties. First, it does not require computing new parameter estimates at

each bootstrap draw, reducing the computational intensity of the proposed procedure.
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Second, thanks to the use of the second projection in Pn,t1
(
X⊤

i β ≤ u
)
, its implementa-

tion does not require using estimators that admit an asymptotically linear representation

and thus allows for a wider range of estimators. Third, thanks to the closed-form repre-

sentation in (2.11), Aijr does not need to be computed for each bootstrap sample. Finally,

it does not involve any tuning parameters such as bandwidths. All these features greatly

alleviate the computational cost of our testing procedure.

To establish the asymptotic validity of the proposed multiplier bootstrap procedure

described in Steps 1–5 above, let

Rdpro,∗
n,t (β, u; θ̂n) =

1√
n

n∑
i=1

Vi ei(t; θ̂n)Pn,t1
(
X⊤

i β ≤ u
)

denote the multiplier bootstrapped version of Rdpro
n,t (β, u; θ̂n), with the sequence of multi-

plies {Vi}ni=1 as described in Step 1. In addition, the multiplier bootstrapped version of

CvMdrpo
n is

CvMdpro,∗
n =

∑
t∈T

an(t)

∫
Πpro

(
Rdpro,∗

n,t (β, u; θ̂n)
)2

Fn,β(du) dβ,

whose closed-form expression is given by (4.1). It is shown in Appendix A that

Rdpro,∗
n,t (β, u; θ̂n) =

1√
n

n∑
i=1

Vi ei(t; θ0)Pt1
(
X⊤

i β ≤ u
)
+ op(1),

uniformly in (β⊤, u)⊤ for each t ∈ T . Thus, Rdpro,∗
n,t (β, u; θ̂n) is asymptotically invariant

to θ̂n, and this holds under H0, H1, and H1,n. The next theorem formally states the

asymptotic validity of the multiplier bootstrap procedure.

Theorem 4.1 Suppose Assumptions 3.1-3.4 hold. Then, we have CvMdpro,∗
n

d→
∗
CvMdpro

∞

in probability under the bootstrap law, where CvMdpro
∞ is the same distribution as defined

in Theorem 3.1, and
d→
∗
denotes weak convergence under the bootstrap law, i.e., conditional

on the original sample
{
(Ti, X

⊤
i )

⊤}n
i=1

.

Theorem 4.1 states that the bootstrapped test statistic CvMdpro,∗
n converges to the

null limiting distribution of CvMdpro
n conditional on the original sample. The fact that

CvMdpro,∗
n has the same limiting distribution under H0, H1, and H1,n is what allows the

proposed multiplier bootstrap procedure to work.

Remark 1 Our proposed double-projection procedure can be readily used to test the va-

lidity of conditional moment restrictions E [e(t; θ0)|X] = 0 a.s. for all t ∈ T , for an

appropriately defined generalized error e(t; θ0). This includes classical regression mod-

els, where T = {1} the outcome of interest in Y , the parametric model for E[Y |X] is

q(X, θ), and e(1; θ) = Y − q(X, θ). One can also test conditional mean and variance
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models in the spirit of Escanciano (2008), where T = {1, 2}, e(1; θ) = Y − q1(X, θ1),

e(2; θ) = (Y −q1(X, θ1))
2−q2(X, θ2), with q1(X, θ1) being a parametric model for E[Y |X],

and q2(X, θ2) a parametric model for the conditional variance of Y − E[Y |X]. In these

cases, all one needs to do is adjust the definition of the errors and score functions. Im-

portantly, we do not require that parametric errors (and the outcome variables) to be

continuous.

We also stress that it is straightforward to extend our proposal to test even more

general conditional moment restrictions of the following form:

Hcmr
0 : P (E[ρ(Z, θ0)|X] = 0) = 1 for some θ0 ∈ Θ ⊂ Rdθ ,

Hcmr
1 : P (E[ρ(Z, θ)|X] = 0) < 1 for any θ ∈ Θ ⊂ Rdθ ,

where ρ(z, θ) is a known function, not necessarily differentiable with respect to θ; see,

e.g., Whang (2001), Delgado et al. (2006), and Escanciano and Jacho-Chávez (2010).

A special case is when Z = (Y,X), ρ(Z, θ) = Y − q(X, θ) for some parametric function

q(X, θ), and Y is the dependent variable, as we just discussed above. Another interesting

case is when ρ(Z, θ) = 1(Y − q(X, θ) ≤ 0) − τ with τ ∈ (0, 1); then q(X, θ0) is the τ -

quantile of the conditional distribution of Y given X. For the general case, however, the

dependent variable may be related to the regressors through the implicit function ρ(·, ·).
Then, by letting e(θ) = ρ(Z, θ) and g(X, θ) = ∂E[ρ(Z, θ)|X]/∂θ, we can straightforwardly

generalize our double-projection methodology to test Hcmr
0 against Hcmr

1 .

5 Specification tests for multiple-index models

In the previous sections, we proposed omnibus-type specification tests that aim to detect

the inadequacy of general parametric models. In particular, the working parametric

models do not assume any dimension-reducing structure under the null and/or under

the alternative. In many applications, however, using models with single/multiple index

structures is common. In such cases, getting some additional insights about potential

reasons for rejecting the putative model is interesting.

