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Abstract

This paper proposes new estimators for the propensity score that aim to maximize the covariate
distribution balance among different treatment groups. Heuristically, our proposed procedure attempts to
estimate a propensity score model by making the underlying covariate distribution of different treatment
groups as close to each other as possible. Our estimators are data-driven and can be used to estimate dif-
ferent treatment effect parameters under different identifying assumptions, including unconfoundedness
and local treatment effects. We derive the asymptotic properties of inverse probability weighted estima-
tors for the average, distributional, and quantile treatment effects based on the proposed propensity score
estimator and illustrate their finite sample performance via Monte Carlo simulations and an empirical
application.
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1 Introduction

Identifying and estimating the effect of a policy, treatment or intervention on an outcome of interest is one
of the main goals in applied research. Although a randomized control trial (RCT) is commonly deemed as
the gold standard to identify causal effects, many times its implementation is infeasible and researchers have
to rely on observational data. In such settings, the propensity score (PS), which is defined as the probability
of being treated given observed covariates, plays a prominent role. Statistical methods using the PS include
matching, inverse probability weighting (IPW), regression, as well as combinations thereof; for review, see,
e.g., Imbens and Rubin (2015).
To use these methods in practice, one has to acknowledge that the PS is usually unknown and has to

be estimated from the observed data. Given the moderate or high dimensionality of available covariates,
researchers are usually coerced to adopt a parametric model for the PS. A popular approach is to assume a
linear logistic model, estimate the unknown parameters by maximum likelihood (ML), check if the resulting
PS estimates balance specific moments of covariates, and in case they do not, refit the PS model including
higher-order and interaction terms and repeat the procedure until covariate balancing is achieved, see, e.g.,
Rosenbaum and Rubin (1984) and Dehejia and Wahba (2002). On top of involving ad hoc choices of
model refinements, such model selection procedures may result in distorted inference about the parameters
of interest, see, e.g., Leeb and Pötscher (2005). An additional challenge faced by PS estimators based on
ML is that the likelihood loss function does not take into account the covariate balancing property of the PS
(Rosenbaum and Rubin, 1983 ), and, as a result, treatment effect estimators based of ML PS estimates can
be very sensitive to model misspecifications, see, e.g., Kang and Schafer (2007).
In light of these practical issues, alternative estimation procedures that are able to resemble randomization

in a closer fashion have been proposed. For instance, Graham, Pinto and Egel (2012), Hainmueller (2012),
Imai and Ratkovic (2014), Zubizarreta (2015), and Zhao (2019) propose alternative estimation procedures
that attempt to directly balance covariates among the treated, untreated and, combined sample. Although
such methods usually lead to treatment effect estimators with improved finite sample properties, they only
aim to balance some specific functions of covariates. However, the covariate balancing property of the
PS is considerably more powerful as it implies balance not only for some particular moments but for
all measurable, integrable functions of the covariates. Indeed, the balancing property of the propensity
score resembles randomization: when the data come from a randomized control trial (RCT) with perfect
compliance, the entire covariate distributions among different treatment groups are balanced and, therefore,
all measurable, integrable functions of the covariates are indeed balanced.
In this paper, we propose an alternative framework for estimating the PS that fully exploits the covariate

balancing property of the PS. We call the resulting PS estimator the integrated propensity score (IPS). At a
conceptual level, the IPS builds on the observation that the covariate balancing property of the PS can be
equivalently characterized by balancing covariate distributions, namely, by an infinite, but tractable, number
of unconditional moment restrictions. Upon such an observation, we consider Cramér-von Mises-type
distances between these infinite balancing conditions and zero, and show that their minima are uniquely
achieved at the true PS parameters. These results, in turn, suggest that we can estimate the unknown PS
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parameters within the minimum distance framework, as in, for example, Dominguez and Lobato (2004)
and Escanciano (2006a, 2018). We emphasize that the IPS can be used under different “research designs”,
including not only the unconfounded treatment assignment setup, see, e.g., Rosenbaum and Rubin (1983),
Hirano, Imbens and Ridder (2003), Firpo (2007), and Chen, Hong and Tarozzi (2008), but also the “local
treatment effect” setup, where selection into treatment is possibly endogenous but a binary instrumental
variable is available, see, e.g., Abadie (2003), and Frölich and Melly (2013). In this latter case, the IPS aims
to balance the covariates among the treated, non-treated, and overall complier subpopulations.
At the practical level, one can think of the IPS as an estimation procedure that attempts to estimate the

unknown finite dimensional parameters of a PS model by making the underlying entire covariate distribution
of different treatment groups as close to each other as possible. The IPS framework also acknowledges
that, in practice, there are different ways to compare covariate distribution functions depending on how
covariate distribution balance is measured and the norm chosen. We explicitly consider three natural ways to
characterize covariate distribution balance: 1) using the covariates’ joint cumulative distribution, 2) their joint
characteristic function, or 3) exploiting the Cramér–Wold theorem to focus on the cumulative distribution of
the one-dimensional projections of the covariates. In terms of the norm, we focus on Cramér-von Mises-type
distances as they can lead to smooth criteria functions that admit a closed-form representation, allowing us
to avoid using numerical integration procedures. In fact, our proposed method is easy to use as currently
implemented in the new package IPS for R, available at https://github.com/pedrohcgs/IPS.
The proposed IPS enjoys several appealing properties. First, the IPS procedure guarantees that the

unknown PS parameters are globally identified. This is in contrast to the traditional generalized method of
moments approach based on finitely many balancing conditions, see, e.g., Hellerstein and Imbens (1999)
and Dominguez and Lobato (2004). Second, even though we aim to balance an infinite number of balancing
conditions, the IPS estimator does not rely on tuning parameters such as bandwidths. Third, as other inverse
probability weighted (IPW) estimators, the IPS does not rely on outcome data and separates the design stage
(where one estimates the propensity score) from the analysis stage (where one estimates different treatment
effect measures). As advocated by Rubin (2007, 2008), this separation is useful as it simultaneously mimics
RCTs and avoids potential data snooping problems. Another direct consequence of this clear separation
is that one can use the IPS to estimate a variety of causal effect parameters in a relatively straightforward
manner. We illustrate this flexibility by deriving the asymptotic properties of IPW estimators for average,
distributional and quantile treatment effects based on the IPS, under both the unconfoundedness and the local
treatment effects setups.

Related literature: Our proposal builds on different branches of the econometrics literature. For
instance, this paper is related to Shaikh, Simonsen, Vytlacil and Yildiz (2009) and Sant’Anna and Song
(2019), who exploit the covariate balancing of the PS to propose specification tests for a given PS model.
Here, instead of checking if a given PS estimator balances the covariate distribution among different treatment
groups, we propose to estimate the PS unknown parameters by maximizing the covariate balancing. The IPS
estimators also build on Dominguez and Lobato (2004) and Escanciano (2006a, 2018), who propose generic
estimation procedures for finite-dimensional parameters defined via an infinite number of unconditional
moment restrictions. Upon characterizing the covariate balancing property of the PS as an infinite number
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of unconditional moment restrictions, we are able to adapt their proposals to our causal inference context.
Our proposal is also related to the growing literature on weighting-based covariate balancing methods.

Among this branch of the literature, the closest papers to ours are Graham et al. (2012), Imai and Ratkovic
(2014), Díaz, Rau and Rivera (2015) and Fan, Imai, Liu, Ning and Yang (2016). An important difference
between our proposal and theirs is that all these papers focus exclusively on average treatment effects
under unconfoundedness, whereas we show that one can directly use the IPS to estimate a variety of
causal parameters of interest such as average, quantile and distributional treatment effects, not only under
unconfoundedness but also in settings with endogenous treatment. It is also worth stressing that Graham
et al. (2012) and Imai and Ratkovic (2014) propose estimating PS by balancing some specific pre-determined
moments of the covariates, and that their procedure requires one to assume that the propensity score
parameters are uniquely (globally) identified, see, e.g., Assumption 2.1(i) in Graham et al. (2012). In
practice, it is hard to verify such important condition, and when such assumption is not satisfied, inference
procedures based on their proposal will in general not be valid, see, e.g. Dominguez and Lobato (2004).
Our proposed IPS procedure, on the other hand, does not suffer from this drawback as it aims to balance the
entire covariate distribution, i.e., our proposal is based on an infinite number of balancing conditions that
fully characterize the propensity score.
In a recent working paper, Fan et al. (2016) consider the case where the number of balancing moments

grows with the sample size at an appropriate rate. Although this proposal bypass the identification challenge
mentioned above (see, e.g., Ai and Chen (2003) and Donald, Imbens and Newey (2003)), to implement
their proposal one needs to carefully choose tuning parameters and basis functions such that the resulting
balancing moments are guaranteed to be finite. They also exclusively focus on estimating average treatment
effects under unconfoundedness assumptions. On the other hand, their proposal does not rely on parametric
assumptions like we do. As so, we view our works as complements.

Organization of the paper: Section 2 introduces the framework of balancing weights and explains the
estimation problem of the IPS. Section 3 presents the large sample properties of the IPS estimator. This
section also discusses how one can use the IPS to estimate and make inference about average, distributional
and quantile treatment effects under the unconfoundedness assumption. In Section 4, we discuss how one
can use the IPS in the empirically relevant situation where treatment adoption is endogenous and one has
access to a binary instrumental variable. Section 5 illustrates the comparative performance of the proposed
method through simulations. Section 6 presents an empirical application. Section 7 concludes. Proofs, as
well as additional results, are reported in the Supplementary Appendix1.

2 Covariate balancing via propensity score

2.1 Background

Let D be a binary random variable that indicates participation in the program, i.e., D “ 1 if the individual
participates in the treatment and D “ 0 otherwise. Define Y p1q and Y p0q as the potential outcomes under

1 The Supplementary Appendix is available at https://pedrohcgs.github.io/files/IPS-supplementary.pdf
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treatment and untreated, respectively. The realized outcome of interest is Y “ DY p1q ` p1 ´DqY p0q,
andX is an observable kˆ 1 vector of pre-treatment covariates. Denote the support ofX by X ĂRk and the
propensity score p pxq “ P pD “ 1|X “ xq. For d P t0, 1u, denote the distribution and quantile of the po-
tential outcome Y pdq by FY pdq pyq “ P pY pdq ď yq, and qY pdq pτq “ inf

␣

y : FY pdq pyq ě τ
(

, respectively,
where y P R and τ P p0, 1q. Henceforth, assume that we have a random sample

␣

pYi, Di,X
1
iq

1
(n

i“1
from

pY,D,X1q
1 , where n ě 1 is the sample size, and all random variables are defined on a common probability

space pΩ,A,Pq . For a generic random variable Z, denote En rZs “ n´1
řn

i“1 Zi.
The main goal in causal inference is to assess the effect of a treatment D on the outcome of interest

Y . Perhaps the most popular causal parameter of interest is the overall average treatment effect, ATE “

E rY p1q ´ Y p0qs. Despite its popularity, the ATE can mask important treatment effect heterogeneity across
different subpopulations, see, e.g., Bitler, Gelbach and Hoynes (2006). Thus, in order to uncover potential
treatment effect heterogeneity, one usually focuses on different treatment effect parameters beyond the mean.
Leading examples include the overall distributional treatment effect,DTE pyq “ FY p1q pyq ´FY p0q pyq, and
the overall quantile treatment effect, QTE pτq “ qY p1q pτq ´ qY p0q pτq. Given that these causal parameters
depend on potential outcomes that are not jointly observed for the same individual, one cannot directly rely
on the analogy principle to identify and estimate such functionals.
A commonly used identification strategy in policy evaluation to bypass this difficulty is to assume

that selection into treatment is based on observable characteristics, and that all individuals have a positive
probability of being in either the treatment or the untreated group — the so-called unconfoundedness setup,
see, e.g., Rosenbaum and Rubin (1983). Formally, unconfoundedness requires the following assumption.

Assumption 1 paq Given X, pY p1q , Y p0qq is jointly independent from D; and pbq for all x P X , p pxq is
uniformly bounded away from zero and one.

Rosenbaum (1987) shows that, under Assumption 1, the ATE is identified by

ATE “ E
„ˆ

D

p pXq
´

p1 ´Dq

1 ´ p pXq

˙

Y

ȷ

.

Analogously, for d P t0, 1u, FY pdq pyq is identified by

FY pdq pyq “ E
„

1 tD “ du

dp pXq ` p1 ´ dq p1 ´ p pXqq
1 tY ď yu

ȷ

,

with 1 t¨u the indicator function, implying that both DTEpyq and QTEpτq can also be written as functionals
of the observed data; see, e.g., Firpo (2007), and Chen et al. (2008).
These identification results suggest that, if the PS were known, one could get consistent estimators by

using the sample analogue of such estimands. For instance, one can estimate the ATE using the Hájek
(1971)-type estimator

ĆATEn “ En

”´

ϖps
n,1 pD,Xq ´ϖps

n,0 pD,Xq

¯

Y
ı

,

where

ϖps
n,1 pD,Xq “

D

p pXq

N

En

„

D

p pXq

ȷ

, and ϖps
n,0 pD,Xq “

1 ´D

1 ´ p pXq

N

En

„

1 ´D

1 ´ p pXq

ȷ

.

Estimators for FY pdq pyq, d P t0, 1u, and DTEpyq are formed using an analogous strategy. For the QTEpτq ,

one can simply invert the estimator of FY pdq pyq to estimate qY pdq pτq; see, e.g., Firpo (2007) and Chen et al.
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(2008). Of course, estimators for other treatment effect measures such as the difference of Theil indexes
and/or Gini coefficients can also be formed using a similar strategy, see, e.g., Firpo and Pinto (2016).
In observational studies, however, the propensity score p pXq is usually unknown, and has to be estimated.

Given thatX is usually ofmoderate or high dimensionality, researchers routinely adopt a parametric approach.
A popular choice among practitioners is the logistic model

p pXq “ p pX;β0q “
exp pX1β0q

1 ` exp pX1β0q
,

with β0 P Θ Ă Rk. Next, one usually proceeds to estimate β0 within the maximum likelihood paradigm,
i.e.,

pβ
mle

n “ argmax
βPΘ

En rD ln pp pX;βqq ` p1 ´Dq ln p1 ´ p pX;βqqs ,

and uses the resulting PS fitted values p
´

X; pβ
mle

n

¯

to construct different treatment effect estimators. Despite
the popularity of this procedure, it has been shown that it can lead to significant instabilities under mild PS
misspecifications, particularly when some PS estimates are relatively close to zero or one, see e.g. Kang and
Schafer (2007).
In light of these challenges, alternative methods to estimate the PS have emerged. A particularly fruitful

direction is to exploit the covariate balancing property of the PS as stated in the next Lemma.

Lemma 2.1 Let p pX;βq be a parametric model for the unknown propensity score. Then, if the model is
correctly specified, for all measurable and integrable function f pXq of the covariates X,

E
„

D

p pX;β0q
f pXq

ȷ

“ E
„

1 ´D

1 ´ p pX;β0q
f pXq

ȷ

“ E rf pXqs (2.1)

for a unique value β0 P Θ.

For example, Imai and Ratkovic (2014) propose estimating the PS parameters β0 within the generalized
method of moments framework where, for a finite vector of user-chosen functions f pXq (e.g. f pXq “ X),

E
„ˆ

D

p pX;β0q
´

1 ´D

1 ´ p pX;β0q

˙

f pXq

ȷ

“ 0. (2.2)

Graham et al. (2012), on the other hand, propose estimating β0 as the solution to a globally concave
programming problem such that

E
„ˆ

D

p pX;β0q
´ 1

˙

X

ȷ

“ 0.

Note that both procedures rely on choosing a finite number of functions f pXq, though there is little to no
theoretical guidance on how to choose such functions.
While estimators that balance low-order moments of covariates usually enjoy more attractive finite

sample properties than those based on theML paradigm, it is important to emphasize that the aforementioned
proposals do not fully exploit the covariate balancing property characterized in Lemma 2.1. Furthermore, as
emphasized by Dominguez and Lobato (2004), the global identification condition for β0 can fail when one
adopts the generalized method of moment approach that only attempts to balance finitely many covariate
moments. In these cases, one must be careful justifying inference procedures as classical tools such as Taylor
expansions are harder to justify.
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In this paper we aim to estimate the PS parametersβ0 by taking advantage of all the information contained
in the covariate balancing property in Lemma 2.1. As so, our procedure guarantees that the unknown PS
parameters are globally identified.

2.2 The integrated propensity score

In this section, we discuss how we operationalize our proposal. The crucial step is to express the infinite
number of covariate balancing conditions (2.1) in terms of a more tractable set of moment restrictions, and
then characterize β0 as the unique minimizer of a (population) minimum distance function. We then exploit
this characterization, and use the analogy principle to suggest natural estimators for β0. In what follows, we
present a step-by-step description of how we achieve this.
First, note that by using the definition of conditional expectation, (2.1) can be expressed as

E rh pD,X;β0q|Xs “ 0 a.s., (2.3)

where h pD,X;βq “ ph1 pD,X;βq , h0 pD,X;βqq
1, hd pD,X;βq “ ϖps

d pD,X;βq ´ 1, d P t0, 1u, and

ϖps
1 pD,X;βq “

D

p pX;βq

N

E
„

D

p pX;βq

ȷ

, ϖps
0 pD,X;βq “

1 ´D

1 ´ p pX;βq

N

E
„

1 ´D

1 ´ p pX;βq

ȷ

.

That is, one can express the covariate balancing conditions (2.1) in terms of stabilized conditional moment
restrictions.
Next, by exploiting the “integrated conditional moment approach” commonly adopted in the specification

testing literature (González-Manteiga and Crujeiras, 2013 contains a comprehensive review), one can express
(2.3) as an infinite number of unconditional covariate balancing restrictions. That is, by appropriately
choosing a parametric family of functionsW “ twpX;uq : u P Πu, one can equivalently characterize (2.1)
as

E rh pD,X;β0qwpX;uqs “ 0 a.e in u P Π, (2.4)

see, e.g., Lemma 1 of Escanciano (2006b) for primitive conditions on the familyW such that the equivalence
between (2.3) and (2.4) holds. Choices of weight w satisfying this equivalence include paq wpX;uq “

1 tX ď uu, where u P r´8,8s
k,X ď u is understood coordinate-wise (see, e.g., Stute, 1997, Dominguez

and Lobato, 2004, 2015), pbq wpX;uq “ exppiu1Φ pXq q, where u P Rk, Φ p¨q is a vector of bounded one-
to-one maps from Rk to Rk and i “

?
´1 is the imaginary unit (see, e.g., Bierens, 1982, Bierens and Wang,

2012 and Escanciano, 2018), and pcq wpX;uq “ 1 tγ 1X ď uu, where u “ pγ, uq P Sk ˆ r´8,8s, Sk “
␣

γ P Rk : }γ} “ 1
(

, and }γ} is the Euclidean norm of real-valued vector γ (see, e.g., Escanciano, 2006a).
We call (2.4) the “integrated covariate balancing condition” because it uses the integrated (cumulative)
measure of covariate balancing.
Finally, let

Qw pβq “

ż

Π
}Hwpβ,uq}

2 Ψpduq, β P Θ Ă Rk, (2.5)

where Hwpβ,uq “ E rh pD,X;βqwpX;uqs, }A}
2

“ AcA, Ac denotes the conjugate transpose of the
column vector A, and Ψpuq is an integrating probability measure that is absolutely continuous with respect
to a dominating measure on Π.
With these results in hand, in the following lemma we show that
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β0 “ argmin
βPΘ

Qw pβq , (2.6)

and β0 is the unique value such that the covariate balancing condition (2.1) is satisfied.

Lemma 2.2 Let Θ Ă Rk be the parameter space, and assume that (2.1) is satisfied for a unique β0 P Θ.
Then Qwpβq ě 0, @β P Θ, and Qwpβ0q “ 0 if and only if the covariate balancing condition (2.1) holds.

Lemma 2.2 is a global identification result that characterizes β0 as the unique minimizer of a population
minimumdistance function,Qwpβq. That is, fromLemma 2.2we have thatβ0 is the unique PS parameter that
minimizes the imbalances of all measurable and integrable functions f pXq between the treated, untreated and
the combined group. Here, it is worth mentioning that neither Graham et al. (2012) nor Imai and Ratkovic
(2014) covariate balancing approach guarantee global identification of the propensity score parameters.
Instead, they directly assume that the vector of user-selected balancing conditions uniquely identify the
propensity score parameters; see, e.g., Assumption 2.1 (i) of Graham et al. (2012). In practice, however, it is
hard if not impossible to verify if such condition indeed holds. In cases it does not hold, inference procedures
that rely on their proposed propensity score estimator, in general, will not be valid; see, e.g., Dominguez and
Lobato (2004). Lemma 2.2 shows that our propose IPS procedure avoids this important drawback.
Another implication of Lemma 2.2 is that it suggests a natural estimator for β0 based on the sample

analogue of (2.6), namely,
pβ
ips

n,w “ argmin
βPΘ

Qn,wpβq, (2.7)

where Qn,wpβq “
ş

Π }Hn,wpβ,uq}
2 Ψnpduq, Ψn is a uniformly consistent estimator of Ψ, Hn,wpβ,uq “

En rhn pD,X;βqwpX;uqs, with hn pD,X;βq “ phn,1 pD,X;βq , hn,0 pD,X; βqq
1, hn,d pD,X;βq “

ϖps
n,d pD,X;βq ´ 1, d P t0, 1u, and

ϖps
n,1 pD,X;βq “

D

p pX;βq

N

En

„

D

p pX;βq

ȷ

, (2.8)

ϖps
n,0 pD,X;βq “

1 ´D

1 ´ p pX;βq

N

En

„

1 ´D

1 ´ p pX;βq

ȷ

. (2.9)

We call pβ
ips

n,w the integrated propensity score estimator of β0.
From (2.7), one can conclude that different PS estimators that fully exploit the covariate balancing

property (2.1) can be constructed by choosing different w andΨn. In this article, we focus on three different
combinations that are intuitive and computationally simple:

piq wpX;uq “ 1 tX ď uu andΨnpuq “ Fn,Xpuq ” n´1
řn

i“1 1 tXi ď uu, leading to the IPS estimator

pβ
ips

n,ind “ argmin
βPΘ

ż

r´8,8s
k

}En rhn pD,X;βq 1 tX ď uus}
2 Fn,Xpduq; (2.10)

piiq wpX;uq “ 1 tγ 1X ď uu with Ψnpuq the product measure of Fn,γ puq ” n´1
řn

i“1 1 tγ 1Xi ď uu

and the uniform distribution on Sk, leading to the IPS estimator

pβ
ips

n,proj “ argmin
βPΘ

ż

r´8,8sˆSk

›

›En

“

hn pD,X;βq 1
␣

γ 1X ď u
(‰›

›

2
Fn,γpduqdγ ; (2.11)

piiiq wpX;uq “ exppiu1Φ pXq q with Ψnpuq ” Ψpuq, the CDF of k-variate standard normal distribution,
Φ pXq “

´

Φ
´

rX1

¯

, . . . ,Φ
´

rXk

¯¯1

, ĂXp the studentizedXp, andΦ the univariate CDF of the standard
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normal distribution, leading to the IPS estimator

pβ
ips

n,exp “ argmin
βPΘ

ż

Rk

›

›En

“

hn pD,X;βq exppiu1Φ pXq q
‰
›

›

2 exp
`

´1
2u

1u
˘

p2πq
k{2

du. (2.12)

The estimators (2.10)-(2.12) build on Dominguez and Lobato (2004), Escanciano (2006a), and Escan-
ciano (2018), respectively. Despite the apparent differences, they all aim to minimize covariate distribution
imbalances: (2.10) aims to directlyminimize imbalances of the joint distribution of covariates; (2.11) exploits
the Cramér-Wold theorem and focuses on minimizing imbalances of the distribution of all one-dimensional
projections of covariates; and (2.12) focuses on minimizing imbalances of the (transformed) covariates’
joint characteristic function. From the Cramér-Wold theorem and the fact that the characteristic function
completely defines the distribution function (and vice-versa), (2.10 )-(2.12) are indeed intrinsically related.
Furthermore, we emphasize that neither w nor Ψn plays the role of a bandwidth as they do not affect the
convergence rate of the IPS estimator.
From the computational perspective, (2.10)-(2.12) are easy to estimate because they do not involve

matrix inversion nor nonparametric estimation. In the Supplementary Appendix S3, we show that the (real-
valued) objective functions in (2.10)-(2.12) can be written in closed form, which, in turn, implies a more
straightforward implementation. In practice, the IPS is easy to use as it is implemented in the new package
IPS for R, available at https://github.com/pedrohcgs/IPS.

Remark 2.1 It is important to stress that the covariate balancing property (2.1 ) follows directly from the
definition of the PS and does not depend on the unconfoundedness assumption 1. Thus, one can use our
proposed IPS estimators even in contexts where Assumption 1 does not hold, though, in such cases, the
resulting (second step) estimators may be only descriptive, see, e.g., DiNardo, Fortin and Lemieux (1996),
and Kline (2011). In addition, as we discuss in Section 4, the same principle can be used to balance the
covariate distributions among the treated and non-treated complier subpopulations.