There has been a large amount of interest in statistical inference in (single) index

models. Horowitz and Härdle (1994), Fan and Li (1996), Fan and Liu (1997), Aı̈t-Sahalia

et al. (2001), Härdle et al. (2001), Stute and Zhu (2002), Xia et al. (2004), Stute and Zhu

(2005), Xia (2009), Escanciano and Song (2010), Guo et al. (2016) and Maistre and Patilea

(2019), among others, proposed various approaches to testing generalized linear models

or testing parametric or semiparametric (single) index assumptions. In the following, we

investigate three relevant testing problems in the framework of index-type GPS. In Section

5.1, we briefly describe a method for testing an index model (IM hereafter) with a known

link function against a nonparametric alternative (i.e., not restricting ourselves to an IM
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with a known link function). To further uncover the potential sources of misspecification

for the assumed IM, in Section 5.2, we discuss the problem of directionally testing an IM

with a known link function against a semiparametric alternative of IM with an unknown

link function. Section 5.3 outlines how to test a semiparametric single-index model against

a nonparametric alternative. We emphasize that the test we discuss in Section 5.3 is very

different from all other tests discussed in the paper as the null model is semiparametric,

i.e., it involves an infinite-dimensional nuisance function.

5.1 Testing a parametric IM against a nonparametric alterna-

tive

For practical convenience, researchers often impose some dimension-reducing structure

on the GPS. When the treatment is binary or ordered multinomial, a popular choice is

the class of single-index models, namely, qt(X, θ) = qt(X
⊤θ), where X⊤θ is the single

linear-index, and qt(·) : R 7→ [0, 1] is a known link function for each t ∈ T (e.g., the

multinomial logit link with qt(·) specified as the cumulative logistic distribution func-

tion or the probit link with qt(·) specified as the cumulative normal distribution func-

tion).6 With unordered multinomial choices, one usually adopts a multiple index model,

qt(X, θ) = qt(X
⊤θ1, . . . , X

⊤θJ) as in the multinomial logit model (2.5). Since the binary

and ordered multinomial cases are special cases of the unordered multinomial one, we

focus on the latter.

For a generic θ = (θ⊤1 , . . . , θ
⊤
J )

⊤, let X̃θ = (X⊤θ1, . . . , X
⊤θJ) denote the vector of

linear indexes. In this section, the null hypothesis of interest is

H im
0 : P

(
E
[
eim(t; θ0)|X

]
= 0
)
= 1 for some θ0 ∈ Θ ⊂ Rdθ and all t ∈ T , (5.1)

where θ0 = (θ⊤0,1, . . . , θ
⊤
0,J)

⊤, and eim(t; θ) ≡ 1(T = t)−qt(X̃θ). The alternative hypothesis

H im
1 is the negation of H im

0 . This is an omnibus test of a multiple-index parametric model

against a nonparametric alternative.

TestingH im
0 againstH im

1 is equivalent to testing (2.1) against (2.2) but with qt(X, θ) =

qt(X̃θ) and the generalized error e(t; θ) replaced by eim(t; θ) ≡ 1(T = t)−qt(X̃θ). As such,

we can consider the following generalized residual marked double-projected empirical

process as a special case of Rdpro
n,t (β, u; θ̂n),

1√
n

n∑
i=1

eimi (t; θ̂n)P im
n,t1(X

⊤
i β ≤ u),

(
β⊤, u

)⊤ ∈ Πpro,

where eimi (t; θ̂n) ≡ 1(Ti = t) − qt(X̃i,θ̂n
) is the generalized residual under the multiple

index model and the projection operator P im
n,t1(X

⊤
i β ≤ u) is as defined in (2.7) but with

6 The multinomial ordered discrete choice model has an intercept that varies with t.
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the score function gt(x, θ) = ∂qt(x̃θ)/∂θ for each t ∈ T . The associated theoretical results

are omitted as they are the same as those in previous sections.

5.2 Testing a parametric IM against a semiparametric alterna-

tive

In this section, we discuss how one can directionally test a parametric index model against

a semiparametric index model, where the semiparametric component comes from link

functions being unknown. Formally, we want to test the null hypothesis

H im1
0 : P

(
E
[
eim(t; θ0)|X̃θ0

]
= 0
)
= 1 for some θ0 ∈ Θ ⊂ Rdθ and all t ∈ T , (5.2)

against the directional alternative

H im1
1 : P

(
E
[
1(T = t)− µt(X̃θ)|X̃θ

]
= 0
)
= 1 for any θ ∈ Θ ⊂ Rdθ and/or some t ∈ T ,

(5.3)

where, µt(·) : RJ 7→ [0, 1] is an unknown link function such that P
(
µt(X̃θ) = qt(X̃θ)

)
< 1

for any θ ∈ Θ and/or some t ∈ T .

Horowitz and Härdle (1994) and Fan and Liu (1997) considered similar testing prob-

lems specialized to the single-index setup and constructed their test statistics by com-

paring a nonparametric estimate of P(T = t|X⊤θ̂n = v) with qt(v). We pursue a different

route by using the integrated moment approach with double-projections and allowing for

multiple-index models.

The key insight we provide here is to re-express the null hypothesis (5.2) as

H im1
0 : E

[
eim(t; θ0)1

(
X̃⊤

θ0
β ≤ u

)]
= 0 a.e.