Remark 2.2 It is interesting to compare (2.2) with (2.4 ) beyond the fact that (2.4) is based on infinitely
many balancing conditions whereas (2.2) is not. First, note that (2.4) is based on normalized (or stabilized)
weights whereas (2.2) is not. We prefer to use stabilized weights as treatment effect estimators based on them
usually have improved finite sample properties (see, e.g., Millimet and Tchernis, 2009 and Busso, Dinardo
and McCrary, 2014). Second, note that (2.4) implies a three-way balance (treated, untreated and combined
groups), whereas (2.2) only imposes a two-way balance (treated and untreated). We note that (2.2) can lead
to relatively smaller/larger PS estimates as a “close to zero” PS estimate in the treated group can be offset by
a “close to one” PS estimate in the untreated group. By using (2.4), such a potential drawback is avoided.

3 Large sample properties

In this section, we first derive the asymptotic properties of the IPS estimators, namely the consistency,
asymptotic linear representation, and asymptotic normality of pβ

ips

n,w . We then discuss how one can build
on these results to conduct asymptotically valid inference for overall average, distributional and quantile
treatment effects, using inverse probability weighted estimators. Although our proposal can also be used to
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estimate other treatment effects of interest such as those discussed in Firpo and Pinto (2016), we omit such
a discussion for the sake of brevity.

3.1 Asymptotic theory for IPS estimator

Here we derive the asymptotic properties of the IPS estimator. Let the score of Hwpβ,uq be defined
as 9Hwpβ,uq “

´

9H
1

1,wpβ,uq, 9H
1

0,wpβ,uq

¯1

, a 2 ˆ k matrix, where, for d P t0, 1u , 9Hd,wpβ,uq “

E
”

9hd pD,X;βqwpX;uq

ı

, with 9h1 and 9h0 being the 1 ˆ k vectors defined as

9h1 pD,X;βq “ ´
ϖps

1 pD,X;βq

p pX;βq
9p pX;βq

1
`ϖps

1 pD,X;βq ¨ E
„

ϖps
1 pD,X;βq

p pX;βq
9p pX;βq

1

ȷ

,

9h0 pD,X;βq “
ϖps

0 pD,X;βq

1 ´ p pX;βq
9p pX;βq

1
´ϖps

0 pD,X;βq ¨ E
„

ϖps
0 pD,X;βq

1 ´ p pX;βq
9p pX;βq

1

ȷ

,

and 9p p¨;βq “ Bp p¨;bq{ Bb|b“β , the k ˆ 1 vector of scores of the PS model p p¨;βq. We make the following
set of assumptions.

Assumption 2 piq p pxq “ p px;β0q, where β0 is an interior point of a compact set Θ Ă Rk; piiq for some
δ ą 0, δ ď p px;βq ď 1 ´ δ for all x P X , β P int pΘq; piiiq with probability one, p pX;βq is continuous
at each β P Θ; pivq with probability one, p pX;βq is continuously differentiable in a neighborhood of β0,
Θ0 Ă Θ; pvq for d P t0, 1u

E

«

sup
βPΘ0

›

›

›

›

ˆ

ϖps
d pD,X;βq

d ¨ p pX;βq ` p1 ´ dq ¨ p1 ´ p pX;βqq

˙

¨ 9p pX;βq

›

›

›

›

ff

ă 8.

Assumption 3 The family of weighting functions and integrating probability measures satisfy one of the
following:

piqWind”

!

x P X ÞÑ 1 tx ď uu : u P r´8,8s
k
)

, Ψnpuq “ Fn,Xpuq, and Ψpuq “ FXpuq, where
Fn,Xpuq ” n´1

řn
i“1 1 tXi ď uu, and FXpuq ” E r1 tX ď uus ;

piiqWproj” tx P X ÞÑ 1 tγ 1x ď uu : pγ, uq P Sk ˆ r´8,8su, Ψn puq “ Fn,γ puq ˆ Υ, and Ψ puq “

Fγ puq ˆ Υ, where Sk ”
␣

γ P Rk : }γ} “ 1
(

, Fn,γ puq ” n´1
řn

i“1 1 tγ 1Xi ď uu, Fγ puq ”

E r1 tγ 1X ď uus and Υ is the uniform distribution on Sk;
piiiqWexp” tx P X ÞÑ exppiu1Φ pxq q : u P Πu, and Ψnpuq “ Ψpuq, where Π is any compact, convex

subset Rk with a non-empty interior, and Ψpuq is the CDF of k-variate standard normal distribution.

Assumption 2 is standard in the literature, see, e.g., Theorems 2.6 and 3.4 of Newey and McFadden
(1994), Example 5.40 of van der Vaart (1998), and Graham et al. (2012). Assumption 2piq states that the
true PS is known up to finite dimensional parameters β0, that is, we are in a parametric setup. Assumption
2piiq imposes that the parametric PS is bounded from above and from below. This assumption can be
relaxed by assuming that pD{p pX;βq , p1 ´Dq { p1 ´ p pX;βqqq

1
ď b pXq such that E

”

}b pXq}
2
ı

ă 8.
Assumptions 2piiiq-pivq impose additional smoothness conditions on the PS, whereas Assumption 2pvq

(together with Assumption 3) implies that, in a small neighborhood of β0 and for all u P Π, the score
9Hwpβ,uq is uniformly bounded by an integrable function.

10



Assumption 3 restricts our attention to the IPS estimators (2.10)-(2.12). As mentioned before, we focus
on such estimators because of their computational simplicity and transparency. Nonetheless, other types
of IPS estimators can also be formed, provided that the weighting function w and integrating measure Ψn

satisfy some high-level regularity conditions.
The next theorem characterizes the asymptotic properties of the IPS estimators pβ

ips

n,w. Define the k ˆ k

(real-valued) matrix
Cw,Ψ “

ż

Π

´

9Hwpβ0,uqc 9Hwpβ0,uq ` 9Hwpβ0,uq1
´

9Hwpβ0,uq1
¯c¯

Ψpduq,

and the k ˆ 1 (real-valued) vector

lw,Ψ pD,X;β0q “ ´C´1
w,Ψ ¨

ż

Π

´

9Hwpβ0,uqc wpX;uq ` 9Hwpβ0,uq1wpX;uqc
¯

Ψpduq¨h pD,X;β0q .

Theorem 3.1 Under Assumptions 2 - 3, as n Ñ 8,
pβ
ips

n,w ´ β0 “ op p1q .

Furthermore, provided that the matrix Cw,Ψ is positive definite,
?
n
´

pβ
ips

n,w ´ β0

¯

“
1

?
n

n
ÿ

i“1

lw,Ψ pDi,Xi;β0q ` op p1q , (3.1)

and
?
n
´

pβ
ips

n,w ´ β0

¯

d
Ñ N

´

0,Ωips
w,Ψ

¯

,

where Ωips
w,Ψ ” E

“

lw,Ψ pD,X;β0q lw,Ψ pD,X;β0q
1
‰

.

From Theorem 3.1, we conclude that the proposed IPS estimator is consistent, admits an asymptotic
linear representation with influence function lw,Ψ pD,X;β0q, and converges to a normal distribution. The
asymptotic linear representation (3.1) plays a major role in establishing the asymptotic properties of causal
parameters such as average, distributional, and quantile treatment effects; see Section 3.2.

Remark 3.1 Although the results in Theorem 3.1 focus on the case where the propensity score is correctly
specified, it is not difficult to show that the IPS estimators are still consistent when the model is locally
misspecified, i.e., when E rh pD,X;β0q|Xs “ n´1{2 ¨ s pXq a.s., for some integrable function s pXq. In
this case,

?
n
´

pβ
ips

n,w ´ β0

¯

would still be asymptotically normal, with a mean given by

´C´1
w,Ψ ¨

ż

Π

´

9Hwpβ0,uqc Sw puq ` 9H
1

wpβ0,uq
`

Sw puq
1
˘c
¯

Ψpduq,

where Sw puq “ E rs pXqwpX;uqs, and variance given byΩips
w,Ψ; see, e.g., Remark 1 in Escanciano (2006a),

and Propositions 3 and 4 in Dominguez and Lobato (2015). Based on these results, one can compute the
local bias of IPW estimators for different causal parameters. We omit such derivations for the sake of brevity.

3.2 Estimating treatment effects under unconfoundedness

In this section, we illustrate how one can estimate and make asymptotically valid inference about average,
distributional, and quantile treatment effects under the unconfoundedness assumption 1 using IPW estimators
based on the IPS estimator pβ

ips

n,w.
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Based on the discussion in Section 2.1, the IPW estimators for ATE, DTE and QTE are respectively:
zATE

ips

n “ En

”´

ϖps
n,1

´

D,X; pβ
ips

n,w

¯

´ϖps
n,0

´

D,X; pβ
ips

n,w

¯¯

Y
ı

, (3.2)

{DTE
ips

n pyq “ En

”´

ϖps
n,1

´

D,X; pβ
ips

n,w

¯

´ϖps
n,0

´

D,X; pβ
ips

n,w

¯¯

1 tY ď yu

ı

, (3.3)

zQTE
ips

n pτq “ pqipsn,Y p1q
pτq ´ pqipsn,Y p0q

pτq , (3.4)

where, for d P t0, 1u,

pqipsn,Y pdq
“ argmin

qPR
En

”

ϖps
n,d

´

D,X; pβ
ips

n,w

¯

¨ ρτ pY ´ qq

ı

,

with ρτ paq “ a ¨ pτ ´ 1 ta ď 0uq the check function as in Koenker and Bassett (1978), and the weightsϖps
n,1

and ϖps
n,0 are as in (2.8) and (2.9).

To derive the asymptotic properties of (3.2)-(3.4), we need to make an additional assumption about the
underlying distributions of the potential outcomes Y p1q and Y p0q.

Assumption 4 For d P t0, 1u, piqE
”

Y pdq
2
ı

ă M for some 0 ă M ă 8, piiq

E

«

sup
βPΘ0

›

›

›

›

ϖps
d pD,X;βq pY pdq ´ ErY pdqsq

d ¨ p pX;βq ` p1 ´ dq p1 ´ p pX;βqq
¨ 9p pX;βq

›

›

›

›

ff

ă 8,

and piiiq for some ε ą 0, 0 ă a1 ă a2 ă 1, FY pdq is continuously differentiable on
“

qY pdq pa1q ´ ε, qY pdq pa2q ` ε
‰

.

Assumption 4piq requires potential outcomes to be square-integrable, whereas Assumption 4piiq is a
mild regularity condition which guarantees that, in a small neighborhood of β0, the score of the IPW
estimator for the ATE is bounded by an integrable function. Assumption 4piiiq requires potential outcomes
to be continuously distributed and only plays a role in the analysis of quantile treatment effects. In principle,
Assumption 4piiiq can be relaxed at the cost of usingmore complex arguments, seeChernozhukov, Fernández-
Val, Melly and Wüthrich (2019) for details.
Before stating the results as a theorem, let us define some important quantities. Let

ψate
w,Ψ pY,D,Xq “ gate pY,D,Xq ´ lw,Ψ pD,X;β0q

1
¨ Gate

β , (3.5)

ψdte
w,Ψ pY,D,X; yq “ gdte pY,D,X; yq ´ lw,Ψ pD,X;β0q

1
¨ Gdte

β pyq , (3.6)

ψqte
w,Ψ pY,D,X; τq “ ´

´

gqte pY,D,X; τq ´ lw,Ψ pD,X;β0q
1
¨ Gqte

β pτq

¯

(3.7)

where, for j P tate, dte, qteu, gj pY,D,Xq “ gj1 pY,D,Xq ´ gj0 pY,D,Xq, with

gated pY,D,Xq “ ϖps
d pD,X;β0q ¨ pY ´ E rY pdqsq ,

gdted pY,D,X; yq “ ϖps
d pD,X;β0q ¨

`

1 tY ď yu ´ FY pdq pyq
˘

,

gqted pY,D,X; τq “
ϖps

d pD,X;β0q ¨
`

1
␣

Y ď qY pdq pτq
(

´ τ
˘

fY pdq

`

qY pdq pτq
˘ ,

and

Gate
β “ E

„ˆ

gate1 pY,D,Xq

p pX;β0q
`
gate0 pY,D,Xq

1 ´ p pX;β0q

˙

¨ 9p pX;β0q

ȷ

,

Gdte
β pyq “ E

„ˆ

gdte1 pY,D,X; yq

p pX;β0q
`
gdte0 pY,D,X; yq

1 ´ p pX;β0q

˙

¨ 9p pX;β0q

ȷ

,
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Gqte
β pτq “ E

«˜

gqte1 pY,D,X; τq

p pX;β0q
`
gqte0 pY,D,X; τq

1 ´ p pX;β0q

¸

¨ 9p pX;β0q

ff

.