(
β⊤, u

)⊤ ∈ Πim
pro,

for some θ0 ∈ Θ ⊂ Rdθ and all t ∈ T , (5.4)

where Πim
pro ≡ SJ × R denotes the projected space under the index model. In light of

our previous discussions, this characterization of the null immediately suggests using the

following generalized residual marked double-projected empirical process with estimated

multiple indexes,

Mdpro
n,t (β, u; θ̂n) ≡

1√
n

n∑
i=1

eimi (t; θ̂n)P im
n,t1(X̃

⊤
i,θ̂n

β ≤ u),
(
β⊤, u

)⊤ ∈ Πim
pro,

where

P im
n,t1(X̃

⊤
i,θ̂n

β ≤ u) ≡ 1(X̃⊤
i,θ̂n

β ≤ u)− gt(Xi, θ̂n)
⊤∆−1

n,t(θ̂n)G
im
n,t(β, u; θ̂n), (5.5)
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with gt(Xi, θ̂n) and ∆n,t(θ̂n) defined as before, and

Gim
n,t(β, u; θ̂n) =

1

n

n∑
i=1

gt(Xi, θ̂n)1(X̃
⊤
i,θ̂n

β ≤ u).

Based on Mdpro
n,t (β, u; θ̂n), we can use the following class of CvM -type test statistics

to test H im1
0 against H im1

1 :

CvM im,dpro
n =

∑
t∈T

an(t)

∫
Πim

pro

(
Mdpro

n,t (β, u; θ̂n)
)2

F im
n,β,θ̂n

(du) dβ, (5.6)

where F im
n,β,θ̂n

(u) = n−1
∑n

i=1 1
(
X̃⊤

i,θ̂n
β ≤ u

)
is the empirical distribution function of the

one-dimensional projected estimated indexes
{
X̃⊤

i,θ̂n
β
}n

i=1
for any fixed projected direc-

tion β ∈ SJ , and dβ is the rescaled uniform density on the unit sphere SJ .

Note that CvM im,dpro
n in (5.6) resembles CvMdpro

n in (2.10), with the caveat that

now we use the vector of estimated linear indexes
{
X̃i,θ̂n

}n

i=1
, instead of the observed

covariates {Xi}ni=1 in the projection steps. As this difference changes the computational

aspect of the test statistic and also its asymptotic properties, we discuss these differences

in the following.

In terms of computation, by building on Lemma 2.1 we can show that CvM im,dpro
n in

(5.6) can be expressed in closed-form as

CvM im,dpro
n =

∑
t∈T

an(t)
1

n2

n∑
i=1

n∑
j=1

n∑
r=1

eim,pro
i (t; θ̂n)e

im,pro
j (t; θ̂n)A

im
ijr, (5.7)

where

eim,pro
i (t; θ̂n) = eimi (t; θ̂n)− gt(Xi, θ̂n)

⊤∆−1
n,t(θ̂n)

1

n

n∑
s=1

gt(Xs, θ̂n)e
im
s (t; θ̂n), i = 1, . . . , n,

(5.8)

and Aim
ijr = A

im(0)
ijr ×

(
πJ/2−1

)
/Γ (J/2) with

A
im(0)
ijr =



2π, if X̃
i,θ̂n

= X̃
r,θ̂n

= X̃
j,θ̂n

,

π, if X̃
i,θ̂n

= X̃
j,θ̂n

, or X̃
i,θ̂n

= X̃
r,θ̂n

, or X̃
j,θ̂n

= X̃
r,θ̂n

,

π − arccos


(
X̃

i,θ̂n
− X̃

r,θ̂n

)⊤ (
X̃

j,θ̂n
− X̃

r,θ̂n

)
∥∥∥X̃i,θ̂n

− X̃
r,θ̂n

∥∥∥∥∥∥X̃j,θ̂n
− X̃

r,θ̂n

∥∥∥
 , otherwise.

This characterization helps us implement the multiplier bootstrap procedure and on other

practical computational aspects without needing to compute a continuum of projections.

In terms of the statistical properties of our test statistic CvM im,dpro
n , if we show that

there is no estimation effect from using the estimated indexes in the weighting functions,

we can resort to Theorem 3.1 to establish size control. Indeed, as we show in Appendix
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A, we have that, uniformly in (β⊤, u)⊤ ∈ Πim
pro and for each t ∈ T ,

Mdpro
n,t (β, u; θ̂n)

=
1√
n

n∑
i=1

eimi (t; θ̂n)
(
1(X̃⊤

i,θ0
β ≤ u)− gt(Xi, θ̂n)

⊤∆−1
n,t(θ̂n)G

im
n,t(β, u; θ̂n)

)
+ op(1)

=
1√
n

n∑
i=1

eimi (t; θ0)
(
1(X̃⊤

i,θ0
β ≤ u)− gt(Xi, θ0)

⊤∆−1
t (θ0)G

im
t (β, u; θ0)

)
+ op(1)

≡ 1√
n

n∑
i=1

eimi (t; θ0)P im
t 1(X̃⊤

i,θ0
β ≤ u) + op(1),

directly leading to the following result.

Proposition 5.1 Suppose Assumptions 3.1-3.3 hold. Consider a multiple-index spec-

ification, qt(X, θ) = qt(X̃θ) for all t ∈ T , such that qt(·) is known up to the finite-

dimensional parameters θ. Assume that the underlying distribution of the projected-

multiple indexes, Fβ,θ0(·), is absolutely continuous with respect to the Lebesgue measure.

Then, under the null hypothesis H im1
0 in (5.2), for any sequence an(t) = a(t) + op (1),

with a(t) > 0 and 0 <
∑

t∈T a(t) ≤ C < ∞, we have that

CvM im,dpro
n

d−→ CvM im,dpro
∞ ≡

∑
t∈T

a(t)

∫
Πim

pro

(
Mdpro

∞,t (β, u)
)2

Fβ,θ0(du)dβ,

where Mdpro
∞,t is a Gaussian process with mean zero and covariance structure

Kim,dpro
t ((β, u) , (β′, u′)) = E

[
σ̃2
t (X̃θ0)P im

t 1
(
X̃⊤

θ0
β ≤ u

)
P im

t 1
(
X̃⊤

θ0
β′ ≤ u′

)]
, (5.9)

where σ̃2
t (X̃θ0) = E

[
ε2(t)|X̃θ0

]
= qt(X̃θ0)

(
1− qt(X̃θ0)

)
is the conditional variance func-

tion of the generalized error ε(t) given X̃θ0 under the null H im1
0 .

In order to study the power properties of our proposed test, recall that pt(x) = P(T =

t|X = x) is the true, unknown GPS, which does not have to satisfy the semiparametric

index restriction stated in the alternative hypothesis H im1
1 . To proceed with the analysis

of the asymptotic global power properties of CvM im,dpro
n , we can show that, uniformly in

(β⊤, u)⊤ ∈ Πim
pro,

Mdpro
n,t (β, u; θ̂n)√

n

p−→ E
[(

pt (X)− qt(X̃θ∗)
)
P im

t 1
(
X̃⊤

θ∗β ≤ u
)]

,

for each t ∈ T under H im1
1 , where, using obvious notation, P im

t 1
(
X̃⊤

θ∗β ≤ u
)

is the

probability limit of (5.5).

If we ignore the less interesting class of alternative hypotheses under which the differ-

ence between qt(X̃θ∗) and µt(X̃θ∗) is collinear with the score function gt(X, θ∗), we have
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that

E
[(

pt(X)− qt(X̃θ∗)
)
P im

t 1(X̃⊤
θ∗β ≤ u)

]
=E

[(
pt(X)− µt(X̃θ∗)

)
P im

t 1(X̃⊤
θ∗β ≤ u)

]
+ E

[(
µt(X̃θ∗)− qt(X̃θ∗)

)
P im

t 1(X̃⊤
θ∗β ≤ u)

]
.

On one hand, when pt(x) = µt(x̃θ∗) holds (i.e., the true GPS satisfies the semiparametric

IM assumption under H im1
1 ), the fact that qt(v) ̸= µt(v) would be able to guarantee

E
[(

µt(X̃θ∗)− qt(X̃θ∗)
)
P im

t 1(X̃⊤
θ∗β ≤ u)

]
̸= 0, thus implying that our test is consistent

against H im1
1 in (5.3).

On the other hand, if the true model does not satisfy an index restriction, i.e., pt(x) ̸=
µt(x̃θ∗), it is possible that E

[(
pt(X)− qt(X̃θ∗)

)
P im

t 1(X̃⊤
θ∗β ≤ u)

]
= 0, even if the null

hypothesis H im1
0 is false. As so, tests based on Mdpro

n,t (β, u; θ̂n) are inconsistent against the

more general class of alternative hypotheses consisting of the negation of (5.2). These

findings, however, are typical features of directional-type tests; see, e.g., Horowitz and

Härdle (1994). It is also straightforward to show that our test CvM im,dpro
n is able to

detect a broad range of local alternatives, similar to the discussion in Theorem 3.3. We

omit the details to avoid repetition.

In practice, one can leverage the closed-form representation of our test statistic in

(5.7) to compute critical values and/or p-values with the assistance of a convenient mul-

tiplier bootstrap procedure. Similar to Theorem 4.1, we can show that to compute the

bootstrap analog of CvM im,dpro
n , all one needs to do is replace eim,pro

i (t; θ̂n) in (5.7) with

its “perturbed” version,

eim,pro,∗
i (t; θ̂n) = eim,∗

i (t; θ̂n)− gt(Xi, θ̂n)
⊤∆−1

n,t(θ̂n)
1

n

n∑
s=1

gt(Xs, θ̂n)e
im,∗
s (t; θ̂n), (5.10)

where eim,∗
i (t; θ̂n) = Vi e

im
i (t; θ̂n), i = 1, . . . , n, and {Vi, i = 1, . . . , n} is a sequence of

i.i.d. random variables with mean zero, variance one, and finite third moment. Given

our results in Theorem 4.1, it is easy to show that the multiplier bootstrap analog of

CvM im,dpro
n converges to the null distribution of CvM im,dpro

n conditional on the original

sample, establishing its asymptotic validity. We omit the details to avoid repetition of

arguments.

5.3 Testing a semiparametric single-index model against a non-

parametric alternative

So far, we have focused our attention on testing parametric models against omnibus or

directional alternatives. Suppose that a researcher rejects a putative parametric IM, and
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then decides to use a more flexible semiparametric model while still maintaining the index

restriction. By doing so, the researcher can still alleviate the “curse of dimensionality”.

In this context, however, a natural question arises: is the semiparametric index model

correctly specified? In this section, we describe how one can use a variant of our double-

projection procedure to answer this type of question. Given that the setup here is very

different from the rest of the paper, we restrict our attention to single-index models

(SIM). Extensions for multiple-index models are possible but involve much more tedious

arguments and steps.