The functions gate, gdte and gqte would be the influence functions of the ATE, DTE and QTE es-
timators, respectively, if the PS parameters β0 were known. With some abuse of notation, denote
Ωate
w,Ψ “ E

”

ψate
w,Ψ pY,D,Xq

2
ı

, Ωdte
w,Ψ,y “ E

”

ψdte
w,Ψ pY,D,X; yq

2
ı

, and Ωqte
w,Ψ,τ “ E

”

ψqte
w,Ψ pY,D,X; τq

2
ı

.

Theorem 3.2 Under Assumptions 1 - 4, for each y P R, τ P rε, 1 ´ εs, we have that, as n Ñ 8,
?
n
´

zATE
ips

n ´ATE
¯

d
Ñ N

`

0,Ωate
w,Ψ

˘

,

?
n
´

{DTE
ips

n ´DTE
¯

pyq
d

Ñ N
´

0,Ωdte
w,Ψ,y

¯

,

?
n
´

zQTE
ips

n ´QTE
¯

pτq
d

Ñ N
´

0,Ωqte
w,Ψ,τ

¯

.

Theorem 3.2 indicates that one can use our proposed IPS estimator to estimate a variety of causal
parameters that are able to highlight treatment effect heterogeneity2. Furthermore, Theorem 3.2 also suggests
that to conduct asymptotically valid inference for these causal parameters, one simply needs to estimate the
asymptotic variance Ωate

w,Ψ, Ωdte
w,Ψ,y, and Ω

qte
w,Ψ,τ . Under additional smoothness conditions (for instance, the

PS being twice continuously differentiable with bounded second derivatives), one can show that their sample
analogues are consistent using standard arguments. We omit the details for the sake of brevity.

Remark 3.2 In Supplementary Appendix S8, we show that results analogous to Theorem 3.2 also hold for
the average, distributional and quantile treatment effect on the treated. These treatment effects parameters
can have higher policy relevancy in setups where the policy intervention is directed at individuals with
certain characteristics, e.g., when a clinical treatment is directed to units with a specific symptoms; see e.g.,
Heckman, Ichimura and Todd (1997).

4 The IPS when treatment is endogenous

In many important applications, the assumption that treatment adoption is exogenous may be too restrictive.
For instance, when individuals do not comply with their treatment assignment, or more generally when they
sort into treatment based on expected gains, Assumption 1 is likely to be violated. Imbens and Angrist (1994)
and Angrist, Imbens and Rubin (1996) point out that when this is the case and a binary instrument (Zq for the
selection into treatment is available, one can only nonparametrically identify treatment effect measures for
the subpopulation of compliers, that is, individuals who comply with their actual assignment of treatment,
and would have complied with the alternative assignment. As shown by Abadie (2003), Frölich (2007),
and Frölich and Melly (2013), the instrument propensity score q pXq ” PpZ “ 1|Xq plays a prominent
role in this local treatment effect (LTE) setup. In this section, we show that one can use the IPS approach

2 Although the results stated in Theorem 3.2 for distribution and quantile treatment effects are pointwise, in Appendix S6 we prove
their uniform counterparts using empirical process techniques. We omit the details in the main text only to avoid additional
cumbersome notation. We refer interested readers to the proof of Theorem 3.2 in Appendix S6 for additional details.
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to estimate the instrument propensity score q pXq, by maximizing covariate distribution balancing among
different instrument-by-treatment subgroups.
Before providing the details about how we apply the IPS approach to estimate q pXq under the LTE

setup, we introduce a brief description of the LTE setup. Let Z be a binary instrumental variable Z for the
treatment assignment. Denote D p0q and D p1q the value that D would have taken if Z is equal to zero or
one, respectively. The realized treatment isD “ ZD p1q ` p1 ´ ZqD p0q. Thus, the observed sample in the

LTE setup consists of independent and identically distributed copies
"

´

Yi, Di, Zi,X
1

i

¯1
*n

i“1

. To identify

the average, distributional and quantile treatment effects for the compliers, we follow Abadie (2003) and
make the following assumption.

Assumption 5 (i) pY p0q , Y p1q , D p0q , D p1qq KK Z|X; (ii) for some ε ą 0, ε ď q pXq ď 1 ´ ε a.s. and
P pD p1q “ 1|Xq ą P pD p0q “ 1|Xq a.s.; and (iii) P pD p1q ě D p0q |Xq “ 1 a.s..

Assumption 5(i) imposes that, oncewe condition onX,Z is “as good as randomly assigned”. Assumption
5(ii) imposes a common support condition, and guarantees that, conditional onX, Z is a relevant instrument
for D. Finally, Assumption 5(iii) is a monotonicity condition that rules out the existence of defiers.
From Abadie (2003) and Frölich and Melly (2013), we have that under Assumption 5, the average,

distributional and quantile treatment effects for compliers are nonparametrically identified, i.e.,

LATE ” E rY p1q ´ Y p0q |Cs “ E
”

ϖlte
1 pD,Z,X;qq ¨ Y

ı

´ E
”

ϖlte
0 pD,Z,X;qq ¨ Y

ı

,

LDTE pyq ” P pY p1q ď y|Cq ´ P pY p0q ď y|Cq “ Fϖlte
1 ¨Y pyq ´ Fϖlte

0 ¨Y pyq ,

LQTE pτq ” qY p1q|C pτq ´ qY p0q|C pτq “ F´1
ϖlte

1 ¨Y
pτq ´ F´1

ϖlte
0 ¨Y

pτq ,

where C denotes the complier subpopulation, and, for d P t0, 1u,

ϖlte
d pD,Z,X;qq “

1 tD “ du

κd pqq

ˆ

Z

q pXq
´

p1 ´ Zq

1 ´ q pXq

˙

, (4.1)

Fϖlte
d ¨Y pyq “ E

”

ϖlte
d pD,Z,X;qq ¨ 1 tY ď yu

ı

, (4.2)

and
κd pqq ” E

„

1 tD “ duZ

q pXq
´

1 tD “ du p1 ´ Zq

1´q pXq

ȷ

,

and F´1
ϖlte

d ¨Y
pτq “ inf

!

y : Fϖlte
d ¨Y pyq ě τ

)

. From the above results, it is clear that the instrument PS
plays a prominent role in the LTE setup, and that once we have an estimator for q available, it is relatively
straightforward to construct estimators for the LATE, LDTE, and LQTE.
To estimate the instrument PS qp¨q, we adopt a parametric approach, i.e., we assume that q pXq “

q
`

X;βlte
0

˘

, where q is known up to the finite-dimensional parameters βlte
0 . Here, as we are interested in

treatment effects for the (latent) subpopulation of compliers, we will attempt to estimate βlte
0 by maximizing

the covariate distribution balance among compliers. To do so, we build on Theorem 3.1 of Abadie (2003),
which establishes that, for every measurable and integrable function f pXq of the covariatesX,

E
”

ϖlte
1

´

D,Z,X;βlte
0

¯

¨ f pXq

ı

“ E
”

ϖlte
´

D,Z,X;βlte
0

¯

¨ f pXq

ı

,

E
”

ϖlte
0

´

D,Z,X;βlte
0

¯

¨ f pXq

ı

“ E
”

ϖlte
´

D,Z,X;βlte
0

¯

¨ f pXq

ı

, (4.3)
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where ϖlte
d

`

D,Z,X;βlte
0

˘

is defined as in (4.1) but with βlte
0 playing the role of q, as we assume that q is a

parametric model, and

ϖlte pD,Z,X;βq “
1

κ pβq

ˆ

1 ´
p1 ´DqZ

q pX;βq
´

D p1 ´ Zq

1 ´ q pX;βq

˙

,

with

κ pβq ” E
„

1 ´
p1 ´DqZ

q pX;βq
´

D p1 ´ Zq

1 ´ q pX;βq

ȷ

.

As noted in Theorem 3.1 of Abadie (2003), under Assumption 5, E
“

ϖlte
`

D,Z,X;βlte
0

˘

¨ f pXq
‰

“

E rf pXq |Cs, implying that (4.3) are indeed balancing conditions for the complier subpopulation.
Next and analogously to the discussion in Section 2.2, we rewrite (4.3) as

Hlte
w pβlte

0 ,uq “ 0 a.e in u P Π, (4.4)

where Hlte
w pβ,uq “ E

“

hlte pD,Z,X;βqwpX;uq
‰

, with hlte pD,Z,X;βq “ phlte1 pD,Z,X;βq,
hlte0 pD,Z,X;βqq1, and, for d P t0, 1u , hlted pD,Z,X;βq “ ϖlte

d pD,Z,X;βq ´ϖlte pD,Z,X;βq.
Based on (4.4), we then show in Lemma S7.1 in the Supplementary Appendix that βlte

0 is glob-
ally identified, i.e., βlte

0 is the unique minimizer of the population minimum distance criteria Qlte
w pβq “

ş

Π

›

›Hlte
w pβ,uq

›

›

2
Ψpduq. Thus, like in the case where treatment is exogenous, we can fully exploit the

balancing conditions (4.3) and estimate βlte
0 by

pβ
lips

n,w “ argmin
βPΘ

ż

Π

›

›

›
Hlte

n,wpβ,uq

›

›

›

2
Ψnpduq, (4.5)

where Ψn is a uniformly consistent estimator of Ψ, Hlte
n,wpβ,uq “ En

“

hlte
n pD,Z,X;βqwpX;uq

‰

,
hlte
n pD,Z,X;βq “ phlten,1 pD,Z,X;βq, hlten,0 pD,Z,X;βqq1, hlten,d pD,Z,X;βq “ ϖlte

n,d pD,Z,X;βq ´

ϖlte
n pD,Z,X;βq, and

ϖlte
n,d pD,Z,X;βq “

1 tD “ du

κn,d pβq

ˆ

Z

q pX;βq
´

p1 ´ Zq

1 ´ q pX;βq

˙

κn,d pβq “ En

„

1 tD “ du

ˆ

Z

q pX;βq
´

1 ´ Z

1´q pX;βq

˙ȷ

ϖlte
n pD,Z,X;βq “

1

κn pβq

ˆ

1 ´
p1 ´DqZ

q pX;βq
´

D p1 ´ Zq

1 ´ q pX;βq

˙

, (4.6)

κn pβq “ En

„

1 ´
p1 ´DqZ

q pX;βq
´

D p1 ´ Zq

1 ´ q pX;βq

ȷ

.

As before, we focus our attention on the three weighting functions described in Assumption 3. We call (4.5)
the local integrated propensity score (LIPS) estimator.
In what follows, we derive the asymptotic properties of the instrument IPS estimator pβ

lips

n,w. Let the score

ofHlte
w pβ,uq be defined as 9Hlte

w pβ,uq “

´

9Hlte1

1,wpβ,uq, 9Hlte1

0,wpβ,uq

¯1

where, for d P t0, 1u, 9Hlte
d,wpβ,uq “

E
”

9h
lte

d pD,Z,X;βqwpX;uq

ı

,

9hlte
d pD,Z,X;βq “ 9ϖlte

d pD,Z,X;βq ´ 9ϖlte
pD,Z,X;βq ,

with

9ϖlte
d pD,Z,X;βq “ ´

1 tD “ du

κd pβq

ˆ

Z

q pX;βq
2 `

p1 ´ Zq

p1 ´ q pX;βqq
2

˙

¨ 9q pX;βq
1
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`ϖlte
d pD,Z,X;βq ¨ E

„

1 tD “ du

κd pβq

ˆ

Z

q pX;βq
2 `

p1 ´ Zq

p1 ´ q pX;βqq
2

˙

¨ 9q pX;βq
1

ȷ

,

and

9ϖlte
pD,Z,X;βq “ ´

1

κ pβq

ˆ

D p1 ´ Zq

p1 ´ q pX;βqq
2 ´

p1 ´DqZ

q pX;βq
2

˙

¨ 9q pX;βq
1

`ϖlte pD,Z,X;βq ¨ E
„

1

κ pβq

ˆ

D p1 ´ Zq

p1 ´ q pX;βqq
2 ´

p1 ´DqZ

q pX;βq
2

˙

¨ 9q pX;βq
1

ȷ

,

and 9q p¨;βq “ Bq p¨;bq{ Bb|b“β. We make the following set of assumptions, which are the analogue of
Assumption 2.