More precisely, we are now interested in testing the following semiparametric-type

null hypothesis

Hsim
0 : P

(
E
[
esim(t; θ0, µt)|X

]
= 0
)
= 1

for some θ0 ∈ Θ ⊂ Rdθ and some µt(·) ∈ Ck, and all t ∈ T , (5.11)

where esimi (t; θ0, µt) ≡ 1(Ti = t) − µt(X
⊤
i θ0), and µt(·) : R 7→ [0, 1] is an unknown link

function that belongs to Ck, the space of real-valued, continuous (measurable) functions

with bounded k-th derivative, k > 1. The alternative hypothesis Hsim
1 is the negation of

Hsim
0 , i.e,

Hsim
1 : P

(
E
[
esim(t; θ, µ̃t)|X

]
= 0
)
< 1,

for any θ ∈ Θ ⊂ Rdθ , any µ̃t(·) ∈ Ck, and/or some t ∈ T . (5.12)

Henceforth, we assume that the linear combination X⊤θ0 admits a probability density

function (PDF) f(·). Let K(v) be the univariate kernel function and h be a bandwidth

parameter that shrinks to zero at an appropriate rate as n → ∞. In order to test the

above semiparametric conditional moment restriction, in light of our previous discussion

and Escanciano (2006),7 it is natural first to consider the following density-weighted

generalized residual marked projected empirical process:

Spro
n,t (β, u; θ̂n, µ̂t) =

1√
n

n∑
i=1

êsimi (t; θ̂n, µ̂t)f̂(X
⊤
i θ̂n)1(X

⊤
i β ≤ u),

(
β⊤, u

)⊤ ∈ Πpro,

where θ̂n is any
√
n-consistent estimator for θ0, say, the minimum average conditional

variance estimator of Xia et al. (2002) and Xia (2006), êsimi (t; θ̂n, µ̂t) ≡ 1(Ti = t) −
µ̂t(X

⊤
i θ̂n) is the semiparametric generalized residual,

µ̂t(X
⊤
i θ̂n) =

1
n−1

∑n
j ̸=i

1
h
K
(

(Xi−Xj)
⊤θ̂n

h

)
1(Tj = t)

f̂(X⊤
i θ̂n)

7 We stress that Escanciano (2006) does not consider tests for semiparametric models like the one being
discussed here.
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and

f̂(X⊤
i θ̂n) =

1

n− 1

n∑
j ̸=i

1

h
K

(
(Xi −Xj)

⊤θ̂n
h

)
are the standard leave-one-out kernel estimates for single-index model µt(X

⊤
i θ0) = E[1(Ti =

t)|X⊤
i θ0] and the PDF f(X⊤

i θ0), respectively.
8 Density-weighted statistics like Spro

n,t (β, u; θ̂n, µ̂t)

avoid random denominators, which simplifies the large sample derivations and also usually

translates to better finite sample properties.

Clearly, Spro
n,t (β, u; θ̂n, µ̂t) satisfies the following decomposition:

Spro
n,t (β, u; θ̂n, µ̂t) =

1√
n

n∑
i=1

(
1(Ti = t)− µt(X

⊤
i θ̂n)

)
f̂(X⊤

i θ̂n)1(X
⊤
i β ≤ u)

− 1√
n

n∑
i=1

(
µ̂t(X

⊤
i θ̂n)− µt(X

⊤
i θ̂n)

)
f̂(X⊤

i θ̂n)1(X
⊤
i β ≤ u)

≡Spro
n,t1(β, u; θ̂n, µt)− Spro

n,t2(β, u; θ̂n, µ̂t),

where Spro
n,t1(β, u; θ̂n, µt) is affected by the finite-dimensional estimator of θ̂n but not by

the infinite-dimensional estimator µ̂t, whereas Spro
n,t2(β, u; θ̂n, µ̂t) is affected by both. By

working with each of these terms separately, we show in Appendix A that, under Hsim
0 ,

uniformly in (β⊤, u)⊤ ∈ Πpro,

Spro
n,t (β, u; θ̂n, µ̂t)

=
1√
n

n∑
i=1

esimi (t; θ0, µt)f(X
⊤
i θ0)

(
1(X⊤

i β ≤ u)− E[1(X⊤
i β ≤ u)|X⊤

i θ0]
)

−
√
n(θ̂n − θ0)

⊤E
[
µ′
t(X

⊤θ0)f(X
⊤θ0)

(
X − E[X|X⊤θ0]

)
1(X⊤β ≤ u)

]
+ op(1), (5.13)

where µ′
t(v) = dµt(v)/dv is the (unknown) first derivative of µt(v) for each t ∈ T . It is

interesting to remark that the quantity

√
n(θ̂n − θ0)

⊤E
[
µ′
t(X

⊤θ0)f(X
⊤θ0)

(
X − E[X|X⊤θ0]

)
1(X⊤β ≤ u)

]
(5.14)

can be regarded as the total or overall parametric-type estimation effect due to using θ̂n

to estimate θ0, while the quantity

1√
n

n∑
i=1

esimi (t; θ0, µt)f(X
⊤
i θ0)E

[
1(X⊤

i β ≤ u)|X⊤
i θ0
]

(5.15)

can be regarded as the nonparametric-type estimation effect due to using the nonpara-

metric estimator µ̂t(v) to replace µt(v) if the linear-index v = x⊤θ0 were known.

8 The kernel density estimate f̂(X⊤
i θ̂n) is employed in Spro

n,t (β, u; θ̂n, µ̂t) to avoid random denominators
and ease theoretical derivations; see, e.g., Powell et al. (1989) and Delgado and González Manteiga
(2001).

22



To formally establish (5.13), we need the following assumptions, on top of Assumptions

3.1 and 3.3.

Assumption 5.1 The semiparametric propensity score model µt(v) is k-times continu-

ously differentiable in v with uniformly bounded derivatives, i.e., supv |djqt(v)/dvj| < Cj

with positive constant Cj for j = 1, . . . , k, k ≥ 1.