Assumption 6 piq q pxq “ q
`

x;βlte
0

˘

, whereβlte
0 is an interior point of a compact setΘ Ă Rk; piiq for some

δ ą 0, δ ď q px;βq ď 1 ´ δ for all x P X , β P int pΘq; piiiq with probability one, q pX;βq is continuous
at each β P Θ; pivq with probability one, q pX;βq is continuously differentiable in a neighborhood of βlte

0 ,
Θlte

0 Ă Θ ; pvq for d P t0, 1u

E

«

sup
βPΘlte

0

›

›

›

›

1 tD “ du

ˆ

Z

q pX;βq
2 `

p1 ´ Zq

p1 ´ q pX;βqq
2

˙

¨ 9q pX;βq

›

›

›

›

ff

ă 8.

The next theorem characterizes the asymptotic properties of the instrument IPS estimators pβ
lips

n,w. Define
the k ˆ k (real-valued) matrix

C lte
w,Ψ “

ż

Π

´

9Hlte
w pβlte

0 ,uqc 9Hlte
w pβlte

0 ,uq ` 9Hlte
w pβlte

0 ,uq1
´

9Hlte
w pβlte

0 ,uq1
¯c¯

Ψpduq,

and the k ˆ 1 (real-valued) vector

lltew,Ψ

´

D,Z,X;βlte
0

¯

“ ´

´

C lte
w,Ψ

¯´1
¨

ż

Π

´

9H
lte
w pβlte

0 ,uqc wpX;uq ` 9Hlte
w pβlte

0 ,uq1wpX;uqc
¯

Ψpduq

¨ hlte
´

D,Z,X;βlte
0

¯

. (4.7)

Theorem 4.1 Under Assumptions 3, 5, and 6, as n Ñ 8,
pβ
lips

n,w ´ βlte
0 “ op p1q .

Furthermore, provided that the matrix C lte
w,Ψ is positive definite,

?
n
´

pβ
lips

n,w ´ βlte
0

¯

“
1

?
n

n
ÿ

i“1

lltew,Ψ

´

Di, Zi,Xi;β
lte
0

¯

` op p1q ,

and
?
n
´

pβ
lips

n,w ´ βlte
0

¯

d
Ñ N

´

0,Ωlips
w,Ψ

¯

,

where Ωlips
w,Ψ ” E

”

lltew,Ψ

`

D,X;βlte
0

˘

lltew,Ψ

`

D,X;βlte
0

˘1
ı

.

With the results of Theorem 4.1 at hand, we can estimate the LATE, LDTE, and LQTE by using the
instrument IPS estimators:

{LATE
lips

n “ En

”´

ϖlte
n,1

´

D,Z,X; pβ
lips

n,w

¯

´ϖlte
n,0

´

D,Z,X; pβ
lips

n,w

¯¯

Y
ı

, (4.8)

{LDTE
lips

n pyq “ pF r
n,ϖlte

1 ¨Y
pyq ´ pF r

n,ϖlte
0 ¨Y

pyq , (4.9)

{LQTE
lips

n pτq “ pF r,´1

n,ϖlte
1 ¨Y

pτq ´ pF r,´1

n,ϖlte
0 ¨Y

pτq , (4.10)
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where, for d P t0, 1u, pF r
n,ϖlte

d ¨Y
p¨q denotes the rearrangement of pFn, ϖlte

d ¨Y p¨q,

pFn,ϖlte
d ¨Y p¨q “ En

”

ϖlte
n,d

´

D,Z,X; pβ
lips

n,w

¯

1 tY ď ¨u

ı

,

if pFn,ϖlte
d ¨Y is not monotone, see, e.g., Chernozhukov, Fernández-Val and Galichon (2010), and Wüthrich

(2019)3. Importantly, these rearrangements do not change the asymptotic properties of the estimators.
To derive the asymptotic properties of (4.8)-(4.10), we impose the following regularity conditions, which

are the analogue of Assumption 4.

Assumption 7 For d P t0, 1u, piqE
”

Y pdq
2

|C
ı

ă M for some 0 ă M ă 8, piiq

E

«

sup
βPΘlte

0

›

›

›

›

1 tD “ du pY pdq ´ ErY pdq| Csq

ˆ

Z

q pX;βq
2 `

p1 ´ Zq

p1 ´ q pX;βqq
2

˙

¨ 9q pX;βq

›

›

›

›

ff

ă 8,

and piiiq for some ε ą 0, 0 ă a1 ă a2 ă 1, FY pdq|C is continuously differentiable on
“

qY pdq|C pa1q ´ ε, qY pdq|C pa2q ` ε
‰

with strictly positive derivative fY pdq|C .

Theorem 4.2 Under Assumptions 3, 5 -7, for each y P R, τ P rε, 1 ´ εs, we have that, as n Ñ 8,
?
n
´

{LATE
lips

n ´ LATE
¯

d
Ñ N

´

0,Ωlate
w,Ψ

¯

,

?
n
´

{LDTE
lips

n ´ LDTE
¯

pyq
d

Ñ N
´

0,Ωldte
w,Ψ,y

¯

,

?
n
´

{LQTE
lips

n ´ LQTE
¯

pτq
d

Ñ N
´

0,Ωlqte
w,Ψ,τ

¯

,

where Ωlate
w,Ψ, Ωldte

w,Ψ,y and Ωlqte
w,Ψ,τ are defined in the proof of Theorem 4.2 in Appendix S7.

Remark 4.1 Although the results stated in Theorem 4.2 for local distribution and quantile treatment effects
are pointwise, in Appendix S7 we prove their uniform counterparts using empirical process techniques. We
omit the details in the main text only to avoid additional cumbersome notation. We refer interested readers
to the proof of Theorem 4.2 in Appendix S7 for additional details.

Remark 4.2 For brevity, we focused on the unconditional LATE, LDTE and LQTE causal parameters.
However, one can readily use the instrument IPS discussed in this section to estimate other conditional
treatment effect measures, such as the conditional local quantile treatment effects introduced by Abadie,
Angrist and Imbens (2002), and the local average response functions introduced by Abadie (2003). Given
the results in Theorem 4.1, establishing the asymptotic properties of these conditional treatment effect
measures is relatively straightforward.

Remark 4.3 We note that under Assumption 5, when one fixes fpXq “ X and subtracts the second equality
in (4.3) from the first equality in (4.3), one has that, after some straightforward manipulation,

E

«˜

Z

q
`

X;βlte
0

˘ ´
1 ´ Z

1 ´ q
`

X;βlte
0

˘

¸

X

ff

“ 0.

3 Lack of monotonicity may appear in finite samples because the weights wlte
n,d can be negative. This poses problems for the

inversion of the weighted cumulative distribution functions to obtain the quantile functions. On the other hand, under Assumption
5, the population weights wlte

d are non-negative, implying that these potential problems disappear, asymptotically. As discussed
in detail in Chernozhukov et al. (2010), we can bypass such challenges by monotonizing pFn, wlte

d
¨Y via rearrangements.
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Thus, by substituting D and p pX;β0q in (2.2) with Z and q
`

X;βlte
0

˘

, one can, in principle, use Imai
and Ratkovic (2014)’s covariate balancing propensity score procedure to estimate the instrument propensity
score. However (and analogous to the discussion in Section 2), such a procedure would only partly exploit
Theorem 3.1 of Abadie (2003), which is in contrast with our proposed LIPS procedure. As a consequence,
the LIPS estimation procedure can lead to estimators with improved finite-sample properties; we illustrate
this point via Monte Carlo simulations in the next section.

5 Monte Carlo simulations

We present two sets of Monte Carlo experiments to study the finite sample properties of our proposed
treatment effect estimators based on the IPS. In Section 5.1, we conduct simulations in a stylized design
largely based on Kang and Schafer (2007). In Section 5.2, we present a set of simulations that is calibrated to
our empirical application analyzing the effect of 401(k) retirement plans on asset accumulation. We consider
both unconfounded and endogenous treatment setups.
Under unconfoundedness, we compare the performance of different IPW estimators for the ATE and

the QTEpτq, τ P t0.10, 0.25, 0.5, 0.75, 0.9u, when one estimates the PS using our proposed IPS estimators
(2.10)-(2.12), the classical maximum likelihood (ML) approach, Imai and Ratkovic (2014)’s just-identified
covariate balancing propensity score (CBPS) as in (2.2) with f pXq “ X, and Imai and Ratkovic (2014)’s
over-identified CBPS (2.2) with f pXq “

`

X1, 9p pX;βq
1
˘1, i.e., on top of balancing the means, one also

makes use of the likelihood score equation. In all cases, we consider a logistic PS model. All treatment
effect estimators use stabilized weights (2.8) and (2.9).
When treatment take-up is endogenous and a binary instrument Z is available, we compare the perfor-

mance of different IPW estimators for the LATE and the LQTEpτq, τ P t0.10, 0.25, 0.5, 0.75, 0.9u, when one
estimates the instrument PS q p¨q using our proposed local IPS estimator (4.5) with exponential, indicator,
and projection-based weights, the classical ML approach, Imai and Ratkovic (2014)’s just-identified and
over-identified CBPS with Z playing the role ofD. In all cases, we consider a logistic instrument PS model.
For each design, we conduct 1, 000 Monte Carlo simulations. We compare various IPW estimators in

terms of average bias, root mean square error (RMSE), relative mean square error (relMSE), empirical 95%
coverage probability, the median length of a 95% confidence interval, and the asymptotic relative efficiency
(ARE)4. For the relative measures of performance, relMSE and ARE, we treat estimators based on the
over-identified CBPS as the benchmark. The confidence intervals are based on the normal approximations
in Theorems 3.2 and 4.2, with the asymptotic variances being estimated by their sample analogues — the
impact of the different estimation methods used is reflected on the adjustment term for the estimation effect,
i.e., the asymptotic linear representation of the different PS estimators. For the variance of QTE (LQTE)
estimators, we estimate the potential outcome densities using the Gaussian kernel coupled with Silverman’s
rule-of-thumb bandwidth—these are the default choices of the density function in the stats package in
R. We use the CBPS package in R to estimate both CBPS estimators. Due to space constraints, the tables

4 For any parameter η of a distribution F , and for estimators pη1 and pη2 approximately N pη, V1{nq and N pη, V2{nq, respectively,
the asymptotic relative efficiency of pη2 with respect to pη1 is given by V1{V2; see, e.g., Section 8.2 in van der Vaart (1998).
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containing all the results of the simulations are deferred to the Supplementary Appendices S1 and S2.

5.1 Stylized simulation

5.1.1 Unconfoundedness setup

Our stylized simulation design is largely based on Kang and Schafer (2007). LetX “ pX1, X2, X3, X4q
1 be

distributed as N p0, I4q, and I4 be the 4 ˆ 4 identity matrix. The true PS is given by

p pXq “
exp p´X1 ` 0.5X2 ´ 0.25X3 ´ 0.1X4q

1 ` exp p´X1 ` 0.5X2 ´ 0.25X3 ´ 0.1X4q
,

and the treatment statusD is generated asD “ 1 tp pXq ą Uu, whereU follows a uniform p0, 1q distribution.
The potential outcomes Y p1q and Y p0q are given by

Y p1q “ 210 `m pXq ` ε p1q , Y p0q “ 200 ´m pXq ` ε p0q ,

where m pXq “ 27.4X1 ` 13.7X2 ` 13.7X3 ` 13.7X4, ε p1q and ε p0q are independent N p0, 1q random
variables. The ATE and the QTEpτq are equal to 10, for all τ P p0, 1q.
We consider two different scenarios to assess the sensitivity of the proposed estimators not only under

correctly specified PS models but also under misspecified PS models that are “nearly correct”. In the first
experiment, we observed data on

´

Yi, Di,X
1

i

¯

, and, therefore, all IPW estimators are correctly specified.