Assumption 5.2 The kernel function K(v) is bounded, symmetric around zero, and M-

times continuously differentiable in v with uniformly bounded derivatives (M ≥ 5 is an

integer). In addition, K(v) satisfies
∫
K(v)dv = 1,

∫
vjK(v) = 0 for j = 1, . . . , k − 1,∫

vkK(v) ̸= 0,
∫
K2(v)dv < ∞,

∫
|v|k|K(v)|dv < ∞, and |v|k|K(v)| → 0 as |v| → ∞.

Assumption 5.3 The positive bandwidth sequence h = hn satisfies h → 0, nh3 → ∞
and nh2k → 0 as n → ∞.

Assumption 5.1 assumes the link function is smooth, while Assumption 5.2 requires

that K(v) is a higher-order kernel. These are common assumptions in the literature

on nonparametric kernel estimation. Assumption 5.3 is a standard assumption on the

bandwidth that balances between biases and variances of U -processes, which appear in the

proof. In particular, nh3 → ∞ is a condition used in proving that the second order terms

of U -processes are asymptotically uniformly negligible, while the condition nh2k → 0 is

used to control the bias terms. Note that if the standard normal kernel is used, it is

differentiable to any order and k = 2. Although our assumptions may be stronger than

necessary, they make the proofs much easier.

Given the linear representation in (5.13), it is straightforward to establish the asymp-

totic null distribution of Spro
n,t (β, u; θ̂n, µ̂t) when

√
n(θ̂n − θ0) admits an asymptotically

linear representation. Even in that case, it is clear that its asymptotic null distribution

would depend on how θ̂n is obtained. Based on these more demanding and arguably

less-desirable conditions, it is easy to build on (5.13) to propose a CvM -type test, es-

tablish its power properties and use a multiplier-bootstrap akin to the one discussed in

Section 4 to compute asymptotically-valid critical values; see, e.g., Xia et al. (2004) for

a related proposal that relies on the standard indicator weight 1(X ≤ x̃) instead of the

one-dimensional projected indicator weight 1(X⊤β ≤ u).9

Instead of following this “more-traditional” path, one may propose a test insensitive to

the choice of estimators for the nuisance parameters. In what follows, we argue that using

a double-projection argument like those introduced in Section 2.2, we can eliminate the

parametric-type estimation effect (5.14), but not the nonparametric-type of estimation

effect (5.15). Still, using the double-projection procedure allows researchers to consider

9 Their bootstrap procedure also requires outcomes to be continuous, ruling out discrete response vari-
ables such as in the (generalized) propensity score models considered here.
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a wider variety of estimators for θ0 than if they were to propose test-statistics based on

Spro
n,t (β, u; θ̂n, µ̂t).

To see this, let the (infeasible) double-projection weights be defined as

Psim
t 1(X⊤

i β ≤ u) ≡ 1(X⊤
i β ≤ u)− µ′

t(X
⊤
i θ0)f(X

⊤
i θ0)η(Xi, θ0)

⊤∆−1
t (θ0)Gt(β, u; θ0),

where η(x, θ) = x− φ(x⊤θ) with φ(v) = E[X|X⊤θ = v],

∆t(θ) = E[µ′
t(X

⊤θ)2f(X⊤θ)2η(X, θ)η(X, θ)⊤],

and

Gt(β, u; θ) = E[µ′
t(X

⊤θ)f(X⊤θ)η(X, θ)1(X⊤β ≤ u)].

The feasible version of Psim
t 1(X⊤

i β ≤ u) is given by

Psim
n,t 1(X⊤

i β ≤ u) ≡ 1(X⊤
i β ≤ u)− µ̂′

t(X
⊤
i θ̂n)f̂(X

⊤
i θ̂n)η̂(Xi, θ̂n)

⊤∆−1
n,t(θ̂n)Gn,t(β, u; θ̂n), (5.16)

where

µ̂′
t(X

⊤
i θ̂n) =

1
(n−1)2h3

∑n
j ̸=i

∑n
j′ ̸=iK

(
(Xi−Xj)

⊤θ̂n
h

)
K(1)

(
(Xi−Xj′ )

⊤θ̂n
h

)(
1(Tj′ = t)− 1(Tj = t)

)
f̂(X⊤

i θ̂n)2

is the leave-one-out kernel estimator for µ′
t(X

⊤
i θ0) ≡ dµt(v)/dv|v=X⊤

i θ0 , η̂(Xi, θ̂n) =

Xi − φ̂(X⊤
i θ̂n) with φ̂(X⊤

i θ̂n) the leave-one-out kernel estimator for φ(X⊤
i θ0) is given by

φ̂(X⊤
i θ̂n) =

1
(n−1)h

∑n
j ̸=iK

(
(Xi−Xj)

⊤θ̂n
h

)
Xj

f̂(X⊤
i θ̂n)

,

and

∆n,t(θ̂n) =
1

n

n∑
i=1

µ̂′
t(X

⊤
i θ̂n)

2f̂(X⊤
i θ̂n)

2η̂(Xi, θ̂n)η̂(Xi, θ̂n)
⊤,

Gn,t(β, u; θ̂n) =
1

n

n∑
i=1

µ̂′
t(X

⊤
i θ̂n)f̂(X

⊤
i θ̂n)η̂(Xi, θ̂n)1(X

⊤
i β ≤ u).