In the second experiment, we observed data on
´

Yi, Di,W
1

i

¯

, where W “ pW1,W2,W3,W4q
1 with

W1 “ exp pX1{2q, W2 “ X2{ p1 ` exp pX1qq , W3 “ pX1X3{25 ` 0.6q
3, and W4 “ pX2 `X4 ` 20q

2.
In this second scenario, the IPW estimators for ATE and QTEpτq are misspecified. We consider sample size
n equal to 500 5. All available covariates (X orW) enter the PS model linearly.
Table S1.1 displays the simulation results for both scenarios. When the PS model is correctly specified,

all estimators perform well in terms of bias and coverage probability, i.e., all estimators are essentially
unbiased and their associated confidence intervals have correct coverage. Comparing ML-based with CBPS-
based estimators, we note that IPW estimators based on ML tend to have higher MSE, longer confidence
intervals, and lower ARE. Thus, it is clear that CBPS-based IPW estimators can improve upon those based
on ML. However, our simulation results under correct specification suggest that we can further improve the
performance of the CBPS estimator by fully exploiting the covariate balancing property of the propensity
score. For instance, the relative mean square error of the ATE estimators based on the IPS tends to be
at least 10% smaller than those based on the CBPS; one can also see improvements when focusing on
QTE, especially for τ ě 0.5. The gains in terms of ARE also tend to be large. For example, the ARE of
the ATE estimator based on the IPS with projection weight function with respect to the one based on the
over-identified CBPS is 1.26. This implies that the ATE estimator based on the over-identified CBPS would
require 1.26 ˆ n observations to perform equivalently to the ATE estimator based on IPS with projection
weight. IPS estimators based on the exponential weight also tend to dominate CBPS estimators in terms
of mean square errors and ARE. Finally, we note that IPW estimators based on the IPS with the indicator
function tend to give slightly larger confidence intervals than when using other IPS estimators, perhaps

5 Simulation results with n “ 200 and n “ 1000 are available in the Supplementary Appendix.
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because there are multiple covariates (four in our simulation design), implying that many 1 tXi ď uu are
equal to zero when u is evaluated at the sample observations. In practice, we recommend practitioners to
favor the other considered weighting functions.
When the PS model is misspecified, our Monte Carlo results suggest that the potential gains of using the

IPS can also be pronounced. In this scenario, we note that estimators based on ML tend to be substantially
biased, have relatively high RMSE, and inference tends to be misleading. These findings are in line with
the results in Kang and Schafer (2007). Overall, estimators based on just-identified CBPS improve on ML,
though under-coverage is still an unresolved issue. Estimators based on the over-identified CBPS tend to
have better coverage than those based on the just-identified CBPS, but under-coverage of QTEp0.75q and
QTEp0.90q is still severe, perhaps because of the large biases. Finally, in this DGP, our proposed IPS
estimators can further improve upon CBPS, though this is not always the case. In terms of RMSE, the gains
of adopting the IPS estimator compared to the over-identified CBPS are noticeable when one focus on ATE
and the QTE with τ ě 0.50. When one focus on QTEp0.10q or QTEp0.25q, though, the over-identified
CBPS estimators tends to dominate the IPS ones in term of RMSE. In terms of inference, we note that, in this
DGP, all considered treatment effect estimators based on IPS with the projection weighting function seems
to control size; all other estimators do not share this property in this misspecified DGP.
How can the IPS estimators improve the performance of MLE and CBPS-type estimators? To tackle this

question, we consider the following six measures of overall covariate distribution imbalances:

KSbalpβq “ sup
i:1,...,n

}DistImbpX˚
i ,βq}, RCvMbalpβq “

g

f

f

e

1

n

n
ÿ

i“1

DistImbpX˚
i ,βq2,

KSbal1pβq “ sup
i:1,...,n

}DistImb1pX˚
i ,βq}, RCvMbal1pβq “

g

f

f

e

1

n

n
ÿ

i“1

DistImb1pX˚
i ,βq2 (5.1)

KSbal0pβq “ sup
i:1,...,n

}DistImb0pX˚
i ,βq}, RCvMbal0pβq “

g

f

f

e

1

n

n
ÿ

i“1

DistImb0pX˚
i ,βq2,

where

DistImbpx,βq “ En

”´

ϖps
n,1 pD,X˚;βq ´ϖps

n,0 pD,X˚;βq

¯

1 tX˚ ď xu

ı

,

DistImb1px,βq “ En

”´

ϖps
n,1 pD,X˚;βq ´ 1

¯

1 tX˚ ď xu

ı

,

DistImb0px,βq “ En

”´

ϖps
n,0 pD,X˚;βq ´ 1

¯

1 tX˚ ď xu

ı

q,

and ϖps
n,1 pD,X;βq and ϖps

n,0 pD,X;βq are as defined in (2.8) and (2.9), respectively, and X˚ “ X when
the PS model is correctly specified, andX˚ “ W when the PS is misspecified. Notice that all distributional
covariate imbalance measures in (5.1) are measured in percentage points, and, according to Lemma 2.1,
should be close to zero when the PS model is correctly specified. Here, note that the KS and RCvM
covariate distributional imbalance metrics are related to the Kolmogorov-Smirnov and Cramér-von Mises
test statistics that are popular in specification testing.
Table S1.2 presents these six distributional balance measures when one estimates the PS parameter β

using different estimation procedures. When the PS model is correctly specified, we can see that the IPS
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estimators always improve upon the CBPS and ML estimators. Among the IPS estimators, the one based
on indicator function is the one who shows smallest CDF imbalances, which should be no surprise as its
objective function is designed to achieve that. The performance of IPS with exponential or projection
weighting function are very similar. When the PS is misspecified, we see that CBPS-based estimators tend
to achieve better covariate balancing than the ML-based estimator, and that the IPS estimators with indicator
and exponential weighting function further improve upon them. These distributional imbalances tend to be
larger when one uses the IPS estimator with projection weighting function, though. This is not in conflict
with our theory since these distributional imbalances are not expected to be close to zero under model
misspecification.
All in all, these simulation results reveals that one can indeed enjoy gains in precision by using our

proposed IPS estimator.

5.1.2 Local Treatment Effect Setup

We now consider the setup where treatment is endogenous but one has access to a binary instrument Z, as
described in Section 4. As in the unconfoundedness case, we consider sample size n equal to 500 6, and our
PS models incorporate all available covariates in a linear fashion.
The simulation design is similar to the one in Section 5.1.1. Let X,W, Y p1q, and Y p0q be defined as

before. The true instrument PS is given by

q pXq “
exp p´X1 ` 0.5X2 ´ 0.25X3 ´ 0.1X4q

1 ` exp p´X1 ` 0.5X2 ´ 0.25X3 ´ 0.1X4q
,

the instrument Z is generated as Z “ 1 tq pXq ą U1u, where U1 follows a uniform p0, 1q distribution. The
potential treatmentsD p1q andD p0q are generated asD p1q “ 1tp˚ pY p1q ´ Y p0qq ą U2u andD p0q “ 0,

where U2 follows a uniform p0, 1q distribution, and

p˚ pY p1q ´ Y p0qq “
exp p2 ` 0.05 ¨ pY p1q ´ Y p0qqq

1 ` exp p2 ` 0.05 ¨ pY p1q ´ Y p0qqq
.

Finally, the realized treatment is D “ Z ¨ D p1q ` p1 ´ Zq ¨ D p0q, and the realized outcome is Y “

D ¨ Y p1q ` p1 ´Dq ¨ Y p0q. The LATE, LQTEpτq, τ “ t0.10, 0.25, 0.50, 0.75, 0.90u are approximately
equal to 39.25, 42.93, 36.93, 34.40, 36.93, and 42.93, respectively. This design is consistent with a
generalized Roy model, under which individuals with higher treatment effects are more likely to be treated
if they are eligible for treatment. We also emphasize that, given the one-sided non-compliance, LATE and
LQTE are equal to the ATT and QTT in this scenario.
As before, we consider two scenarios. On the first one, we observed data on

´

Yi, Di, Zi,X
1

i

¯

,
and, therefore, all IPW estimators are correctly specified. In the second scenario, we observed data on
´

Yi, Di, Zi,W
1

i

¯

, and all considered IPW estimators for LATE and LQTE are misspecified.
Table S1.3 displays the simulation results for both scenarios. When the instrument PS model is correctly

specified, all estimators perform well in terms of bias and coverage probability, except the estimators based
on the LIPS estimator (4.5) with the indicator weighting function — the bias of the local treatment effect
estimators based on LIPS with indicator function is non-negligible when n “ 500, and such biases distort

6 Simulation results with n “ 200 and n “ 1000 are available in the Supplementary Appendix.
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the confidence intervals. In additional simulations, we note that the bias associated with estimators based
on the LIPS with the indicator weighting function converges to zero when sample size grows, though the
rate of convergence is rather slow. As such, we recommend that, in practice, one should favor the other PS
estimators with respect to the LIPS with the indicator weighting function.
Like in the unconfoundedness setup, we note that IPW estimators based on ML tend to have higher mean

square error, longer confidence intervals, and lower ARE than the IPW estimators based on the just-identified
CBPS estimator; the performance of the over-identified CBPS is worse than the just-identified CBPS when
one focus on LATE and LQTE with τ ď 0.5. The results in Table S1.3 also show that, when the instrument
propensity score is correctly specified, the LIPS estimators with the exponential or projection weighting
function tend to outperform the other methods, particularly when estimating the LATE, LQTEp0.75q, and
LQTEp0.90q. These gains can be very pronounced. For example, the ARE of the LATE estimator based on
the IPS with projection weight function with respect to the one based on the over-identified CBPS is 1.91.
This implies that the LATE estimator based on the over-identified CBPS would require sample size almost
twice as large to perform equivalently to the LATE estimator based on LIPS with projection weight. Using
the exponential weight function also leads to large gains in precision without sacrificing coverage probability.
When the instrument PS model is misspecified, our Monte Carlo results suggest that using the LIPS

can also be attractive. In this setup, we note that estimators based on ML tend to have higher biases,
RMSE, and misleading confidence intervals. Local treatment effect estimators based on the (instrumented)
CBPS improve upon those based on ML, with the just-identified CBPS estimator performing better than
the over-identified CBPS (at least in terms of RMSE). However, under-coverage tends to remain severe,
unless one focus on LQTE with τ ď 0.25. Our simulation results also suggest that our proposed LIPS
estimators can lead to local treatment effect estimators with better statistical properties than those based on
the (instrumented) CBPS. The RMSE improvements are very pronounced when one focus on LATE and
LQTE with τ ě 0.50. Furthermore, our LIPS estimators tend to have size closer to the nominal level than
the other PS estimators considered.
Next, we want to better understand the ability of these different estimators to minimize covariate dis-

tributional imbalances among compliers. Towards this end, we consider the following six distributional
imbalance measures:

KSlte
balpβq “ sup

i:1,...,n
}DistImbltepX˚

i ,βq}, RCvM lte
balpβq “

g

f

f

e

1

n

n
ÿ

i“1

DistImbltepX˚
i ,βq2,

KSlte
bal1pβq “ sup

i:1,...,n
}DistImblte1 pX˚

i ,βq}, RCvM lte
bal1pβq “

g

f

f

e

1

n

n
ÿ

i“1

DistImblte1 pX˚
i ,βq2 (5.2)

KSlte
bal0pβq “ sup

i:1,...,n
}DistImblte0 pX˚

i ,βq}, RCvM lte
bal0pβq “

g

f

f

e

1

n

n
ÿ

i“1

DistImblte0 pX˚
i ,βq2,

where

DistImbltepx,βq “ En

”´

ϖlte
n,1 pD,Z,X˚;βq ´ϖlte

n,0 pD,X˚;βq

¯

1 tX˚ ď xu

ı

,
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DistImblte1 px,βq “ En

”´

ϖlte
n,1 pD,Z,X˚;βq ´ϖlte

n pD,Z,X˚;βq

¯

1 tX˚ ď xu

ı

,

DistImblte0 px,βq “ En

”´

ϖlte
n,0 pD,Z,X˚;βq ´ϖlte

n pD,Z,X˚;βq

¯

1 tX˚ ď xu

ı

q,

and ϖlte
n,d pD,Z,X;βq, d P t0, 1u, and ϖlte

n pD,Z,X;βq are as defined in the system (4.6), and X˚ “ X

when the model is correctly specified, andX˚ “ W when the model is misspecified. Notice that, according
to Theorem 3.1 of Abadie (2003) and (4.3), all six distributional covariate imbalance should be close to zero
when the instrument PS model is correctly specified.
Table S1.4 presents these six distributional balances measures when one estimates the instrument PS

parameter β using different estimations procedures. When the instrument PS model is correctly specified, we
can see that the LIPS estimator improve upon the CBPS andML estimators. Among the LIPS estimators, the
one with indicator function is the one who shows smallest distributional imbalances, which, again, should be
no surprise as its objective function is designed to achieve that. The performance of LIPS with exponential
or projection weighting function are similar, though the one with projection function tends to perform better.
When the instrument PS is misspecified, we see that CBPS-based estimators tend to achieve better covariate
balancing than the ML-based estimator, and that the IPS estimator with indicator and exponential weighting
function further improve upon them. Just like in the unconfoundedness setup, these distributional imbalances
tend to be larger when one use the IPS estimator with projection weighting function, even though the results
in Table S1.3 favors this estimator. Like we mentioned before, this is not in conflict with our theory: these
distributional imbalances are not guaranteed to be close to zero under model misspecification.
Overall, our stylized Monte Carlo simulations illustrate that our proposed LIPS estimators can lead to

treatment effect estimators with improved finite sample properties. Our simulation results also point out
that treatment effect estimators based on the IPS and LIPS estimators with either exponential or projection
weighting functions tend to perform better than when one uses the indicator weighting function. As such,
we recommend that, in practice, one should favor these weighting functions with respect to the indicator
weighting function, especially when the dimension of the covariates included in the PS model is moderate
or high7.

5.2 Empirically calibrated simulation

To evaluate the performance of our proposed methods in a empirically driven setting, we conduct simulations
calibrated to our empirical application—the effect of 401(k) retirement plans on asset accumulation—in
Section 6 (Benjamin, 2003; Abadie, 2003; Chernozhukov and Hansen, 2004; Wüthrich, 2019). The outcome
of interest Yi is the net financial assets for household i. We consider two setups. In the first one, we want to
assess the effect of 401(k) eligibility on accumulated assets (intention-to-treat/unconfoundedness setup). In
the second one, we assess the effect of 401(k) participation on accumulated assets (local treatment setup). On
top of the outcome Y , treatment eligibility Z, and treatment participation D, we also observe 10 additional
covariates: income, log-income, age, family size, years of education, dummies for homeownership, marital

7 In unreported additional simulations, we also have found that the numerical performance of IPSind and LIPSind is sometimes
sensitive to initial values used in the optimization procedure when the number of included covariates is moderate. We argue that
this is an additional reason to favor the other weighting functions with respect to the indicator one.
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status, two-earner status, defined benefit pension status, and individual retirement account participation
status. See Section 6 for more background on the application.

5.2.1 Intention to Treat

We start by analyzing the effect of 401(k) eligibility on accumulated assets. Here, we assume that, conditional
on the vector of observed covariates, eligibility to 401(k) is as-good-as-random.
We calibrate our simulations as follows. We set the treated and untreated potential outcomes as

Y p1q “
goutpXq1βitt1

sout
` ε p1q , Y p0q “

goutpXq1βitt0

sout
` ε p0q , (5.3)

where goutpXq includes an intercept and all 60 two-way interactions of the available covariates (income, log-
income, age, family size, years of education, dummies for homeownership, marital status, two-earner status,
defined benefit pension status, and individual retirement account participation status), βittd , d P t0, 1u, is
equal to the estimated OLS coefficients by regressing net financial assets on the two-way interactions using all
the observed data withZ “ d, and ε pdq are independentN p0, 1q random variables. Covariates are randomly
drawn from the empirical distribution of covariates in the original data. We set sout “ 1, 000 so our outcome
is measured in thousands of dollars. The ATE (or ITT) and the QTEpτq, τ “ t0.10, 0.25, 0.50, 0.75, 0.90u

are approximately equal to 8.55, 1.19, 4.03, 7.55, 12.87, and 14.57, respectively.
The true PS is given by

p pXq “
exp pgpspXq1βpsq

1 ` exp pgpspXq1βpsq
, (5.4)

where gpspXq is a vector including an intercept, all covariates in a linear fashion and the square of income,
log-income, age, family size and years of education, the 16 ˆ 1 vector βps is equal to the estimated
maximum-likelihood coefficient of the logistic regression of Z on these covariates using all available data,
and the treatment eligibility Z is generated as Z “ 1 tp pXq ą Uu, where U follows a uniform p0, 1q

distribution. In this section, we take D “ Z as we are interested in the intention-to-treat effects.
Like in the stylized simulation setup, we consider two different scenarios to assess the sensitivity of the

proposed estimators not only under correctly specified PS models but also under misspecified PS models that
are “nearly correct”. In the first setup, we assume that researchers include the correct set of 16 covariates
into the PS model. In the second setup, we consider the case that researchers do not include the squared
covariates, and, therefore, the resulting PS model is misspecified. We set sample size n equal to 1, 000.
Table S2.1 displays the simulation results for both scenarios. When the PS model is correctly specified,

we note that the over-identified CBPS estimators tend to have a non-negligible bias, while the just-identified
CBPS estimators tend to under-cover the true causal parameters of interest—this under-coverage is particu-
larly severe when focusing on the ATE and QTE(0.75). The IPW estimators based on maximum likelihood
tend to perform well in terms of bias, RMSE, and coverage probability, except when τ “ 0.75. In this latter
case, the estimator based on ML tends to under-cover the true QTE(0.75). Among the IPS-based estimators,
the one that uses indicator function seems to be the least precise, both in terms of RMSE and length of 95%
confidence intervals. This is in line with our simulation results using the stylized setup. As so, we once more
reiterate that practitioners should favor the other IPS estimators in detriment of the one that used the indicator
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function. Both IPS estimators with exponential and projection weighting functions tend to improve upon the
over-identified CBPS in terms of MSE and ARE when one focuses on QTE’s. The IPW estimator using IPS
with exponential weights leads to tighter confidence intervals than the other IPS estimators, too. The gains
in asymptotic relative efficiency are only pronounced when focusing on QTE’s. In fact, when focusing on
the ATE, in this correctly specified DGP it is hard to improve upon the IPW estimator based on the MLE.
When the propensity score is misspecified, several interesting patterns arise. First, we notice that the

RMSE for the ATE estimator based on ML is substantially higher than the RMSE of the other considered
estimators. In this particular case, the IPS estimator with projection weighting function has the smallest
RMSE, followed by the over-identified CBPS. In terms of inference, the performance of the IPS estimators
with projection function is substantially better than the other considered estimators. When one focuses on
QTE’s, we notice that all proposed IPS estimators tend to perform better than the over-identified CBPS
estimator, except in the case with τ “ 0.90. We also notice that no estimator seems to control the the
probability of type I errors across all considered quantiles. Given that the PS models are misspecified, this
is not a big surprise. Finally, our simulation results reveal that the reduction in MSE by adopting IPS with
exponential weights tends to be large, especially for τ “ 0.25, 0.50, 0.75.
Table S2.2 presents different distributional balance measures for different propensity score estimators.

When the PS model is correctly specified, we can see that the IPS estimator always improve upon the
CBPS and ML estimators. Among the IPS estimators, the one with indicator function is the one who
performs “best”, though this should be no surprise. Excluding the IPS with indicator weight function, the
IPS with exponential weighting function seems to dominate the others. When the PS is misspecified, we
see that CBPS-based estimators do not always improve upon the ML-based estimator. In fact, the over-
identified CBPS estimator tend to perform worst than the other PS estimators in these covariate distributional
imbalances measures. All IPS estimators seems to lead to improved distributional balance, though this is
not always guaranteed by our theory.

5.2.2 Local Treatment Effects

In this section, we analyze the effect of 401(k) participation on accumulated assets. Here, we assume that,
conditionally on the vector of observed covariates, eligibility to 401(k) is as-good-as-random, and use it as
an instrument for 401(k) participation (treatment).
We calibrate our simulation as follows. We set the treated and untreated potential outcomes exactly

as in (5.3), and the instrument propensity score qpXq exactly as in (5.4). The instrument, eligibility to
401(k), Z is generated as Z “ 1 tq pXq ą U1u, where U1 follows a uniform p0, 1q distribution. The
potential treatments D p1q and D p0q—401(k) participation if eligible or not eligible–are generated as
D p1q “ 1tp˚ pY p1q ´ Y p0qq ą U2u and D p0q “ 0, where U2 follows a uniform p0, 1q distribution, and

p˚ pY p1q ´ Y p0qq “
exp

`

βlte0 ` βlte1 ¨ pY p1q ´ Y p0qq
˘

1 ` exp
`

βlte0 ` βlte1 ¨ pY p1q ´ Y p0qq
˘ ,

whereβlte0 andβlte1 were calibrated byfirst simulatingY p1q´Y p0q using all the data, and then usingmaximum
likelihood to estimate the logit regression of treatment participation on an intercept and this difference, using
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only data of eligible households.8 Finally, the realized 401(k) participation isD “ Z ¨D p1q`p1 ´ Zq¨D p0q,
and the realized outcome (net financial household) is Y “ D ¨ Y p1q ` p1 ´Dq ¨ Y p0q. The LATE and
LQTEpτq, τ “ t0.10, 0.25, 0.50, 0.75, 0.90u are approximately equal to 9.04, 1.37, 4.18, 7.76, 13.35, and
15.23, respectively. Like in the stylized setup, LATE and LQTE are equal to the ATT and QTT as we have
one-sided non-compliance..
Like in the ITT setup, we consider two different scenarios. In the first setup, we assume that researchers

include the correct set of 16 covariates into the instrument PS model. In the second setup, we consider the
case that researchers do not include the squared covariates, and, therefore, the resulting instrument PS model
is misspecified. We consider sample size n equal to 1, 000.
Table S2.3 displays the simulation results for both scenarios. When the instrument PS is correctly

specified, we notice that most IPW estimators are approximately unbiased, with the exception of the LIPS es-
timator with indicator weighting function and the over-identified CBPS estimators; these bias are particularly
pronounced for the LATE and and for LQTE with τ “ 0.75, 0.90. In terms of MSE, coverage probabilities,
and length of confidence intervals, we notice that the PS estimator based on ML tends to perform best when
one focuses on the LATE. When one focus on LQTE, though, our simulation results reveal that the LIPS
with either exponential or projection weighting function tend to lead to important gains in precision without
sacrificing correct coverage probability. For example, when one focuses on LQTEp0.50q, we see that our
proposed LIPS estimator with exponential weighting function has MSE that is approximately 20% smaller
than the over-identified CBPS estimator, has coverage probability that is close to the nominal level, and
shorter confidence intervals, too. In fact, the over-identified CBPS estimator would need a sample size 1.65
larger to perform equivalently to the LIPS with exponential weighting function. We also notice that the
just-identified CBPS and the ML PS estimators tend to under-cover the true treatment effects—these under-
coverage problems are specially severe when τ “ 0.10 or τ “ 0.75. Our proposed LIPS estimators based
on exponential or projection weighting functions do not suffer from these practically important problems.
When the PS is misspecified, we first notice that, when one is interested in the LATE, the ML instrument

PS estimator has a substantially higher MSE than any other estimators considered. We notice that the
IPW estimator based on the over-identified CBPS estimator substantially improves the MSE of the LATE.
Interestingly, we also see that our proposed LIPS with projection weighting function further improves upon
the over-identified CBPS not only in terms of MSE but also in terms of coverage probability, length of
confidence intervals, and asymptotic relative efficiency. In sum, when one is focused on the LATE, our
simulation results show that the gains of adopting the LIPS with projection weight are potentially big in the
presence of “modest” instrument PS misspecifications. When one focuses their attention on the LQTE, we
first notice that the LIPS estimators tend to substantially improve upon the CBPS estimators in terms of bias
and MSE, except when τ “ 0.90. The improviments in MSE can be large. in MSE LIPS estimators, the
ones with exponential weighting function tend to perform best in this misspecified DGP. For instance, the
MSE of the LQTEp0.50q estimator based on the LIPS with exponential weighting function is 64% smaller
than the one associated with the over-identified CBPS estimator.
Next, we analyze different covariate distributional balance measures for different propensity score esti-

8 βlte
0 and βlte

1 are approximately equal to 0.812 and 0.005, respectively.
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mators. The results are displayed in Table S2.4. When the instrument PS model is correctly specified, we
can see that the LIPS estimator with exponential weight tends to improve upon the CBPS andML estimators.
The same is true for the LIPS estimator with indicator function, though this is expected. We see that the LIPS
estimator with projection weight function tends to improve upon the ML estimator but performs slightly
worse than the CBPS estimators. When the PS is misspecified, though, we see that the ML estimator tends
to perform best (after, of course, the LIPS with indicator function), even though the simulation results in
Table S2.3 reveal that our LIPS estimators tend to dominate ML estimators in this particular case. Like
we mentioned in our stylized simulation setups, this is not in conflict with our theory: these covariate
distributional imbalances are not guaranteed to be close to zero under model misspecification.
Overall, the results of our calibrated Monte Carlo simulations agree with the ones in our stylized setup.

That is, our results illustrate that our proposed IPS/LIPS estimators can lead to treatment effect estimators
with improved finite sample properties. Just like in the stylized setup, our simulation results also point out
that treatment effect estimators based on the IPS and LIPS estimators with either exponential or projection
weighting functions tend to perform better than when one uses the indicator weighting function, and we
recommend practitioners to favor them.