Consider the following density-weighted generalized residual marked double-projected

empirical process

Sdpro
n,t (β, u; θ̂n, µ̂t) =

1√
n

n∑
i=1

êsimi (t; θ̂n, µ̂t)f̂(X
⊤
i θ̂n)Psim

n,t 1(X⊤
i β ≤ u),

(
β⊤, u

)⊤
∈ Πpro.

Note that, to compute Psim
n,t 1(X

⊤
i β ≤ u), one needs to estimate several infinite-dimensional

parameters, including the derivatives µ′
t(·). This makes the computation of Sdpro

n,t (β, u; θ̂n, µ̂t)

substantially more challenging than all the other double-projection empirical process pre-

viously considered in this paper.

Following similar arguments as proving (5.13), it is possible to show that, under some
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additional regularity conditions, uniformly in (β⊤, u)⊤, and under Hsim
0 ,

Sdpro
n,t (β, u; θ̂n, µ̂t)

=
1√
n

n∑
i=1

esimi (t; θ0, µt))f(X
⊤
i θ0)

(
Psim
t 1(X⊤

i β ≤ u)− E[Psim
t 1(X⊤β ≤ u)|X⊤

i θ0]
)
+ op(1)

=
1√
n

n∑
i=1

esimi (t; θ0, µt))f(X
⊤
i θ0)

(
Psim
t 1(X⊤

i β ≤ u)− E[1(X⊤β ≤ u)|X⊤
i θ0]

)
+ op(1),

where the second step follows because E[η(Xi, θ0)|X⊤
i θ0] = 0 a.s.. The good news now

is that we do not have to deal with the parametric estimation effect due to using θ̂n,

and therefore can avoid requiring the more stringent condition that
√
n(θ̂n − θ0) admits

an asymptotically linear representation. On the other hand, the nonparametric-type

estimation effect given in (5.15) is still present.

The fact that we do not eliminate the nonparametric-type estimation effect using

our double projections leads to some complications that were not present before. For

instance, note that we can compute the following CvM test statistic in closed-form:

CvM sim,dpro
n =

∑
t∈T

an(t)

∫
Πpro

(
Sdpro
n,t (β, u; θ̂n, µ̂t)

)2
Fn,β(du) dβ

=
∑
t∈T

an(t)
1

n2

n∑
i=1

n∑
j=1

n∑
r=1

êsim,pro
i (t; θ̂n)ê

sim,pro
j (t; θ̂n)Aijr,

where

êsim,pro
i (t; θ̂n) =êsimi (t; θ̂n)f̂(X

⊤
i θ̂n)− µ̂′

t(X
⊤
i θ̂n)f̂(X

⊤
i θ̂n)η̂(Xi, θ̂n)

⊤∆−1
n,t(θ̂n)Q̂n,t

and

Q̂n,t =
1

n

n∑
s=1

µ̂′
t(X

⊤
s θ̂n)f̂(X

⊤
s θ̂n)

2η̂(Xs, θ̂n)ê
sim
s (t; θ̂n).

However, because the underlying null distribution of Sdpro
n,t (β, u; θ̂n, µ̂t) is not invari-

ant to the nonparametric estimator for the link function µ̂t, we need to account for its

estimation effect in the implementation of a multiplier-bootstrap procedure. That is, a

CvM -type multiplier bootstrapped test statistic can be constructed as

CvM sim,dpro,∗
n =

∑
t∈T

an(t)

∫
Πpro

(
Sdpro,∗
n,t (β, u; θ̂n, µ̂t)

)2
Fn,β(du) dβ,

where

Sdpro,∗
n,t (β, u; θ̂n, µ̂t) =

1√
n

n∑
i=1

Viê
sim
i (t; θ̂n)f̂(X

⊤
i θ̂n)

(
Psim

n,t 1(X
⊤
i β ≤ u)− ϕ̂(β, u;X⊤

i θ̂n)
)
,

with {Vi}ni=1 a sequence of multipliers defined in Section 4 and ϕ̂(β, u;X⊤
i θ̂n) the leave-
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one-out kernel estimator for ϕ(β, u;X⊤
i θ0) ≡ E[1(X⊤β ≤ u)|X⊤θ0 = v] given by

ϕ̂(β, u;X⊤
i θ̂n) =

1
(n−1)h

∑n
j ̸=iK

(
(Xi−Xj)

⊤θ̂n
h

)
1(X⊤

j β ≤ u)

f̂(X⊤
i θ̂n)

.

Unfortunately, given that Sdpro,∗
n,t (β, u; θ̂n, µ̂t) depends on ϕ(β, u;X⊤

i θ0), which is indexed

by β and u, it is not clear if one can get an easy-to-use closed-form expression for

CvM sim,dpro,∗
n . This suggests that one would need to resort to numerical integration pro-

cedures to compute critical values for CvM sim,dpro
n based on CvM sim,dpro,∗

n . Although this

is feasible, it also seems much more computationally challenging. Given that these topics

are sufficiently different from the rest of the paper, we leave their theoretical justifications

and detailed implementation guidelines for future research.

6 Data illustration

In this section, we apply our tests to analyze the goodness-of-fit of different GPS models

used to study the effect of maternal smoking on birth weight. The dataset, available at

http://www.stata-press.com/data/r13/cattaneo2.dta, is the excerpt from Almond

et al. (2005) and Cattaneo (2010) previously used by Lee et al. (2017). It consists of

observations from white mothers in Pennsylvania in the USA; like Lee et al. (2017), we

further restrict our sample to white and non-Hispanic mothers, total 3, 754 observations.