6 Effect of 401(k) retirement plans on asset accumulation

As discussed in Benjamin (2003), Abadie (2003), Chernozhukov andHansen (2004), Belloni, Chernozhukov,
Fernández-Val and Hansen (2017) and many others, tax-deferred retirement plans have been popular in the
US since the 1980s. A main goal of these programs is to increase individual saving for retirement. Amongst
the most popular tax-deferred programs is the 401(k) plan. Interestingly, 401(k) plans are provided by
employers, and, therefore, only workers in firms that offer such programs are eligible. On the other hand, we
emphasize that eligible employees choose whether to participate (i.e., make a contribution) or not, making
the evaluation of the effectiveness of 401(k) plans on accumulated assets more challenging as a result
of endogeneity concerns — individuals who participate in 401(k) programs have stronger preferences for
savings and would have saved more even in the absence of these programs.
To bypass the endogeneity challenge, Benjamin (2003) uses data from the 1991 Survey of Income and

Program Participation (SIPP) and compares households that are eligible with those who are non-eligible for
401(k) plans to assess the effect of eligibility on accumulated assets. He argues that since 401(k) eligibility
is determined by the employers, household preference for savings plays a negligible role in determining
eligibility once one controls for observed household characteristics. Using PS matching, Benjamin (2003)
finds evidence that 401(k) eligibility has a positive effect on asset accumulation.
Abadie (2003), Chernozhukov and Hansen (2004) and Wüthrich (2019), on the other hand, study the

effect of 401(k) participation on asset accumulation, using 401(k) eligibility as an instrument for the actual
participation status. Similarly to Benjamin (2003), they argue that 401(k) eligibility is exogenous after
controlling for a vector of observed household characteristics. Abadie (2003), using a semiparametric IPW
estimator for the LATE, finds that the effect of 401(k) participation on net financial assets is significant and
positive. Chernozhukov and Hansen (2004) and Wüthrich (2019), using an IV quantile regression model,

27



also find positive and significant effects of 401(k) participation on net financial assets.
Inwhat follows, we apply themethodology discussed in Sections 3.2 and 4 to study the effects of eligibility

and participation in 401(k) programs on saving behavior. As suggested by Benjamin (2003), Abadie (2003),
and Chernozhukov and Hansen (2004), eligibility is assumed to be exogenous after controlling for covariates.
Also note that, because only eligible individuals can enroll in 401(k) plans, the monotonicity condition in
Assumption 5piiiq holds trivially, and the LATE and LQTE estimators presented in Section 4 approximate
the average and quantile treatment effect for the treated (i.e., for 401(k) participants).
We use the same dataset as Benjamin (2003), Chernozhukov and Hansen (2004) and Wüthrich (2019).

The data consists of a sample of 9,910 households from the 1991 SIPP9. The outcomes of interest are net
financial assets, and total wealth. For the (instrument) propensity score estimation, we adopt a logistic
specification, and use all two-way interactions between income, log-income, age, family size, years of
education, dummies for homeownership, marital status, two-earner status, defined benefit pension status,
and individual retirement account participation status. To assess the reliability of this parametric PS model,
we apply the specification test of Sant’Anna and Song (2019) with 1,000 bootstrap draws, and fail to reject
the null of the propensity score model being correctly specified at the 10% level.
Panel A (Panel B) of Table 1 shows the point estimates and standard errors (in parentheses) for the effect

of 401(k) eligibility (participation among compliers) on net financial assets and total wealth. We present
IPW estimators for the ATE, QTEpτq, LATE, LQTEpτq, τ “ 0.10, 0.25, 0.50, 0.75, 0.90, using the same PS
estimation methods as in the simulation exercise in Section 5, except the IPS and LIPS estimators based on
the indicator weighting function, as they tend to be numerically unstable when the dimension of covariates
is moderate. We also report two measures of covariate distributional imbalance for each PS estimator.
The results in Panel A suggest that 401(k) eligibility has a positive and significant average impact on both

net financial assets and total wealth and that the effect is more pronounced at the higher quantiles. When one
compares the treatment effect measures across different PS estimation methods, we see that the results tend
to be similar for net financial assets; for total wealth, we note that estimators based on the over-identified
CBPS estimator suggest much larger effects of 401(k) eligibility at higher quantiles than those based on our
proposed IPS estimators; see Figure 1 for a more detailed comparison between the QTE estimates based
on the IPS with projection weighting function, over-identified CBPS (the default in the CBPS R package),
and those based on ML. Interestingly, although we adopt a parsimonious specification, our IPW results for
net financial assets are similar to those in Belloni et al. (2017), who consider lasso-based high-dimensional
specifications based on a doubly-robust procedure10. For instance, their estimated ATE of 401(k) plan
eligibility on net financial assets is 7,848 with a standard error of 1,317, while our estimated ATE based
on IPS with projection weighting function is 7,784 with a standard error of 1,605; QTE estimates based
on over-identified CBPS and IPS are also close to those in Belloni et al. (2017). In terms of covariate

9 The original data have 9,915 households, but we follow Benjamin (2003) and delete the five observations with zero or negative
income. Descriptive statistics are available in Table 1 in Benjamin (2003) and in Tables 1 and 2 in Chernozhukov and Hansen
(2004).

10 Their procedure requires one to model not only the propensity score but also the outcome equation for treated and untreated units.
As so, they use “more information” than IPW procedures. Belloni et al. (2017) focus on net financial assets as a measure of
wealth.
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distributional imbalances, note that our proposed IPS estimators improve upon both CBPS estimators; the
IPS estimator with exponential weight function also improves upon the MLE.

Panel A: Effects of 401(k) plan eligibility on wealth

Outcome: Net Financial Assets Outcome: Total Wealth
MLE CBPSjust CBPSover IPSexp IPSproj MLE CBPSjust CBPSover IPSexp IPSproj

ATE 8,138 8,190 8,820 8,218 7,784 6,049 5,997 7,906 6,589 5,395
(1,135) (1,150) (1,362) (1,376) (1,605) (1,823) (1,811) (2,486) (2,201) (2,792)

QTE(0.10) 1,113 1,200 1,160 1,150 1,050 399 400 400 400 375
(264) (254) (259) (258) (283) (578) (558) (601) (557) (577)

QTE(0.25) 996 996 1,000 1,000 996 3,024 2,917 3,425 2,993 2,950
(229) (228) (237) (225) (231) (611) (591) (789) (593) (617)

QTE(0.50) 4,447 4,200 4,559 4,350 4,300 7,402 7,419 9,027 7,615 7,419
(278) (259) (331) (276) (309) (1,162) (1,111) (1,580) (1,143) (1,157)

QTE(0.75) 13,065 12,995 13,980 13,339 12,859 9,131 8,871 13,050 10,419 8,665
(931) (922) (1,166) (964) (1,025) (2,833) (2,786) (3,742) (2,972) (3,158)

QTE(0.90) 21,249 21,053 23,441 21,890 20,899 15,857 15,979 18,500 17,547 15,504
(2,223) (2,247) (2,934) (2,399) (2,782) (5,806) (5,829) (6,662) (6,167) (7,818)

KSbal 2.26 2.76 2.63 1.98 2.31 2.26 2.76 2.63 1.98 2.31
RCvMbal 0.56 0.56 0.65 0.51 0.57 0.56 0.56 0.65 0.51 0.57

Panel B: Effects of 401(k) plan participation on wealth

Outcome: Net Financial Assets Outcome: Total Wealth
MLE CBPSjust CBPSover LIPSexp LIPSproj MLE CBPSjust CBPSover LIPSexp LIPSproj

LATE 11,674 11,700 12,767 12,108 11,176 8,706 8,568 11,590 9,923 7,740
(1,621) (1,640) (1,929) (1,929) (2,250) (2,609) (2,587) (3,532) (3,094) (3,872)

LQTE(0.10) 2,554 2,624 2,642 2,624 2,449 1,220 1,109 1,471 1,120 1,045
(506) (486) (486) (495) (528) (815) (807) (827) (786) (833)

LQTE(0.25) 1,618 1,536 1,753 1,589 1,529 5,226 4,853 6,204 5,200 5,003
(266) (265) (284) (260) (266) (879) (839) (1,122) (828) (857)

LQTE(0.50) 7,285 7,041 7,849 7,341 7,197 10,187 9,925 12,701 10,730 10,026
(533) (515) (653) (518) (524) (1,279) (1,232) (1,696) (1,249) (1,316)

LQTE(0.75) 19,939 19,589 21,772 20,325 19,410 14,061 13,200 19,909 16,353 13,041
(1,034) (1,015) (1,319) (1,065) (1,136) (1,054) (1,037) (1,342) (1,087) (1,159)

LQTE(0.90) 28,501 28,450 31,798 31,200 27,919 19,200 18,908 24,402 22,400 17,172
(728) (715) (869) (749) (839) (779) (779) (898) (808) (998)

KSlte
bal 3.23 3.94 3.71 2.90 3.41 3.23 3.94 3.71 2.90 3.41

RCvM lte
bal 0.80 0.81 0.92 0.73 0.84 0.80 0.81 0.92 0.73 0.84

Note: Same data used by Benjamin (2003) and Chernozhukov and Hansen (2004). The propensity score model is based on a logistic link function. Standard errors in parentheses.
The estimators in Panel A are the same as those we describe in Table S1.1, whereas those in Panel B are the same as those described in Table S1.3. The distributional imbalance
measures are as defined in (5.1) and (5.2).

Table 1: Effects of 401(k) plan on different measures of wealth

The results in Panel B paint a similar picture as those in Panel A: 401(k) participation tends to have a
positive and significant average impact on both measures of wealth, and the effect is more pronounced at the
right tail of the wealth measures. As we illustrated in Figure 2, there are quantitative differences between
the LQTE estimates based on different PS estimation methods, with those based on the over-identified
instrument CBPS suggesting much larger effects than the other estimation methods, though the shape of the
LQTE function is similar across specifications. Like in Panel A, our results for net financial assets are also
similar to those in Belloni et al. (2017). Their reported LATE estimate based on high-dimensional sparse
models is 11,267 (standard error of 1,890), while our IPS LATE estimate with projection weighting function
is 11,176 (standard error of 2,250). In terms of LQTE, Belloni et al. (2017) estimates tend to be similar to IPS
estimates with exponential weighting function, except for quantiles above τ “ 0.85, where their estimates
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tend to be higher than any of the considered IPW procedures. In terms of covariate distributional imbalances,
Panel B also reveals that our proposed LIPS estimators tend to improve upon both CBPS estimators; the
LIPS estimator with exponential weight function perform best according to this metric.

Figure 1: Estimated quantile treatment effects of 401(k) eligibility on different wealth measures.
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The results in Panel B paint a similar picture as those in Panel A: 401(k) participation tends to have a
positive and significant average impact on both measures of wealth, and the effect is more pronounced at the
right tail of the wealth measures. As we illustrated in Figure 2, there are quantitative differences between
the LQTE estimates based on different PS estimation methods, with those based on the over-identified
instrument CBPS suggesting much larger effects than the other estimation methods, though the shape of the
LQTE function is similar across specifications. Like in Panel A, our results for net financial assets are also
similar to those in Belloni et al. (2017). Their reported LATE estimate based on high-dimensional sparse
models is 11,267 (standard error of 1,890), while our IPS LATE estimate with projection weighting function
is 11,176 (standard error of 2,250). In terms of LQTE, Belloni et al. (2017) estimates tend to be similar to IPS
estimates with exponential weighting function, except for quantiles above τ “ 0.85, where their estimates
tend to be higher than any of the considered IPW procedures. In terms of covariate distributional imbalances,
Panel B also reveals that our proposed LIPS estimators tend to improve upon both CBPS estimators; the
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LIPS estimator with exponential weight function perform best according to this metric.

Figure 2: Estimated local quantile treatment effects of 401(k) participation on different wealth measures.
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7 Conclusion

In this article, we proposed a framework to estimate propensity score parameters such that, instead of
targeting to balance only some specific moments of covariates, it aims to balance all functions of covariates.
The proposed estimator is of the minimum distance type, and is data-driven,

?
n-consistent, asymptotically

normal, and admits an asymptotic linear representation that facilitates the study of inverse probability
weighted estimators in a unified manner. Importantly, we have shown that our framework can accommodate
the empirically relevant situation under which treatment allocation is endogenous. We derived the large
sample properties of average, distributional and quantile treatment effect estimator based on the proposed
integrated propensity scores, and illustrated its attractive properties via a Monte Carlo study and an empirical
application.
Although this paper devoted most of its attention to forming IPW-type treatment effect estimators, we

note that sometimes researchers are willing to consider an outcome regressionmodel, on top of the propensity
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score model. In such cases, we stress that one can easily combine our IPS estimation procedure with such
outcome regression model to form doubly-robust, locally efficient treatment effect estimators, see, e.g.,
Słoczyński and Wooldridge (2018) and references therein. Perhaps even better, one can use the integrated
moment approach adopted in this paper to estimate not only the propensity score, but also the outcome
regression model. We leave the detailed discussion of such procedure for future research.
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