The treatment variable, T , is a multi-valued variable that is equal to 0 if the mother

does not smoke during the pregnancy, equal to 1 if the mother smokes, on average,

between one and five cigarettes a day during the pregnancy, equal to 2 if the mother

smokes, on average, between six and ten cigarettes a day during the pregnancy, and

equal to 3 if the mother smokes, on average, more than eleven cigarettes a day during the

pregnancy. The set of pre-treatment covariates X we use are the mother’s age, number

of prenatal care visits, and indicator variables for alcohol consumption during pregnancy,

first prenatal visit in the first trimester, whether there was a previous birth where the

newborn died, twelve years of education (complete high-school), and more than twelve

years of educations (some college). The outcome of interest is the infant’s birth weight

measured in grams.

We start our analysis by analyzing the effect of the mother being a smoker during

the pregnancy (T > 0) versus not smoking during the pregnancy (T = 0). Given the

binary nature of the “being a smoker” treatment, we estimate the propensity score using

a logistic regression model with linear predictors including all aforementioned covariates.

We then apply our proposed specification test to assess the goodness-of-fit of this simple

propensity score model, using 9, 999 bootstrap replications. Our procedure yields a p-

value of 0.18, suggesting that our proposed testing procedure does not find any evidence

26

http://www.stata-press.com/data/r13/cattaneo2.dta


of model misspecification at the usual significance levels.

Next, we move our attention to analyzing the effect of maternal smoking intensity

during pregnancy, T . Given that the treatment T is clearly ordered, we estimate the

GPS using an ordered logit regression model with all covariates entering the model in a

linear fashion. Although natural, we note that the ordered logit model imposes important

restrictions on the data such as a proportional odds restriction. In practice, however, such

restrictions may be too rigid for a given application. Indeed, our proposed specification

test with 9, 999 bootstrap replications yield a p-value of 0.08, suggesting that the ordered

logit model is misspecified at the 10% significance level.

A relatively straightforward way to relax the proportional odd restrictions inherited

in the ordered logit model is to ignore that the treatment T is ordered and estimate the

GPS using a multinomial logit linear regression model. In contrast with the ordered logit

model, the multinomial logit model does not impose that the regressors’ coefficients are

the same across different treatment levels. Our specification test with 9, 999 bootstrap

replications yield a p-value of 0.72, suggesting that the multinomial logit model is a more

suitable model for maternal smoking intensity during pregnancy T than the order logit

model.

Table 1 shows the estimates of the causal effects of smoking on birth weight based

on the inverse probability weighting estimators for binary and multi-valued treatments,

ATEn as in (B.3) and ATEn,j,ℓ as in (B.7), respectively. Although qualitatively similar,

one can notice some differences in the standard errors and confidence intervals between

the treatment effects estimates based on misspecified ordered logit model and those based

on the multinomial logit model for the GPS. This illustrates one of the potential pitfalls

of model misspecification.

7 Conclusions and directions for further research

In this article, we proposed a new class of specification tests for GPS models based on

novel double-projected weight functions. We have shown that using double projections

helps ameliorate the “curse of dimensionality” and avoids the complications associated

with “parameter estimation uncertainty” commonly encountered in specification testing.

We have shown that our proposed test statistics can be written in closed form, and that

one can use an easy-to-implement multiplier bootstrap procedure to compute critical

values as accurately as desired. We have also extended our double-projection proposal

to test parametric multiple-index or semiparametric single-index GPS. The simulation

results (in Appendix B) and the empirical application highlight that our proposed tests

can serve as a valuable diagnostic tool in the context of multi-valued treatment effects.

We anticipate that one can extend our proposal to test whether putative paramet-

ric conditional distributions, distributional regressions, or linear/nonlinear quantile re-
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Table 1: Results from the empirical illustration: point estimates, standard error by the
bootstrap, and 95% confidence interval

Point Estimate Standard Error 95% Confidence Interval

(a) The causal effect of mother being a smoker during pregnancy on infant’s birth weight
Estimators based on a logit propensity score model

E [Y (1)− Y (0)] -270 28 (-326, -215)

(b) The causal effect of mother’s smoking intensity during pregnancy on infant’s birth weight
Estimators based on an ordered logit GPS model

E [Y (1)− Y (0)] -279 59 (-401, -164)
E [Y (2)− Y (0)] -244 46 (-338, -156)
E [Y (3)− Y (0)] -279 39 (-357, -202)

(c) The causal effect of mother’s smoking intensity during pregnancy on infant’s birth weight
Estimators based on a multinomial logit GPS model

E [Y (1)− Y (0)] -250 49 (-346, -154)
E [Y (2)− Y (0)] -241 49 (-338, -148)
E [Y (3)− Y (0)] -267 42 (-347, -184)

Note: Standard errors are computed using the empirical bootstrap with 9, 999 draws. 95% confidence intervals based
on the percentile bootstrap with 9, 999 draws. See the main text for further details.

gressions are correctly specified; see, e.g., Bierens and Wang (2012), Rothe and Wied

(2013) and Escanciano and Goh (2014). Due to the lack of a closed-form expression of

CvM sim,dpro,∗
n at the end of Section 5.3, another direction of future research could fo-

cus on developing alternative bootstrap methods to obtain critical values of tests that

are designed to test the semiparametric single-index assumption against a general non-

parametric alternative and are robust to both the dimensionality of covariates and the

estimation of parametric/nonparametric-type nuisance parameters. We leave a detailed

analysis of these interesting extensions for future research.
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